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Abstract

The Cantor Schroeder-Bernstein Theorem states that if there exists an injection f: A — B
and an injection g: B — A, then there exists a bijection h: A — B. This is an intuitive result,
but its proof is surprisingly tricky.

In this article, we briefly review injections, surjections, and bijections, and use these basic facts
to support a proof of the Cantor Schroeder-Bernstein Theorem.

Much of this article was derived from https://web.williams.edu/Mathematics/1g5/CanBer.
pdf. Here we just fill in all of the details.

1 Preliminaries

This should mostly be review. You should work out proofs of each of these theorems yourself.

1.1 Functions

Definition 1.1 (Injection).

A function f: A — B is injective if and only if f(z) = f(y) implies x = y.

In other words, if the outputs are the same, the inputs must be the same.

Definition 1.2 (Surjection).

A function f: A — B is surjective if for all b € B, there exists some a € A such that f(a) = b.

Definition 1.3 (Bijection).

A function f: A — B is a bijection if it is an injection and it is a surjection.

Prove the following theorem.

Theorem 1.4 (Bijectivity is an equivalence relation).

We say that A ~ B if and only if there exists a bijection f: A — B. Then ~ is an equivalence
relation. That is,

1. Reflexivity: A ~ A.
2. Symmetry: A ~ B implies B ~ A.
3. Transitivity: A ~ B and B ~ C implies A ~ C.
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1.2 Unions and Intersections

Definition 1.5 (Union).

Consider a (possibly infinite) series of sets A;. Then |JA; is the set of elements contained in at
least one A;.

Definition 1.6 (Intersection).

Consider a (possibly infinite) series of sets A;. Then [ 4; is the set of elements contained in every
A;.

From here on out we will commit an abuse of notation. Given a function f: A — B and Ay C A,
we write f(Ap) to denote the range of f on Ag. In other words, f(Ag) (which is a subset of B) is the
set of elements b such that there exists some element a € Ag where f(a) = b.

The following theorem will be useful for the last part of our proof.

Theorem 1.7.

Given a set A, a series of sets A; C A, and an injective function f: |JA; — B,

fJ4) =)
F()A) =) £(4:)

2 Cantor Schroeder-Bernstein

2.1 Groundwork

Define sequences A,, and B,, recursively as follows:
1. Ag=A
2. By=B
3. A, =g(Bp-1) forn>1
4. B, = f(Ap—1) forn>1
The following two lemmas are the meat of the proof.

Lemma 2.1. Forn >0, A, ~ Byy1.

Proof. Recall that B, 1 = g(A,). Note that g: A, — B,y1 is injective as g is injective on the
entirety of A. And since B, 11 = range A,, by definition, g is also surjective. Thus g: A,, — By, is a
bijection. O

By symmetry, we have B,, ~ A, 1 as well.
Lemma 2.2. Forn >0, A, 2O A,y1 and B, 11 2 By,.

Let us first look at a few small cases to gain some intuition. Note that

(A(),Al, A27 AS) = (A7gBang7gng)



Notice for every term except for Ag, there is a g on the “outside”. So if we can show inclusion on
the sets ¢ is being applied on, then we can also show inclusion on the result after g is implied.
As a concrete example,

BDfA = gB D gfA.

Proof. We induct on n. The base case is straightforward, so we omit it.
Recall that A, = ¢g(B,,-1) and A,,+1 = g(By). Since B,_1 2 B,, we conclude that g(B,,—1) 2
9(By). By symmetry, we have B,, D B, 11 as well. O

2.2 Usingour lemmas

Now there are two cases. Either there exists some n such that A, = A,4+1 or B,, = Bj,41, in which
case we are done, or there does not. The full details of the first case are left to Appendix A, but here
is a general sketch. We have A,, ~ A, 11 ~ B,, where the important part is A,, ~ B,. We can show
that A, ~ B, = A,_1 ~ B,_1, which eventually cascades to Ag ~ By.

Now suppose that there exists no n such that A, = A,4+1 or B,, = Bp+1. Then we can rewrite
Lemmas 2.2 and 2.1 as follows.

Lemma 2.3. Forn>0, A, 2 A,y1 and B,, 2 B,11.

Then define A as A, — A, 41 (where — is set subtraction). Define B* similarly. Note that A% is
never empty as the inclusions in Lemma 2.3 are strict and A,, is never empty. This is a simple proof
by induction; full details in Appendix B.

Lemma24. Forn >0, Ay ~ B}, .
The proof is left to Appendix C.
Lemma 2.5. There exists a bijection ho: |JA; — U B:.

This is a consequence of Lemma D.1.

Let’s take stock of where we are. We have bijected most of A to most of B, and with Lemma D.1
we have a tool to compose bijections of disjoint unions. So all we have to do is answer the following
questions:

1. What part of A is not in J AF?

2. How do we biject it to its counterpart in B?

Lemma 2.6. The disjoint union of | J AF and [ 4; is A.

Proof. Note that a € A is in |J A} if and only if there exists some n such that a € A,, but a € A,41.
If there exists no such n, then because a € Ag, we conclude a is in every A;. In other words, a € [ 4;.
O

Lemma 2.7. The function f is a bijection from (] A; to () B;.

Proof. Note by Theorem 1.7 that
f(m Ai) = mBz‘Jrh

and By () Bi+1 = () B; as every B; is a subset of By.
So the range of f([)A4;) is exactly (] B;, meaning that f: (| A4; — [ B; is a surjection. Since f is
injective by definition, f is a bijection, as desired. O

To finish, note that by Lemma D.1, |J A ~ |J B and [ A; ~ () B; implies A ~ B.



A Proof of non-strict inclusion case

Here we handle the full details of the non-strict inclusion case as a separate theorem.

Theorem A.1.
For any n > 0, An = An+1 — A() ~ By.

If we show this, we show by symmetry that B,, = B,4+1 = Ag ~ By.
LemmaA.2. For anyn >0, A, ~ B, = Ay~ By.

Proof. We proceed by induction on n. The base case of n = 0 is obvious.
Now suppose A,, ~ B,; we want to show that A, 1 ~ B,1+1. But by Lemma 2.1,

Bn ~ AnJrl ~ Bn+1 ~ An»

which implies that Ay ~ By. O
Note that A,, ~ A, 11 ~ B, by Lemma 2.1, which implies Ay ~ By by Lemma A.2, as desired.

B A, isnon-empty

Lemma B.1. For all n > 0, A,, and B,, are non-empty.

Proof. We induct on n. This is obviously true for n = 0.

Now suppose A,, and B,, are non-empty; we want to show that A, ., and B,;; are non-empty.
But A,y is the range of g(B,,), and since B, is non-empty, all we must do to show A,,11 is non-empty
is select an element in B,,.

Symmetrically, By, 1 is non-empty. O

C Proof of bijection between A* and B

Lemma C.1. For all n > 0, there is a bijection between A,, — A,+1 and B,+1 — Bpyo.

Proof. Note that f bijects A, to B,i1, and furthermore, it also bijects A, 1 into B,is. Since
An 2 AnJrl and Bn 2 Bn+17

f(An - An+1) = f(An) - f(An-i-l) = Bn+1 - Bn+2-

Since f is injective, f bijects A, — Ap41 to Bpy1 — Bpto. O

D Disjoint union bijections

This is a lemma that is generally useful even outside of this specific proof.

Lemma D.1. Suppose there exists a sequence of pairwise disjoint sets A; and another such sequence

Bi. Then,
U4~ B

Proof. Select a bijection f;: A; — B; for each 7. Then, we can explicitly construct a bijection
f: UA; — B as follows: if a € A;, then f(a) = f;(a). This is well defined because a € A; for exactly
one 4.

IThis is not strictly true, but the case where Ag = Bg = () is so trivial that we don’t care.
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