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Abstract

When multiple groups of consumers reside in the same market, we determine that we can write each

group’s conditional choice probabilities (CCP) as a function of unobserved consumer heterogeneity.

Moreover, we can specify choice probabilities of one group as a function of another by shifting the

unobserved component. Armed with our novel CCP estimator, we develop an approach to identify and

estimate a dynamic discrete demand model for durable goods with non-random attrition of consumers

and continuous unobserved consumer heterogeneity but without the usual need for value function

approximation or reducing the dimension of state space by ad hoc behavioral assumptions. We illustrate

the empirical value of our method by estimating consumer demand for electric vehicles in the state of

Washington during the period of 2016–2019. We also determine the impact of a different federal tax

credit based on the electric range of a car rather than the size of the battery, which was the existing

policy during the data period, and we evaluate how best to seed a nascent market that presents indirect

network effects to drive faster adoption. Should the government incentivize adoption through consumer

tax credits or through EV infrastructure?

Keywords: Dynamic discrete choice, dynamic selection, Electric Vehicles (EVs)

1 Introduction

Dynamic discrete choice models play a key role in modeling consumer demand due to their ability to

incorporate the dynamics of the state of the market and the intertemporal preferences of consumers. The

incorporation of these dynamic aspects comes at the cost of the complexity of estimation and the obscurity

of identification. Specifically, defining a tractable state space while accounting for all the products in

the market is often a difficult task, leading some to adopt ad hoc approximation methods. The task

becomes even more challenging when the researcher wants to include multidimensional unobserved state

variables while having access to only aggregate sales data. Besides the estimation difficulties, it is also
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uncertain whether (or which of) the structural parameters are identified when there are both continuous

unobserved consumer heterogeneity and continuous unobserved product characteristics. In the market

of durable products where consumers leave after purchasing, we have the additional problem that the

distribution of unobserved consumer heterogeneity (e.g. random price coefficients), for those consumers

who remain in the market, is likely to change over time. It is necessary to understand the consequences

of such non-random attrition of consumers (also known as dynamic selection), which usually causes

estimation bias in panel data analysis if ignored.

Our main contribution is to develop a novel approach using market-level data to model, identify, and

estimate a dynamic discrete choice demand model without replacement for durable goods with dynamic

selection, continuous unobserved consumer heterogeneity, and continuous unobserved product charac-

teristics, in addition to the commonly included individual-product idiosyncratic errors. The unobserved

product characteristics are specified as serially correlated and correlated with the observed product charac-

teristics, particularly price. The continuous unobserved consumer heterogeneity can be multidimensional,

and its distribution varies over time due to the non-random attrition of consumers. We provide a new

method to estimate all model primitives, including the consumer’s discount factor, without the need to

reduce the dimension of the state space or by other approximation techniques such as discretizing state

variables. We also provide new identification results that show the model is identified while being agnostic

about how consumers form their beliefs regarding the state transition distribution. Yet, we still require

that their beliefs are consistent with what is observed in the data.1 The implementation of our new

estimator only involves nonlinear least squares (NLS) and 2-stage least squares (2SLS). The simplicity of

the estimation allows researchers to estimate multiple model specifications at little computational cost.

We illustrate the empirical value of our method by estimating the consumer demand for electric

vehicles (EV) in the state of Washington during the period of 2016–2019. Our estimates determine that

demand for EVs is driven in part by price, miles per gallon equivalent (MPGe), horsepower, electic range,

gas prices, and the network size associated with electric charging stations. We also determine that there

are significant levels of unobserved consumer heterogeneity associated with EV price and MPGe. After

estimation, we leverage our estimates to further determine the impact of a different federal tax credit

based on the electric range of a car rather than the size of the battery, which was the existing policy

during the data period.2 We conclude a simple tax credit of $30.54 per mile of electric range reduces

CO2 emissions by 11.03%, with 361 more electric vehicles on the road at no additional cost relative to

the existing policy. We further address the question of how best to seed a nascent market that presents

indirect network effects to spur adoption. Should the government incentivize adoption through consumer

tax credits or EV infrastructure? Would such money be better directed at EV infrastructure by building

a larger Level 3 charging network? We determine that by eliminating consumer tax credits and focusing

on EV infrastructure by building a larger Level 3 charging network, the adoption of battery powered

1Recently, An, Hu and Xiao (2020) use individual-level panel data to identify the agent’s preference and their subjective

beliefs, which do not need to be rational expectations or myopic. Our results are based on market-level data, the discount

factor in this paper will be identified without belief restriction (the discount factor is assumed to be known in their paper),

and our state variables, observed and unobserved, are all continuous (the state variables, excepting for the conventional

utility shocks, are discrete in their paper). By no means, we are claiming that our results are more general. We limit our

research scope to the market of durable goods, where purchasing can be viewed as a terminal action, hence simplifying the

task, but their paper focuses on general dynamic discrete choice models.
2The proposed policy is treated as a permanent change.
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electric vehicles (BEVs) increases by 25.75%, with a 51.33% reduction in CO2.

The proposed approach relies on our new idea of estimating conditional choice probability (CCP)

functions. In its original form (Hotz and Miller, 1993), the CCP function is a function of observed state

variables.3 Applying the original CCP estimator to the market of durable goods has two major difficulties.

The first is the large dimension of product space and/or product characteristics space. The second is the

continuous multidimensional unobserved state variables (unobserved consumer preference heterogeneity)

whose unknown distribution could also vary over the course of time due to nonrandom attrition of

consumers. We provide a new perspective by exploring market-level data on multiple demographic

groups of consumers in the same market. Instead of viewing the CCP as a function of all observed

state variables as in individual-level panel data, our objective is to estimate the CCP as a function of

unobserved consumer heterogeneity for each observed group and market. Recovering directly the CCP

for each group and market evaluated at each value of unobserved consumer heterogeneity is the central

pillar of our estimator and essential for addressing the dynamic selection problem due to the nonrandom

attrition of consumers after purchasing.

We discover that when we observe the market share of a product for multiple groups of consumers in

the same market, we can easily estimate the CCP function of unobserved consumer heterogeneity by NLS.

To see the intuition, note that for a demographic group g, the known market share in this group is the

integrated unknown CCP of group g with respect to the unknown distribution of unobserved consumer

heterogeneity in group g. This can be viewed as one moment condition. If the number of unknown CCP

functions grows with the number of groups, we can never recover these unknown CCPs. The key insight is

that when there are multiple groups of consumers residing in the same market, we can write each group’s

CCP as a function of unobserved consumer heterogeneity because these consumers face the same state

of the market. Moreover, we can specify the conditional choice probabilities of one group as a function

of another by shifting the unobserved component.

The presence of multiple groups of consumers in the same market creates within-market variation,

which also plays a key role in simplifying our CCP estimation.4 By exploiting the variation of group

market shares within the same market, we can avoid estimation issues due to the unobserved product

characteristics and the possibly high dimension of product characteristics (since they are fixed given one

particular market). We explicitly show how the effect of the state of the market on demand is aggregated

into the parameters of our CCP as a function of unobserved consumer heterogeneity, which is then further

mapped to the parameters of consumer flow utility functions.

Having highlighted the paper’s innovations, we believe it is important to discuss the data requirements

for implementing our new methodology. Up to now, researchers who employ market-level sales data have

been in search of a methodology that is able to accommodate unobserved state variables as well as

continuous forms of unobserved consumer heterogeneity in preference parameters, but without the cost

3Arcidiacono and Miller (2011) made important progress so that the CCP function can depend on an agent’s unobserved

discrete type.
4The use of within-market variation is not new in the literature of demand identification and estimation. Recently,

Berry and Haile (2020) developed new results of nonparametric identification of demand function using the variation in the

choice probabilities of different individual consumers within the same market. Within a market, the state of the market

(including demand shocks within the market) does not change, but the observed consumer heterogeneity can still shift

demand quantity—observably different consumers have different choice probabilities. Hence, the within-market variation of

observed consumer heterogeneity is a natural instrument for demand quantities.
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of reducing the state space via approximation. With our methodology and panel data of product sales for

two or more consumer groups (or repeated cross-sectional data of individual consumer purchases where

researchers can construct group sales from it), researchers can now account for both needs at little cost.

The researcher must also be in possession of data from the origination of the market and that the existing

product’s replacement value is zero, if there is one, to remove any bias associated with the well-known

initial conditions problem. Because customer segmentation is a standard marketing practice, it is easy to

obtain panel data at the consumer segment level.5 For example, the data company NPD provides such

consumer segment-level panel data for many industries from apparel to video games.6

In the remainder of the introduction, we discuss the literature. Our identification results are novel

relative to the literature on identifying dynamic discrete choice (DDC) models. Our model for durable

goods can be understood as a general DDC model in which a subset of unobserved state variables

(unobserved product characteristics herein) are continuous, serially correlated, and correlated with other

observed state variables. The existing identification results (Magnac and Thesmar, 2002; Norets, 2009;

Kasahara and Shimotsu, 2009; Arcidiacono and Miller, 2011, 2018; Hu and Shum, 2012; Hu et al., 2017)

in the literature of DDC models cannot be applied here.

Most of the research that focuses on individual-level data does not include persistent unobservable

state variables (e.g. Bajari et al., 2016; Daljord, Nekipelov and Park, 2018).7 The following exceptions

involving persistent unobservables are worth noting. Hu and Shum (2012) study dynamic binary choice

models with continuous unobserved state variables, but their identification result is limited to the con-

ditional choice probabilities and state transition distribution functions, not to model primitives like flow

utility functions and the discount factor. Norets (2009) does include a serially correlated unobservable

idiosyncratic error, which is individual-specific rather than an aggregate product shock like in our case.

Arcidiacono and Miller (2011) model persistent unobservables, but limit them to a discrete set of values.

Our estimation approach is also new relative to the literature on estimating DDC models. First, our

estimation approach does not rely on the validity of specific approximations like interpolation or other

value function approximations, or behavioral assumptions that consumers only consider some function

of the state space and not the entire state (Melnikov, 2013; Gowrisankaran and Rysman, 2012). Second,

we estimate more model primitives than the current literature since our method recovers not just the

preference parameters but also the discount factor.

Our work builds on several foundational papers in the demand estimation literature. First is the result

that the difference between choice-specific payoff is a function of individual choice probabilities (Hotz and

Miller, 1993) in static and dynamic settings. The work of Berry (1994) and the BLP model (Berry, 1994;

Berry, Levinsohn and Pakes, 1995; Berry and Haile, 2014) on demand estimation with market-level data

including unobservable product characteristics have been extensively used. This is similar to our setting

but focused on a static environment.

Extending the BLP models to a dynamic setting with forward-looking agents is a challenge. Some

5Segment level panel data are also substantially cheaper than individual-level data if researchers have to purchase data.
6See “Checkout Segmentation & Survey Insights,” NPD.com, accessed September 7, 2021, https://www.npd.com/prod

ucts/checkout-segmentation-survey-insights/.
7We note that Daljord, Nekipelov and Park (2018) presents an innovative way to identify the discount factor in DDC

models with individual data. The primary difference is that our setting involves persistent unobservable state variables,

whereas those are not present in the aforementioned paper.
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researchers either do not model persistent unobserved shocks (Song and Chintagunta, 2003), or make

them time-invariant (Goettler and Gordon, 2011). Others have focused on improving the computational

speed of fixed-point estimators with a variety of approaches. Dubé, Fox and Su (2012) have employed

a constrained optimization approach from (Su and Judd, 2012) to estimate static and dynamic struc-

tural models. Melnikov (2013) and Gowrisankaran and Rysman (2012) develop an approximation based

on inclusive value sufficiency that allows the researcher to collapse the multi-dimensional state into one

dimension, making the problem much more computationally tractable when using aggregate data. More-

over, the formal identification in the paper is not specified. Derdenger and Kumar (2019) have studied the

approximation properties of this approach, and have shown that it is a biased and inconsistent estimator

when consumers track the full set of state variables. Sun and Ishihara (2019) takes a different approach

to include unobserved heterogeneity in a dynamic demand estimator. They transform the generalized

method of moments (GMM) nested fixed point estimator by transforming it into a quasi-Bayesian (Laplace

type) estimator. They develop a novel MCMC method that efficiently solves fixed-point problems.

Another paper in the field of dynamic discrete choice demand is that of Chou, Derdenger and Ku-

mar (2019). They present a dynamic discrete choice estimator that eliminates the approximation of the

expected value function by simply leveraging the Hotz and Miller (1993) inversion. Yet, the Chou, Der-

denger and Kumar (2019) estimator does not include unobserved heterogeneity in consumer preferences.

Moreover, the model uses only “standard” aggregate sales data. Our paper differs substantially from this

work. We provide a model that includes observed consumer heterogeneity (in the form of income) AND

unobserved consumer preference heterogeneity—as presented in Gowrisankaran and Rysman (2012) and

Sun and Ishihara (2019). Our estimator also requires a very different data structure than that of Chou,

Derdenger and Kumar (2019), Gowrisankaran and Rysman (2012), and Sun and Ishihara (2019). We

believe that we are the first paper to present an estimator for a dynamic discrete choice demand model

that includes observed and unobserved consumer preference heterogeneity without the use of individual-

level data as in Arcidiacono and Miller (2011) and under a weaker assumption about how consumers

form expectations for state variables. We do so with a new data structure that is a hybrid between pure

aggregated sales data and pure individual purchase data, again a sizeable departure from the works of

Chou, Derdenger and Kumar (2019), Gowrisankaran and Rysman (2012) and Sun and Ishihara (2019).

2 The Dynamic Discrete Demand Model

2.1 The Dynamic Model

The timing of our model is the following. In each period t, a forward-looking consumer i observes the

state of market Ωit and considers whether or not to purchase a durable product from the available goods

1, . . . , J .8 Note, the state of the market for individual i does not include the value of the existing product

that is to be replaced, if there is one, as this is assumed to be zero for all individuals. The associated

expected lifetime payoffs are vi1t, . . . , viJt. The lifetime payoff is a “sum” of expected discounted per

period or flow utilities. We first describe the flow utilities. If consumer i does not purchase in period t,

she receives the flow utility εi0t in period t and stays in the market. When consumer i purchases product

8For the simplicity of exposition, we let the product space be fixed. The arguments do not change if we consider a

time-varying choice set.
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j at time t, her indirect flow utility during the purchase period t is

fijt = δj + γ′Xjt + ξjt − αiPjt + εijt.

She then receives the identical flow utility δj+γ′Xjt+ξjt in each period following her purchase and exits the

market. Thus, purchasing a product is a terminal action a la Hotz and Miller (1993)–we do not allow the

consumer to make a replacement decision in future t periods. Here Xjt is a vector of observable product

attributes other than price, Pjt is the price, and ξjt is unobserved product characteristics. Following Berry

(1994), the term δj + ξjt can be interpreted as the mean of consumers’ valuation of unobserved product

characteristics, such as quality, in period t. We let ξjt have mean zero over T periods, so δj is the product

fixed effect, and therefore εijt denotes the individual deviation from this mean. Let Xt ≡ (X ′
1t, . . . , X

′
Jt),

and Pt and ξt are defined similarly. Let Ωit ≡ (X ′
t, P

′
t , ξ

′
t, ε

′
it)

′.

Suppose that there are G ≥ 2 demographic groups of consumers (such as income bracket, age group,

sex, etc.) in the market facing the same price and product characteristics, observed and unobserved. For

a market, we only observe group market shares, prices, and observed characteristics of products over

T periods indexed by t = 1, . . . , T . Consumers choose from products 1, . . . , J with 0 being the outside

option.

Consumers are heterogeneous in their price coefficient αi, which depends on discrete demographic

groups and unobserved continuous heterogeneity Ui. For exposition simplicity, we limit our attention to

the consumer heterogeneity in price coefficient αi here and defer the extension to the multidimensional

consumer heterogeneity until our empirical application in Section 6 with further details in Appendix D.

We use a vector of dummy variables Di ≡ (D
(1)
i , . . . , D

(G)
i )′ to indicate the membership—D

(g)
i = 1 if

consumer i belongs to group g, and D
(g)
i = 0 otherwise. Assume

∑G
g=1D

(g)
i = 1. Consider

αi = α(1) + τ (2)D
(2)
i + · · ·+ τ (G)D

(G)
i + ωUi, αi ∼ N (α(1) + τ (g)D

(g)
i , ω)

where τ (g) captures the between group variation, and ωUi is idiosyncratic unobserved price preference,

which captures the within group variation of the price coefficient. We normalize the variance of Ui to be

1, hence ω ≥ 0 controls the size of within-group variation, and Ui ∼ N (0, 1).9 It will be convenient to

define τ (1) = 0. Hereafter, we say that a consumer i is of type-(g, U) if she is from group g and Ui = U ,

hence her price coefficient αi = α(1) + τ (g) + ωU .

For a consumer i of type-(g, U), we write v
(g)
jt (U) to denote her expected lifetime payoffs vijt from

product j. Given the fact that consumers exit the market after the purchase of any product, a consumer’s

expected lifetime payoff can be written as the sum of the current period t utility and the stream of utilities

in periods following purchase:

v
(g)
jt (U) =

δj + γ′Xjt + ξjt
1− β

− (α(1) + τ (g) + ωU)Pjt, j = 1, . . . , J. (1)

The discount factor is β ∈ [0, 1). Recall α(1) + τ (g) + ωU is the price coefficient of a consumer of

type (g, U). To formalize the option value of “waiting” (choosing the outside option), we make the

following assumptions, so a consumer’s decision becomes a dynamic programming problem. The first

9To take account of heteroskedasticity (group varying within-group variation), it is straightforward to consider the more

flexible specification αi = α(1) + τ (2)D
(2)
i + · · ·+ τ (G)D

(G)
i +(ω(1)D

(1)
i + · · ·+ω(G)D

(G)
i )Ui, where ω(g) controls the variation

of αi within group g.

6



three assumptions regulate how the observed data are generated. The last assumption specifies consumer

belief’s about the data generation process (DGP).

Assumption 1 (Type-I EVD). Assume that utility shocks εijt are serially independent, follow type 1

extreme value distribution (EVD), and are independent of (Di, Ui, Xt, Pt, ξt).

Assumption 2 (Markov Process). Pr(Ωi,t+1 |Ωit, Ωi,t−1, . . .) = Pr(Ωi,t+1 |Ωit).

Assumption 3 (Conditional Independence). For all periods t, we have (i) Ωi,t+1 ⊥⊥ εit | (Xt, Pt, ξt);

(ii) εi,t+1 ⊥⊥ Ωit | (Xt+1, Pt+1, ξt+1);

Assumption 4 (Consumer Belief). (i) Consumers believe Assumptions 1 to 3; (ii) consumers have un-

conditional rational expectation—the unconditional expectation of g(Xt+1, Pt+1, ξt+1), where g(·) denotes
a generic function, is the same as the unconditional expectation according to the DGP; (iii) when two

consumers i and j have the same price coefficient, i.e. αi = αj, they two have the same belief about the

conditional expectation of g(Xt+1, Pt+1, ξt+1) given (Xt, Pt, ξt), which may or may not be the same as the

rational expectation.

Additional comments about Assumption 4 are due here. Assumption 4 is weaker than assuming that

consumers have the rational expectations about the DGP. One interesting feature of our method is that we

can identify and estimate the flow utility functions and the discount factor under this weaker assumption

of a consumer’s belief. The ubiquitous rational expectation assumption implies Assumption 4.(i) and

4.(ii). Assumption 4.(iii) holds as well because all consumers have the same belief as the DGP. However,

Assumption 4.(iii) does not assume that consumers believe the conditional distribution of g(Xt, Pt, ξt)

given (Xt, Pt, ξt) is the same as the conditional distribution in the DGP—researchers can be agnostic

about such a conditional distribution as long as what consumers believe does not violate Assumption

4.(i) and 4.(ii). Taking EV price pt for example, we do assume that consumers know E(pt+1), which is

also the expectation as observed in data; we do not assume that E(pt+1 | pt) according to a consumer’s

belief must be what we observed in the actual data.

Consider a consumer i of type (g, U), and let V
(g)
t (Ωit, U) denote her value function.10 Then the

expected option value of waiting to purchase is

v
(g)
0t (U) = β E

[
V

(g)
t+1(Ωi,t+1, U)

∣∣∣Ωit

]
= β E

[
V̄

(g)
t+1(Xt+1, Pt+1, ξt+1, U)

∣∣∣Xt, Pt, ξt

]
,

where V̄
(g)
t+1(Xt+1, Pt+1, ξt+1, U) ≡ E

(
V

(g)
t+1(Ωi,t+1, U)

∣∣∣Xt+1, Pt+1, ξt+1, U
)
. The second identity follows

from applying Assumption 3.

10We can write the Bellman equation in terms of the value function V
(g)
t (Ωit, U) as follows:

V
(g)
t (Ωit, U) = max

(
εi0t + β E

[
V

(g)
t+1(Ωi,t+1, U)

∣∣∣Ωit

]
, max
j∈{1,...,J}

v
(g)
jt (U) + εijt

)
.

The first term within brackets is the present discounted utility associated with the decision to not purchase any product,

i.e. choosing the outside option j = 0, in period t. The choice of not purchasing in period t provides flow utility εi0t, and a

term that captures expected future utility conditional on the current state being Ωit. This last term is the option value of

waiting to purchase. The second term within brackets indicates the value associated with the purchase of a product.
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Up to now, we have formalized what the payoffs vi0t, vi1t, . . . , viJt are. They are vijt = v
(g)
jt (U) for a

consumer of type (g, U). Correspondingly, the CCP of type-(g, U) is

σ
(g)
jt (U) =

exp(v
(g)
jt (U))

exp(v
(g)
0t (U)) +

∑J
k=1 exp(v

(g)
kt (U))

.

Lastly, the market share of product j in group g in period t is

S
(g)
jt =

∫
σ
(g)
jt (u) dF

(g)
t (u). (2)

The observed “group market share” S
(g)
jt is defined from averaging unobserved individual CCP σ

(g)
jt (U)

over unobserved price sensitivity U where F
(g)
t (u) is the cumulative distribution function (CDF) of the

unobserved price sensitivity Ui of consumers within group g in period t. Let f
(g)
t (u) denote the respective

probability density function (PDF) of F
(g)
t (u). The observed group market share is either directly ob-

served, constructed from observed aggregate sales (to different consumer segments), or constructed from

individual panel data by the researchers. Since consumers leave the market after purchasing, f
(g)
t (u)

varies from group to group and over time.

Assume in period one of the market (at the launch of the market) the unobserved consumer price

sensitivity follows the standard normal distribution. We then can write f
(g)
t (u) = ϕ(u)Γ

(g)
t (u), where

Γ
(g)
t (u) is recursively defined by the CCP σ

(g)
01 (u), . . . , σ

(g)
0,t−1(u) as shown in Proposition 1. Here ϕ(u)

denotes the PDF of the standard normal distribution, and let Φ(u) be the respective CDF.

2.2 Dynamic Selection Problem

Dynamic selection plays in an integral role in the adoption of new innovative technology such as smart-

phone, digital payments, smart home devices, EVs and, more generally to durable goods. It is widely

discussed within the academic literature on innovation that heterogeneous consumers make adoption

decision at different periods in time. One byproduct from this literature is the Rogers diffusion curve–

also known today as the technology adoption curve. This curve specifically highlights that innovators

and early adopters adopt first and are followed by the mass market segments of the early majority, late

majority, and laggards.

The impact of the composition of consumers over time and how it depends whether or not consumers

remain in the market after purchasing is an important aspect to capture in the model—i.e. on F
(g)
t (U).

For the case of non-durable goods, like ready-to-eat oatmeal, consumers remain in the market after

purchasing, hence F
(g)
t (u) does not vary across time as in a static model. In the case of durable goods,

it is reasonable to assume that consumers will exit the market after purchasing. It is expected that such

non-random attrition (or dynamic selection) of consumers could significantly change the distribution of

unobserved price sensitivity in our model F
(g)
t (u), depending on the rate of attrition and the length of one

time period. This is especially true for new products like the electric vehicles in our empirical study. Early

adopters of EV, which are pricey, are presumably less price elastic (see Palm (2020) for such behavior

in green energy products and Gowrisankaran and Rysman (2012) for general durable goods). This is a

“selection problem” in dynamic discrete choice. In practice, to entirely correct for dynamic selection,

researchers must be in possession of data from the launch of the market and either assume there is no
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replacement product or that said product’s value is normalized to zero; otherwise, the initial conditions

problem association with dynamic selection will still remain in part. Given the necessary data, we will

show that in order to fix the dynamic selection problem, it is essential to obtain the CCP σ
(g)
jt (U) as a

function of unobserved heterogeneity U .

The attrition has the following implications. First, it changes the distribution of price sensitivity

Ui over the course of time even after controlling the demographic groups. It is intuitive that attrition

“pushes” the distribution of Ui to concentrate more and more on the price-sensitive area over time.

Second, attrition also changes the composition of groups. Attrition pushes the distribution of groups to

concentrate more on price-sensitive groups—over time, we see bigger and bigger weights on price-sensitive

groups. Lastly, the rate of attrition is different for different groups. Consumers in the group with lower

average price elasticity would leave the market faster.

Depending on whether or not there is attrition, Proposition 1 provides a formula of the distribution

of price sensitivity for the subsequent periods in terms of the CCP function σ
(g)
jt (U).11

Assumption 5 (Initial distribution of unobserved price sensitivity). For each of the G groups, assume

that in t = 1 prior to purchase, the unobserved consumer price sensitivity U follows the standard normal

distribution, that is F
(g)
1 (u) = Φ(u).12

Proposition 1 (Distribution of unobserved heterogeneity due to attrition). Suppose Assumptions 1 to 5

hold. Let f
(g)
t (U) be the PDF of the unobserved price sensitivity U in period t and group g. We have that

f
(g)
t (u) = ϕ(u)× Γ

(g)
t (u),

where Γ
(g)
t (u) satisfies the following.

(i) (Case I: No attrition) If consumers remain in the marker after purchasing, Γ
(g)
t (u) = 1 for all

(u, t, g);

(ii) (Case II: Attrition) If consumers left the market after purchasing,

Γ
(g)
1 (u) = 1, Γ

(g)
t (u) =

t−1∏
s=1

σ
(g)
0s (u)

S
(g)
0s

, t ≥ 2.

Note that the definition of Γ
(g)
t (u) implies the following recursive formula:

Γ
(g)
1 (u) = 1, Γ

(g)
t+1(u) = Γ

(g)
t (u)× σ

(g)
0t (u)

S
(g)
0t

.

3 Identification of CCPs

In this section we highlight from eq. (2) that σ
(1)
jt (U), . . . , σ

(G)
jt (U) are identified and can be viewed as one

unknown CCP function after some transformations. Specifically, We have G equations from the definition

11Proposition B.1 in the appendix describes the variation of group composition when there is consumer attrition.
12Note, this assumption does not preclude the initial distribution of consumer price heterogenity at the beginning of period

1 to differ across groups as ω can be group specific. It does not also preclude other distributions from being used.
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of group market shares S
(1)
jt , . . . , S

(G)
jt for a given j product in time t,

S
(1)
jt =

∫
σ
(1)
jt (u) dF

(1)
t (u),

...

S
(G)
jt =

∫
σ
(G)
jt (u) dF

(G)
t (u).

(3)

There are G unknowns σ
(1)
jt (U), . . . , σ

(G)
jt (U) in the above G equations, for a given product j and period

t and it appears hopeless for σ
(g)
jt (U) to be identified. Below, we argue that this is not the case.

3.1 Key Observation: Shifting CCP Across Consumer Groups

Our argument is based on the following observation: these G unknown functions σ
(1)
jt (U), . . . , σ

(G)
jt (U)

indeed can be viewed as the one unknown CCP function after some transformations. To see this, suppose

there are two income brackets, 1 (high-income) and 2 (low-income), in the sample. Note that the CCP

is determined by comparing the expected payoffs of different alternatives. The expected lifetime payoff

of product j = 1, . . . , J is simply

vijt =
δj + γ′Xjt + ξjt

1− β
−

Consumer Heterogeneity︷ ︸︸ ︷(
α(1) + τ (2)D

(2)
i + ωUi

)
Pjt.

Moreover, the expected payoff of the outside option depends on the expected future vij,t+1, vij,t+2, . . . for

all products j = 1, . . . , J .13 The unknown consumer’s type affects the choice probabilities by altering

the expected payoffs, which can be only through the term αi = α(1) + τ (2)D
(2)
i + ωUi and a consumer’s

belief about the state transition distribution. Now consider consumer h from a high-income group 1,

and consumer ℓ from a low-income group 2. Let Uh and Uℓ be the idiosyncratic price sensitivity relative

to their respective group for the two consumers h and ℓ, respectively. Quite simply, if Uh and Uℓ

satisfy the condition that Uh = Uℓ + τ (2)/ω, we conclude that these two consumers have the same price

coefficient hence the same conditional expectations about vij,t+1, vij,t+2, ... according to Assumption 4.(iii).

Consequently, these two consumers have the same conditional choice probabilities σ
(2)
jt (Uℓ) = σ

(1)
jt (Uh).

Intuitively, this says that the shape of the conditional choice probability function for each group, given

a time period t and product j, are identical. Moreover, the two CCPs σ
(1)
jt (U) and σ

(2)
jt (U), viewed as a

function U , are essentially identical in that we can obtain one by shifting the other along the axis of U

by τ (2)/ω, i.e.

σ
(2)
jt (U) = σ

(1)
jt (U + τ (2)/ω).14

Figure 1 illustrates this observation using the CCP of two groups from our simulation studies. The

essential observation is that the underlying structural model implies certain restrictions that can be used

13This is most transparent by considering a two-period dynamic model. In period 2 (terminal period), vi,j=0,t=2 = 0.

The expected optimal payoff in period 2 is ln(1 +
∑

j exp(vij2)). Then the payoff of the outside option in period 1 is

β E[ln(1 +
∑

j exp(vij2)) |X1, P1, ξ1]. The statement can be generalized to infinite horizon dynamic programming problems

easily.
14This observation does not imply any extensive overlap of consumer price sensitivities between groups to hold. Below,

we discuss the data required for estimation.
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Figure 1: Shift CCP of Group 1 to Obtain CCP of Group 2

to transform the CCP functions of one focal group to get the CCP of the other groups. In addition, the

underlying structural models also impose restrictions on CCP function σ
(1)
jt (U). The application of these

restrictions can be better seen after expressing σ
(1)
jt (U) using a series multinomial logit.

We can now rewrite the G group market share equations about G unknown CCP functions at the

beginning, eq. (3), as the following G equations about one unknown σ
(1)
jt (U) by applying our shifting

observation σ
(g)
jt (U) = σ

(1)
jt (U + τ (g)/ω). Recall that we defined τ (1) = 0 for convenience. We have

S
(1)
jt =

∫
σ
(1)
jt

(
u+

τ (1)

ω

)
dF

(1)
t (u)

...

S
(G)
jt =

∫
σ
(1)
jt

(
u+

τ (G)

ω

)
dF

(G)
t (u)

j = 1, . . . , J, t = 1, . . . , T. (4)

For each period, and for all J products, we now have J ·G equations, but only J +G unknowns, where J

refers to the unknown CCP σ
(1)
1t (U), . . . , σ

(1)
Jt (U) for group 1, and G comes from the unknown τ (2), . . . , τ (G)

and ω, which are common for all markets and products. It is hardly a surprise that we can recover σ
(1)
jt (U)

(hence the other σ
(2)
jt (U), . . . , σ

(G)
jt (U) by shifting) from the above equations by parameterizing σ

(1)
jt (U)

(so it is known up to finite number of parameters).

4 Estimation

This section shows how to directly estimate the CCP σ
(g)
jt (U) as a function of unobserved U . We propose

a novel method of estimating σ
(g)
jt (U) using observed group market share data and certain constraints

11



implied by the underlying structural model. The estimation of CCPs only involve solving an NLS with

linear constraints.

4.1 Series Multinomial Logit Approximation of CCP

We now discuss the details of solving the CCP σ
(1)
jt (U) from eq. (4). The unknown σ

(1)
jt (U) is a continuous

function of scalar U , whose range is between 0 and 1, and
∑J

j=0 σ
(1)
jt (U) = 1 for any U . We approximate

the CCP σ
(1)
jt (U) (as a function of U) by interpolation using a “series multinomial logit”, which is a

simple extension of the series logit in Hirano, Imbens and Ridder (2003). For j = 1, . . . , J , let

σ
(1)
jt (U ; ρt) = Lj(RK(U ; ρ1t), . . . , RK(U ; ρJt)),

where Lj is a multinomial logit model,

Lj(c1, . . . , cJ) ≡
exp(cj)

1 +
∑J

k=1 exp(ck)
,

and RK(U ; ρjt) is a polynomial function,

RK(U ; ρjt) ≡ ρjt1 + ρjt2U + ρjt3U
2 + · · ·+ ρjtKUK−1.

Let ρjt ≡ (ρjt1, . . . , ρjtK)′, and let ρt be the collection of ρ1t, . . . , ρJt. Lastly,

σ
(1)
0t (U ; ρt) ≡ 1−

J∑
j=1

σ
(1)
jt (U ; ρt).

The idea of a series (multinomial) logit is to use the power series RK(U ; ρjt) to approximate the log odds

ratio ln[σ
(1)
jt (U)/σ

(1)
0t (U)]. Let ρ be the (K · J · T ) × 1 vector from stacking ρt over all T periods. In

practice, we found the polynomial of degree 2, i.e. K = 3, is sufficient for approximation.

We estimate (τ, ω, ρ) using an NLS procedure below. Knowing ρ, we know group 1 CCP σ
(1)
jt (U ; ρt)

for each alternative j and each period t. Knowing τ and ω, we know the CCP of the other groups by

shifting: σ
(g)
jt (U) = σ

(1)
jt (U + τ (g)/ω).

For the rest of this section, we will explain the estimation of (τ, ω, ρ). The estimation is based on

Ŝ
(g)
jt ≡

∫
σ
(1)
jt

(
u+

τ (g)

ω
; ρt

)
f
(g)
t (u) du =

∫
σ
(1)
jt

(
u+

τ (g)

ω
; ρt

)
Γ

(g)
t (u)ϕ(u) du,

where

σ
(1)
jt

(
U +

τ (g)

ω
; ρt

)
=

exp
[
ρjt1 + ρjt2

(
U + τ (g)

ω

)
+ ρjt3

(
U + τ (g)

ω

)2]
1 +

∑J
k=1 exp

[
ρkt1 + ρkt2

(
U + τ (g)

ω

)
+ ρkt3

(
U + τ (g)

ω

)2] .
The above equation can be rewritten as follows

Ŝ
(g)
jt = E

[
σ
(1)
jt

(
U∗ +

τ (g)

ω
; ρt

)
Γ

(g)
t (U∗)

]
, U∗ ∼ N (0, 1),

for all j = 1, . . . , J , g = 1, . . . , G, and t = 1, . . . , T . In practice, it is straightforward to compute the

above expectation by Gauss–Hermite quadrature:

GH
(g)
jt (τ, ω, ρ) ≡

n∑
i=1

ζi ·
[
σ
(1)
jt

(
ui +

τ (g)

ω
; ρt

)
Γ

(g)
t (ui)

]
.
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Here u1, . . . , un are n nodes, and ζ1, . . . , ζn are the respective weights. Both nodes and weights are pre-

determined known constants.15 This approximation is valid only when U∗ ∼ N (0, 1) as in Assumption 5.

If U∗ follows other distributions, the approximation will be incorrect and cause bias in CCP estimation.

We then can estimate the unknown parameters (τ, ω, ρ) by the NLS:

(τ̂ , ω̂, ρ̂) ≡ arg min
τ,ω,ρ

J,G,T∑
j=1,g=1,t=1

[
S
(g)
jt −GH

(g)
jt (τ, ω, ρ)

]2
(5)

but subject to a set of linear constraints:

ρjt2 − ρ1t2 = −ω(Pjt − P1t) and ρjt3 − ρ1t3 = 0, j = 2, . . . , J . (6)

In the Appendix (under the proof of Proposition 2 below), we provide the derivation of the constraints

eq. (6) implied by our dynamic model.

Identification of τ (g) and ω

For customers from group g, their price coefficients αi = α(1) + τ (g) + ωUi follow the normal distribution

(α(1) + τ (g), ω2). The estimator does not depend on how much the bell shaped PDFs of price coefficients

from different groups overlap each other. The model identifies τ (g)/ω by shifting the unobserved consumer

heterogeneity of group 1 until the conditional choice probability of group 1 overlays with the choice

probability of group g. The distance it travels to overlay on to group g’s CCP is equal to τ (g)/ω as is

illustrated in Figure 1.

In order to understand the necessary requirements for identifying τ (g)/ω, we can view the CCP

estimation equations in eq. (5) as a GMM approach. There are J · G · T number of moment equations

with the following form

E

[
S
(g)
jt − σ

(1)
jt

(
U∗ +

τ (g)

ω
; ρt

)
Γ

(g)
t (U∗)

]
= 0,

where the expectation is taken over U∗ ∼ N (0, 1), and the group market shares S
(g)
jt are constants.

The NLS estimator in eq. (5) is the GMM estimator but with an identity weighting matrix. The shift

amount τ (g)/ω as a whole is identified because only the correct shift amount will guarantee the identity

of σ
(g)
jt (U∗) = σ

(1)
jt (U∗ + τ (g)/ω), hence satisfy the above moment equation.

When the first-order condition of the NLS problem in eq. (5) cannot guarantee a unique solution,

our method does not hold like a GMM estimator. In empirical studies, it helps to check the singularity

of the Hessian matrix of eq. (5), which indicates the non-uniqueness of the optimization solution. As

one example, consider the case when group 2 customers are so price sensitive relative to group 1 (i.e.

τ (2) is very big) that S
(2)
0t = 1 and S

(2)
jt = 0 (customers do not buy anything now). Then τ (2) cannot be

identified because any value greater than the true value of τ (2), meaning greater price coefficient which

makes product j even less desirable for group 2, will also make S
(2)
jt zero for any j ̸= 0 and S

(2)
0t = 1. This

observation is connected to the singularity of the Hessian matrix. The argument is saying that when the

15To be clear, let u∗
1, . . . , u

∗
n be the n nodes of Gauss-Hermite quadrature, and let ζ∗1 , . . . , ζ

∗
n be the respective weights.

In our simulation, we used n = 15 nodes. The nodes and associated weights are determined by the Hermite polynomial,

and they do not depend on the function to be approximated, which is σ
(1)
jt (U + τ (g)/ω; ρt) herein. For i = 1, . . . , n, define

ui =
√
2u∗

i and ζi = ζ∗i /
√
π.
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first-order condition with respect to τ (2) evaluated at its true value is flat, i.e. the second-order condition

is 0 and τ (2) cannot be identified. In summary, to identify τ (g)/ω, one necessary condition is that for all

groups and periods, the group-level market share of at least one product is greater than 0.16

The variance in consumer preferences (ω) is identified from the variation in product characteristics.

For example, as characteristics change for one product, substitution to products with similar character-

istics indicates the presence of heterogeneity; on the other hand, if consumers substitute equally to all

goods, then consumers are more homogeneous in their preferences. The panel data structure also provides

another source of identification through the endogenous shift in the distribution of consumer valuations

over time. If the heterogeneity in αi is substantial, then the responses of consumers over time to price

changes will be different. Heterogeneity in price sensitivity can be identified if earlier purchasers respond

less to price changes than later purchasers. This identification strategy is common in dynamic discrete

choice models with aggregate data (Gowrisankaran and Rysman (2012)).

4.2 Post-CCP Estimation: Structural Parameters

In order to estimate the structural linear parameters in consumer preferences, including the discount

factor, one simply needs to run two linear regressions, eq. (Linear-Reg-1) and eq. (Linear-Reg-2), presented

below. Moreover, we provide the intuition for why we can estimate the model while being agnostic about

consumers’ belief about the state transition and a remark explaining the consequence of dynamic selection

on the model estimation.

Model parameters except for discount factor and product fixed effect

Identification and estimation of model parameters outside of the discount factor and product fixed effects

start from the following observation. Conditional on purchasing in period t, a consumer’s choice about

which one to buy does not depend on the unknown continuation value v
(g)
0t (U). We choose product 1 as

the reference product and focus on consumer group 1, which results in

ln

[
σ
(1)
jt (U)

σ
(1)
1t (U)

]
= v

(1)
jt (U)− v

(1)
1t (U).

By the definition of payoff functions v
(1)
jt (U) in eq. (1), and integrating the above display over U with

respect to its distribution function in period t, we have the first condition

∫
ln

[
σ
(1)
jt (U)

σ
(1)
1t (U)

]
dF

(1)
t (U) + ω(Pjt − P1t)

∫
U dF

(1)
t (U) =

δj − δ1
1− β

+ (Xjt −X1t)
′ γ

1− β
− α(1)(Pjt − P1t) +

ξjt − ξ1t
1− β

. (7)

The next proposition, whose proof is in the Appendix, provides the interpretation of ρjt1 from the

power function earlier using the structural parameters. Note that the left-hand side of the above is exactly

Yjt defined in Proposition 2.

16We examine this case as well as the case of having other product characteristics that consumers positively value, in the

simulation section below.
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Proposition 2 (Interpretation of series logit parameters ρjt1 in dynamic model). Define

Yjt ≡
∫

ln

[
σ
(1)
jt (U)

σ
(1)
1t (U)

]
dF

(1)
t (U) + ω(Pjt − P1t)

∫
U dF

(1)
t (U).

We have

Yjt = ρjt,1 − ρ1t,1.

Thus, Yjt = ρjt,1 − ρ1t,1 is known after CCP estimation. We conclude that

Yjt =
δj − δ1
1− β

+ (Xjt −X1t)
′ γ

1− β
− α(1)(Pjt − P1t) +

ξjt − ξ1t
1− β

, (Linear-Reg-1)

for j = 2, . . . , J . We then identify (δ2 − δ1)/(1 − β), . . . , (δJ − δ1)/(1 − β), γ/(1 − β), α(1) using 2SLS

and the standard Berry (1994) identification strategy.

Model parameters: discount factor and product fixed effect

Identification and estimation of β and δ1 originates from ln[σ
(g)
1t (U)/σ

(g)
0t (U)] = v

(g)
1t (U) − v

(g)
0t (U) and

describes the trade-off from buying now and waiting. By the definition of the payoffs, it becomes

ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
=

δ1
1− β

+X ′
1t

γ

1− β
− (α(1) + τ (g) + ωU)P1t +

ξ1t
1− β

− β E[V̄
(g)
t+1(U) | Xt, Pt, ξt]. (8)

We will identify the discount factor β and product fixed effect δ1 using the second condition. Before that,

we will first show that for any fixed unobservable price sensitivity Ũ (e.g. Ũ = 0),

E[W
(g)
t (Ũ)] = δ1 + β E[W

(g)
t+1(Ũ) + lnσ

(g)
0,t+1(Ũ)], (Linear-Reg-2)

where W
(g)
t (Ũ) is estimable and defined below. This equation will give rise to an estimable formula of

(β, δ1)
′.

We obtain eq. (Linear-Reg-2) from eq. (8) with four steps. Note that after running 2SLS of eq. (Linear-

Reg-1), we already know many parameters including σ
(g)
jt (U), τ , ω, γ/(1 − β), and α(1). Step 1 is to

define W
(g)
t (U) by combining the terms that are already known in eq. (8). Let

W
(g)
t (U) ≡ ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
−
[
X ′

1t

γ

1− β
− (α(1) + τ (g) + ωU)P1t

]
.

Note that W
(g)
t (U) is known for any U after the CCP estimation and the above 2SLS linear regression.

Step 2 is to convert the unknown integrated value function V̄
(g)
t+1(U) into something we already know

using the well-known expectation-maximization formula for the logit model of Arcidiacono and Miller

(2011): V̄
(g)
t+1(U) = v

(g)
1,t+1(U)− lnσ

(g)
1,t+1(U). We have

V̄
(g)
t+1(U) = −[W

(g)
t+1(U) + lnσ

(g)
0,t+1(U)] +

δ1
1− β

+
ξ1,t+1

1− β
,

In step 3, we rewrite eq. (8) in terms of W
(g)
t (U) and conclude

W
(g)
t (U) = δ1 +

ξ1t
1− β

+ β E

(
W

(g)
t+1(U) + lnσ

(g)
0,t+1(U)− ξ1,t+1

1− β

∣∣∣∣Xt, Pt, ξt

)
,

15



Lastly, in step 4, for a fixed unobserved price sensitivity Ũ , we take unconditional expectation with respect

to (Xt, Pt, ξt), and use the condition E(ξ1t) = E(ξ1,t+1) = 0 and the law of iterated expectation to reach

eq. (Linear-Reg-2).

We now show how to identify the discount factor β and product fixed effect δ1 using eq. (Linear-Reg-

2). The expectations E[W
(g)
t (Ũ)] and E[lnσ

(g)
0t (Ũ)] are taken over (Xt, Pt, ξt) only with Ũ being fixed

for each group g and each t. This expectation can be estimated by T−1
∑T

t=1W
(g)
t (Ũ) when (Xt, Pt, ξt)

satisfies certain stationarity conditions.17 With at least two groups (say 1 and 2), we have

E[W
(1)
t (Ũ)] = δ1 + β E[W

(1)
t+1(Ũ) + lnσ

(1)
0,t+1(Ũ)]

E[W
(2)
t (Ũ)] = δ1 + β E[W

(2)
t+1(Ũ) + lnσ

(2)
0,t+1(Ũ)].

We can solve the discount factor β from the above linear system of equations, and obtain

β =
E[W

(1)
t (Ũ)]− E[W

(2)
t (Ũ)]

E[W
(1)
t+1(Ũ)]− E[W

(2)
t+1(Ũ)] + E[lnσ

(1)
0,t+1(Ũ)]− E[lnσ

(2)
0,t+1(Ũ)]

.

The discount factor can be estimated by the sample analog of the above formula. Knowing the discount

factor β, we recover the fixed effect δ1. The other product fixed effects δ2, . . . , δJ are automatically

determined since we know (δj − δ1)/(1− β).

Identification of β

The identification proceeds in two steps. For product j = 1, . . . , J , vijt =
δj+γ′Xjt+ξjt

1−β − αiPjt. Step 1

recovers the revealed preference from consumer choices among the non-outside option products 1, . . . , J .

This step does not identify the discount factor β as β and product preference parameters (e.g. γ) are

not separated. However, this step can identify a significant portion of how consumers value a product,

which lays the foundation for step 2. For example, comparing two cars with different electric range, we

can identify a consumer’s lifetime valuation of range, though we cannot separate how much the consumer

discounts the future value of long range. In step 2, we leverage consumer choices between buying one

product and not buying anything now. In this step, we can identify the discount factor. The value of

buying one product today has been largely determined in step 1. The value of “not buying anything

now” is the discounted option value of buying the best value product in the next period, and such “best

value” is determined by step 1, using the product attributes in the next period.

Our model differs from those of Magnac and Thesmar (2002) and Abbring and Daljord (2020) in that

we do not require an exclusion restriction to identify β. For our estimator, the identification of β comes

from observing how customers trade off buying product 1 now against waiting,

ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
= v

(g)
1t (U)− β E[V̄

(g)
t+1(U) |Xt, Pt, ξt]. (9)

Let’s assume that there are no unobserved product characteristics ξjt and δj = 0. In this simpler

case, the product value is v
(g)
jt (U) = X ′

jtγ/(1 − β) − (α(1) + τ (g) + ωU)Pjt. After the CCP estimation

and the 2SLS of regression eq. (Linear-Reg-1), we know v
(g)
jt (U) for all periods, because γ/(1− β), price

17We need the time series (Xt, Pt, ξt) is ergodic, and for the chosen fixed Ũ , W
(g)
t (Ũ), as a function of (Xt, Pt, ξt), satisfies

certain continuity conditions.
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coefficients for all groups α(1) + τ (g), and ω are all known. We also know the integrated value function

V̄
(g)
t+1(U) because

V̄
(g)
t+1(U) = v

(g)
1,t+1(U)− lnσ

(g)
1,t+1(U).

Identifying the discount factor without knowing a consumer’s belief regarding the law of state transi-

tion is less transparent. The easiest way to avoid specifying the consumer belief embedded in E[V̄
(g)
t+1(U)|Xt, Pt, ξt]

is to eliminate the conditional expectation entirely by using the law of iterated expectation, which gives

us

E

(
ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

])
= E

(
v
(g)
1t (U)

)
− β E

(
V̄

(g)
t+1(U)

)
, g = 1, . . . , G.

= E
(
v
(g)
1t (U)

)
− β E

(
v
(g)
1,t+1(U)− lnσ

(g)
1,t+1(U)

)
These expectations are estimable from data because we made the rational unconditional expectation as-

sumption (Assumption 4.(ii)).18 Note, even if we assumed rational expectation (that is E[V̄
(g)
t+1(U)|Xt, Pt, ξt]

according to consumer belief is just the same as its data counterpart) we can still estimate this conditional

expectation and identify β.

To compare our method to those using exclusion conditions, specifically Abbring and Daljord (2020),

we illustrate identification of β with the generic notation. For the simplicity of exposition, let Xt be the

only observed state variable. The alternative specific value function of each choice j ∈ {0, 1, . . . , J} is

vjt(Xt) = uj(Xt) + β E(V̄t+1(Xt+1) |Xt, j), where uj(Xt) is the unknown expected flow utility function.

The expectation E(·|Xt, j) is conditional on current state Xt and the current choice being j. It is common

to normalize u0(Xt) = 0 and to assume that V̄t+1(Xt+1) is known for the identification of the discount

factor.19 Like eq. (9), we have

ln

[
σjt(Xt)

σ0t(Xt)

]
= vjt − v0t = uj(Xt) + β E(V̄t+1(Xt+1) |Xt, j)− β E(V̄t+1(Xt+1) |Xt, 0),

where u0(Xt) disappear because of the normalization. One difference from our approach is that uj(Xt)

here is unknown, but its counterpart v
(g)
1t (U) in eq. (9) is known. To proceed in this general model, one

can consider the exclusion condition.

The exclusion restriction states that expected flow utility of choice j in state x is equivalent to the

utility of choice l in state x′, i.e. uj(Xt = x) = ul(Xt = x′). Consider the difference

ln

[
σjt(Xt)

σ0t(Xt)

]
− ln

[
σlt(Xt)

σ0t(Xt)

]
= vjt(x)− vlt(x

′)

= uj(x)− ul(x
′) + β

[
E(V̄t+1(Xt+1) |Xt = x, j)− E(V̄t+1(Xt+1) |Xt = x′, l)

]
= β

[
E(V̄t+1(Xt+1) |Xt = x, j)− E(V̄t+1(Xt+1) |Xt = x′, l)

]
.

Remark 1 (How does the attrition affect the estimation?). Non-random attrition affects the estimation

in two ways. The first is apparent. Ignoring the attrition is to let F
(1)
t (u) be the distribution function

18The expectation is over t if the data is stationary or over m markets if multiple markets are used.
19For example, when the dynamic programming discrete choice model is stationary, V̄t+1(Xt+1) is time invariant and is

the unique solution of the integral equation V̄t(Xt) − β E(V̄t+1(Xt+1) | Xt, 0) = u0(Xt) − lnσ0t(Xt) (e.g. see Srisuma and

Linton (2012)). Note that V̄t(Xt) and V̄t+1(Xt+1) are the same function; u0(Xt) is normalized to 0, and σ0t(Xt) and state

transition distribution are both known from data.
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of Ui in the first period, i.e. F
(1)
1 (u) = Φ(u). Reading the definition of the dependent variable Yjt of

eq. (Linear-Reg-1), it is apparent that ignoring the attrition will misspecify the F
(1)
t (U), causing bias

in estimating preference parameters. The second is more subtle. Attrition will create a nonstationarity

problem, which can be clearly seen from the estimation of the discount factor.

Reading the equation of identifying the discount factor, eq. (Linear-Reg-2), one may wonder why not

integrate out the unobserved price sensitivity U since we also know its distribution function F
(g)
t (U)? It

turns out this will lead us to a biased estimator of the discount factor in the presence of attrition. To

understand why, consider W̄
(g)
t ≡

∫
W

(g)
t (U) dF

(g)
t (U). For a given period t, we have

W̄
(g)
t =

∫
ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
dF

(g)
t (U)−X ′

1t

γ

1− β
+ (α(1) + τ (g))P1t + ωP1t

∫
U dF

(g)
t (U),

by the definition of W
(g)
t (U). The integrated term W̄

(g)
t is still estimable using our approach for each

period t. It is also easy to verify that eq. (Linear-Reg-2) becomes

E(W̄
(g)
t ) = δ1 + β E

[
W̄

(g)
t+1 +

∫
lnσ

(g)
0,t+1(U) dF

(g)
t (U)

]
.

We then have an alternative formula of the discount factor,

β =
E(W̄

(1)
t )− E(W̄

(2)
t )

E(W̄
(1)
t+1)− E(W̄

(2)
t+1) + E[

∫
lnσ

(1)
0,t+1(U) dF

(1)
t (U)]− E[

∫
lnσ

(2)
0,t+1(U) dF

(2)
t (U)]

.

with at least two groups 1 and 2.

The problem is how to estimate E(W̄
(g)
t ) and E[

∫
lnσ

(g)
0,t+1(U) dF

(g)
t (U)]? Taking E(W̄

(g)
t ) for ex-

ample, it is tempting to use T−1
∑T

t=1 W̄
(g)
t as the estimator, however, it is an inconsistent estimator

when there is non-random attrition of consumers. The underlying reason is that even though (Xt, Pt, ξt)

satisfies certain stationarity conditions, W̄
(g)
t is still non-stationary due to the attrition of consumers. In

particular, both ∫
ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
dF

(g)
t (U) and

∫
U dF

(g)
t (U)

in the definition of W̄
(g)
t are nonstationary. Intuitively, consumers who are less price sensitive purchase

and leave the market earlier making the average
∫
U dF

(g)
t (U) drift upward over time. Due to this non-

stationary property (caused by attrition), the temporal average will not converge in probability to E(W̄
(g)
t ),

which is indeed only well defined for a fixed period. In order to estimate E(W̄
(g)
t ), one needs access to

a large number of cross-sectional markets for each period. Such data access is usually unavailable in

empirical studies. The same comments apply to the integral term of CCP functions.

Our approach works here because we can recover the CCP function at such a precise level that the

CCP for any given unobserved price sensitivity, i.e. σ
(g)
jt (Ũ) herein, can be obtained. We then can avoid

the problem of attrition by focusing on one type of consumer (in terms of fixing U). After fixing U , all

variables, like W
(g)
t (U), involve only stationary process (Xt, Pt, ξt). We then can use the temporal average

to estimate them and the discount factor. This again highlights the importance of recovering the CCP

σ
(g)
jt (U) in order to fix the dynamic selection problem.
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4.3 Estimation Summary

Below we provide a summary of the estimation routine.

1. Estimate τ (g), ω and ρ via NLS

(τ̂ , ω̂, ρ̂) ≡ arg min
τ,ω,ρ

J,G,T∑
j=1,g=1,t=1

[
S
(g)
jt −GH

(g)
jt (τ, ω, ρ)

]2
subject to

ρjt2 − ρ1t2 = −ω(Pjt − P1t) and ρjt3 − ρ1t3 = 0, j = 2, . . . , J ,

where

GH
(g)
jt (τ, ω, ρ) ≡

n∑
i=1

ζi ·
[
σ
(1)
jt

(
ui +

τ (g)

ω
; ρt

)
Γ

(g)
t (ui)

]
,

and

σ
(1)
jt

(
U +

τ (g)

ω
; ρt

)
=

exp
[
ρjt1 + ρjt2

(
U + τ (g)

ω

)
+ ρjt3

(
U + τ (g)

ω

)2]
1 +

∑J
k=1 exp

[
ρkt1 + ρkt2

(
U + τ (g)

ω

)
+ ρkt3

(
U + τ (g)

ω

)2] .
2. Form Yjt = ρjt,1 − ρ1t,1.

3. Estimate (δ2 − δ1)/(1− β), . . . , (δJ − δ1)/(1− β), γ/(1− β), α(1) using 2SLS

Yjt =
δj − δ1
1− β

+ (Xjt −X1t)
′ γ

1− β
− α(1)(Pjt − P1t) +

ξjt − ξ1t
1− β

.

4. Estimate β: for Ũ = 0 calculate (if β is specified skip to step 5)

β =
E[W

(1)
t (Ũ)]− E[W

(2)
t (Ũ)]

E[W
(1)
t+1(Ũ)]− E[W

(2)
t+1(Ũ)] + E[lnσ

(1)
0,t+1(Ũ)]− E[lnσ

(2)
0,t+1(Ũ)]

.

5. Estimate δ1: for Ũ = 0 calculate

δ1 = E[W
(1)
t (Ũ)]− β E[W

(1)
t+1(Ũ) + lnσ

(1)
0,t+1(Ũ)].

5 Simulation

In order to determine how well our estimator performs in small samples, we run several simulations

that vary the degree of within-group variation, across group heterogeneity, and allow for the degree of

within-group variation to vary across groups. We designed our numerical experiments to illustrate the

applicability of our estimator and to understand the following empirically relevant questions:

(i) How does little to no overlap in cross-group consumer price heterogeneity distribution affect the

estimation?

(ii) How does the outside good’s market share equal 1 affect the estimation?
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(iii) How does heteroscedasticity in ω affect the estimation?

We address each question in the results section 5.2 below. We make section 5.2 self-contained so that

readers, who are not interested in the data generating process (DGP) details, can skip the DGP section

and jump to the results. Lastly, in the online appendix, we report the simulation study when consumers

have multi-dimensional heterogeneity.

5.1 Data Generating Process

In our DGP, the flow utility function follows the specification in Section 2.1. When consumer i of group

g purchases product j in period t in market m, she receives the following utility

uijtm =
f(Xjtm, ξjtm)

1− β
− αiPjtm + εijtm,

and receives f(Xjtm, ξjtm) as flow utility in each period post-purchase in period t where

αi = α(1) + τ (2)D
(2)
i + · · ·+ τ (G)D

(G)
i + ωUi.

In all the simulations below (except where noted) we let

f(Xjtm, ξjtm) = δj +Xjtmγ + ξjtm = −0.1 +Xjtm · 0.03 + ξjtm,

for any product j. Thus, γ = 0.03 and δj = −0.1 for any product j. For price coefficient αi, let α
(1) = 0.1,

τ (2) = 0.12, τ (3) = 0.24, the within-group variation ω will take one value from (0, 0.01, 0.03), and let Ui

be a random variable drawn from the standard normal distribution. Products are differentiated by the

observed price, Pjtm, observed product characteristic Xjtm, and unobserved characteristics, ξjtm. The

discount factor β is set to 0.90.

We next describe the data generation process of price, Xjtm, and the unobserved product characteris-

tics. We specifically account for the correlation between ξjtm and Pjtm. Such a formulation is motivated

by the price endogeneity problem researchers face when employing aggregate data, where firms can ob-

serve ξjtm and then set prices optimally. In practice, we allow for multiple markets where M = 2. We

use a reduced-form price model to characterize this dependence. Specifically,

Xjtm = rm + ϕx
mXj,t−1,m + νxjtm,

ξjtm = ϕξξj,t−1,m + νξjtm,

Pjtm = c+MCjtm + νpjtm,

MCjtm = dj + ϕMC
j MCj,t−1,m + νMC

jtm ,

where (νxjtm, νξjtm, νpjtm, νMC
jtm )′ is independent and identically distributed across products, time periods

and markets, and follows a multivariate normal distribution,
νxjtm
νξjtm
νpjtm
νMC
jtm

 ∼ N

0,


σ2
x 0 0 0

0 σ2
ξ ρσξσp 0

0 ρσpσξ σ2
p 0

0 0 0 σ2
MC


 .
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Here MCjtm denotes the marginal cost of product j at time t in market m. We will use MCjtm as the

instrumental variable in estimation.

In our simulations, the number of products is 8, and we assign the following parameter values. We

let c = 3, (d1, . . . , d8) = (0.21, 0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.7), (rm=1, rm=2) = (0.35, 0.55), ϕξ = 0,

(ϕMC
1 , . . . , ϕMC

8 ) = (0.965, 0.94, 0.925, 0.91, 0.895, 0.88, 0.865, 0.85) and (ϕx
m=1, ϕ

x
m=2) = (0.35, 0.55). For

the initial state of MCj0m, we let (MC1,0,m, . . . ,MC8,0,m) = (9.5, 9.25, 9.00, 8.75, 8.50, 8.25, 8.00, 7.75).

Such specification ensures that product marginal cost, MCjtm, has a declining trajectory, which is con-

sistent with durable goods models. As for the X variable, the initial starting values do not differ across

j, but do so across markets with (X0,m=1, X0,m=2) = (0.525, 0.825). Finally, we let σx = 0.15, σξ = 0.05,

σp = 0.25, σMC = 0.1 and ρ = 1.

It is important to note the specified DGP produces static own-price elasticities (when all 8 goods are

available) in the range of -1 for type 1 consumers to -4.25 for type 3 in period 1.20 In addition, each set

of simulation results is based on 50 replications.

5.2 Results

Effects of little to no overlap in price heterogeneity

In Table 1, we present the results of a Monte Carlo simulation where we specifically vary ω from 0 to 0.03.

When ω = 0 there is no within group heterogeneity. Moreover, as ω increases within group heterogeneity

increases but given the measures of τ (g) there is little overlap across groups. For example, when ω = 0.01,

consumers who are above the fifth standard deviation of the mean price sensitivity will overlap with users

from another group (when ω = 0.03 the cutoff lowers to fourth standard deviation).

We see the estimator is able to recover model primitives across all values of ω. In the extreme case

when there is no within group price heterogeneity, the model preforms well and pins down all τ (g) and ω.

Thus, as discussed above in the identification of τ and ω, identification of τ (g) are due to the shifting of

CCPs and not the overlap of consumer price heterogeneity across groups.

Biased estimation when group 3’s outside good market share=1

The next set of simulations expands on Table 1 to illustrate when the estimator fails. As we discussed

above, as long as there are consumers in the market with positive market shares for J goods, the model

can find a consumer in group 2 or 3 who has the same CCP as the consumer in group 1 by changing

the consumer price sensitivity in group 1 by τ g/ω for group 2 or 3. To showcase such, we fix within

group consumer heterogeneity (ω = 0.03) and vary τ3 from 0.50− 1.50, resulting in group three’s outside

good’s market share to vary from 0.9826 to 1 in Table 2. The simulations illustrate that the estimator

breaks down when a specific group does not participate in the market, leading to the group’s conditional

choice probability for the outside option being equal to 1. This is due to the estimator not being able to

uniquely shift group 1’s CCP to overlay with group 3 given σ3
jt(U) = 0 for all values of U .

20This is approximately close to the magnitudes estimated in our empirical application which varies from -4 to -10 across

consumer types, markets and vehicles in period 1
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Table 1: Simulation Results: Comparison Across Within Group Heterogeneity with Little to No Overlap

DGP: M = 2, T = 36 and J = 8

ω = 0 ω = 0.01 ω = 0.03

δ = −0.1 -0.1024 (0.0030) -0.1024 (0.0030) -0.1018 (0.0030)

γ = 0.03 0.0306 (0.0020) 0.0306 (0.0020) 0.0305 (0.0020)

α(1) = 0.10 0.0999 (0.0027) 0.0999 (0.0027) 0.0996 (0.0027)

τ (2) = 0.12 0.1200 (5.51e-6) 0.1200 (1.94e-6) 0.1200 (7.39e-6)

τ (3) = 0.24 0.2401 (1.26e-5) 0.2401 (3.86e-6) 0.2403 (1.26e-5)

ω 0.0029 (2.84e-4) 0.0105 (2.57e-5) 0.0310 (3.21e-5)

β = 0.90 0.8989 (3.97e-4) 0.8989 (3.97e-4) 0.8992 (3.95e-4)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

Starting values follow the procedure in the appendix and vary with each simulation run.

The starting value for ω = 0.25 for all simulation runs.

Table 2: Simulation Results: Comparison of Across Group Heterogeneity with No Overlap as σ3
0 → 1

DGP: M = 2, T = 36, ω = 0.03, and J = 8

τ (3) = 0.50 τ (3) = 0.75 τ (3) = 1 τ (3) = 1.25 τ (3) = 1.50

δ = −0.1 -0.0994 (0.0030) -0.0998 (0.0030) -0.1303 (0.0051) -0.1995 (0.0197) -0.4929 (9.2528)

γ = 0.03 0.0303 (0.0020) 0.0303 (0.0020) 0.0320 (0.0022) 0.0359 (0.0029) 0.0345 (0.8640)

α(1) = 0.10 0.0985 (0.0027) 0.0990 (0.0027) 0.1003 (0.0027) 0.1009 (0.0027) 0.0968 (0.0033)

τ (2) = 0.12 0.1205 (3.11e-5) 0.1204 (4.17e-5) 0.1199 (3.27e-5) 0.1197 (6.7e-5) 0.1211 (4.90e-4)

τ (3) 0.5031 (1.68e-4) 0.7535 (2.49e-4) 1.0054 (0.0011) 1.2589 (0.0117) 1.3094 (0.0323)

ω = 0.03 0.0333 (1.65e-4) 0.0321 (2.27e-4) 0.0292 (2.06e-4) 0.0276 (5.08e-4) 0.0367 (0.0029)

β = 0.90 0.9001 (3.29e-4) 0.9001 (3.08e-4) 0.8942 (8.86e-4) 0.8813 (0.0043) 0.8596 (2.9072)

σ̄
(3)
0 0.9826 0.9972 0.9996 0.9999 1

Note: Mean and standard deviation (in parenthesis) for 50 simulations. Starting values follow the procedure

in the appendix and vary with each simulation run.The starting value for ω = 0.25 for all simulation runs.

22



Table 3: Simulation Results: Heteroscedastic ω

ω1 = 0.03 ω1 = ω3 = 0.015

ω2 = ω3 = 0.015 ω2 = 0.03

δ = −0.1 -0.1022 (0.0030) -0.1021 (0.0030)

γ = 0.03 0.0306 (0.0020) 0.0306 (0.0020)

α(1) = 0.10 0.0996 (0.0027) 0.0996 (0.0027)

τ (2) = 0.12 0.1201 (7.55e-5) 0.1201 (7.05e-5)

τ (3) = 0.24 0.2403 (1.93e-4) 0.2403 (1.81e-4)

ω1 0.0311 (4.67e-4) 0.0164 (7.88e-4)

ω2 0.0167 (9.35e-4) 0.0307 (5.07e-4)

ω3 0.0173 (0.0011) 0.0168 (0.0011)

β = 0.90 0.8989 (3.94e-4) 0.8990 (3.94e-4)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

Starting values follow the procedure in the appendix and vary with each simulation run.

The starting value for ωg = 0.25 for all simulation runs.

Heteroscedasticity in ω

With this set of Monte Carlo simultions we illustrate the robustness of our estimator when we allow for

differing levels of within group heterogeneity. We proceed with the above parameterization and allow ω

to vary across groups. Let ωg denote the standard deviation of price coefficient within the customers in

group g. In the first simulation, we allow ω1 to differ from ω2 = ω3. The second set of simulations allows

for ω1 = ω3 and have ω2 to differ. The results are presented in Table 3 and illustrate the model is able

to estimate model parameters without bias with heterscedasticity in ω.

6 Empirical Application: Demand of Electric Vehicles

We illustrate the empirical value of our method by estimating consumer demand for electric vehicles in

the state of Washington during the period of 2016–2019. We further ascertain the impact of a different

federal tax credit based on a car’s electric range rather than battery size, which was the existing policy

during the data period. We also evaluate an infrastructure focused policy where the existing consumer

tax credits when to government or third party installers of Level 3 DC charging stations.

6.1 Data

The main data originate from new EV registration records from the Washington State Department of

Licensing. The electric vehicles include battery electric vehicles (BEV) and plug-in hybrid electric vehicles

(PHEV). For each vehicle, we observe the first ten digits of the vehicle identification number (VIN), from

which we collect vehicle characteristics by using a VIN decoder. In the registration records, we also

observe the ZIP code of an owner’s residence, with which we obtain the Internal Revenue Service (IRS)

ZIP code household income of the owner.
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In the data, a product corresponds to a model car such as the Nissan Leaf. We excluded the models

with extremely small market share such as the Smart Fortwo EV. The models we included in the sample

account for more than 99% of the total sales of EVs in Washington. If two trims of a model are very

similar in terms of fuel efficiency and battery range (like BMW 530E and BMW 530E AWD), we collapse

them as one model and use their average characteristics as the product characteristics of the collapsed

model. In total, we have 29 distinct models from 17 makers.

Our dynamic discrete demand model below describes how a few groups of consumers, who reside in

different markets, make discrete choices about purchasing EVs over a number of periods. In the data,

a geographical market is a county, one time period is a quarter of a year, and the group of consumers

is defined based on IRS ZIP code household income. There are three geographical markets in the data:

King County, Snohomish County, and Pierce County. Together, these counties account for 77% of the

EV market in Washington state. We observed these markets from quarter 1 (Q1) of 2016 to quarter 4

(Q4) of 2019. There are three income groups in the data. These income groups are based on IRS ZIP

code household income in 2016. Groups 1, 2, and 3 consist of households with ZIP code incomes above

the 90-th percentile ($100,966), between the 75-th ($74,353) and 90-th percentile, and below the 75-th

percentile, respectively.

Our data contain only the sales of electric vehicles. We do not observe the sales of conventional

internal combustion vehicles. Consequently, we define the market as consumers who only consider EVs

for purchase. One may think that this would create a potential problem in our model specification

where the outside option in a period is to delay the purchase rather than to purchase a gasoline car.

This potential issue is mitigated thanks to the 2015-2017 California Vehicle Report.21 According to the

report, 38% of the respondents intended to only purchase an EV as their next vehicle for their household,

while 62% only consider an internal combustion engine vehicle.22 Additionally, Figure 2 illustrates the

similarities in adoption rates across the states of California and Washington by county. These surveys,

we believe, provide strong support for our market definition. Therefore, we let the initial market size be

half of the number of households in that income group and county in 2016.

We recognize that the definition of the size of the potential market is an important aspect in es-

timating consumer preferences. In our method, the model primitives are estimated via two separate

channels: ln[σ
(g)
jmt(U)/σ

(g)
1mt(U)] (related to eq. (7))and ln[σ

(g)
1mt(U)/σ

(g)
0mt(U)] (related to eq. (8)).The first

ratio σ
(g)
jmt(U)/σ

(g)
1mt(U) =

Sales
(g)
jmt(U)

Sales
(g)
1mt(U)

concerns only the sales of the two car models j and 1, and it does

not depend on the market size. So the model primitives including the “life-time” preference of car char-

acteristics (γ/(1 − β)) and price coefficient (α(1)) are not impacted by the specification of market size.

An incorrectly specified market size, however, will impact the second ratio σ
(g)
1mt(U)/σ

(g)
0mt(U), because it

relates to the sales of car model 1 and the number of customers in the market who do not purchase in

period t. Consequently, product fixed effect term for product 1, the discount factor etc. will be affected.

In our case, we believe that if the market size is incorrect, we overestimate it, leading to a larger market

share for product 0 in all periods. This will likely overestimate the discount factor.

Table 4 shows the initial market size of each group. In the estimation strategy, we frequently use the

term “group market share” of a product. Here we use Nissan Leaf as an example to explain how such

21No such detailed survey data was found for Washington State and so we use California data as a proxy for Washington.
22https://www.energy.ca.gov/sites/default/files/2023-02/CEC-200-2018-006.pdf
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Figure 2: County-level market share of battery electric-vehicle sales in 2020 from Gillingham et al.

(2023)

Table 4: Initial (Q1 of 2016) Market Size by Zip Income Group and County

Group 1 Group 2 Group 3

>90-th Percentile 75-th ˜ 90-th Percentile < 75-th Percentile

King County 238,750 132,175 165,085

Snohomish County 24,275 50,000 110,480

Pierce County 11,715 29,935 155,440

a “group market share” was constructed. In Q1 of 2016, the market size of the lowest income group in

King County was 165,085, and the number of sales of Nissan Leaf in this income group and King County

during Q1 of 2016 was 17. Then the market share of Nissan Leaf in the lowest income group in King

County in Q1 of 2016 is 17/165, 085.

We obtain additional data from various sources. The gasoline prices by county and period are from

the Cost of Living Index. The number of electric charging stations in each county and period is from

the Alternative Fuels Data Center in the US Department of Energy. The number of public facilities

in each county and period, which will be used as an instrumental variable of the number of charging

stations, is from County Business Patterns from the US Census Bureau. The price is mostly from the

transaction price in the registration data. In the registration data, 25.3% of the vehicles do not have

valid transaction prices. This is due to the random incomplete submission of the registration data to the

state which we believe is not systematic. When the transaction price is unavailable, we use the list price

after the deduction of all federal and state-level tax incentives. The available rebates for each model car

and the amount of total CO2 emission per model car in tons per year including the production of the

electricity are from the US Department of Energy.23

Table 5 reports the means of key vehicle characteristics and the sales in different income groups. We

note that because electric cars are expensive even after a variety of government financial incentives,24

23Pre-owned vehicles purchased before 2023 don’t qualify for a used ($4,000) credit.

https://www.fueleconomy.gov/feg/taxused.shtml
24The average new car prices in 2016 and 2019 were $34,077 and $36,718, according to Edmunds.
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Table 5: Means of Key EV Characteristics

Variable PHEV BEV 2016 2019

Price (thousand of $) 42.7 48.0 42.9 47.0

(17.3) (28.7) (21.9) (23.2)

Federal Tax Credit ($) 4831 6789 6015 5312

(1354) (1633) (1579) (1817)

Battery Size (kWh) 21.1 155.2 69.6 107.5

(8.75) (73.59) (67.25) (97.92)

Electric Range (miles) 21.1 155.2 69.6 107.5

(8.75) (73.59) (67.25) (97.92)

Miles per gallon equivalent (MPGe) 48.7 100.9 72.4 75.1

(18.4) (14.8) (31.0) (31.0)

Horsepower 213 236 212 245

(88.1) (138.3) ( 89.5) (136.4)

Total Tailpipe CO2 emission per car (ton/year) 3.744 1.506 2.750 2.580

(1.278) (0.279) (1.520) (1.448)

Sales: all groups 5318 24921 4422 9120

% sales: income below 75th percentile 28.1 17.1 16.7 20.1

% sales: income between 75th and 90th percentile 21.4 21.4 21.1 21.7

% sales: income greater 90th percentile 47.6 61.5 62.2 58.2

Note: CO2 emission of PHEV is based on 15,000 miles driving distance a year, and 37% electric driving in real life

(Plötz et al., 2020). The standard deviation is in the parenthesis.

buying an EV is more popular among affluent Americans. The top 10% of consumers in terms of income

own 47.6% of PHEVs and 61.5% of BEV, which is more expensive than PHEVs on average, and they

own 62.2% and 58.2% of electric cars in 2016 and 2019, respectively.

Though it is possible to study the demand for EVs using the familiar static BLP model (Berry,

Levinsohn and Pakes, 1995), we found that the EV market features a variety of market dynamics that

are relevant to a forward-looking consumer’s car buying decisions and better understood using a dynamic

discrete demand framework. Using our data of EV sales we plot the average electric range of EVs in

miles, the number of charging stations in the state, the average federal tax credit, and sales across time in

Figure 3. We observe a substantial improvement in electric range and rapid deployment of EV charging

stations over time. On the other hand, we see a declining federal tax credit in Figure 3. This is because

the tax credit is phased out over time after a manufacturer reaches a total sales (200,000) milestone

since 2010.25 We also see a decline in EV sales in Q1 of 2019 that is caused by the state of Washington

removing its sales and use tax exemption for EV vehicles in Q3 of 2018. Later in Q3 of 2019, the state

reinstalled that exemption. Intuitively, the shrinking tax credit incentivizes consumers to buy EVs earlier

than later. Additionally, we should highlight that no tax incentives were provided for used EVs during

25Taking Tesla Model 3 for example, its credit was $7,500 before 12/31/2018, then $3,750 from 1/1/2019 to 6/30/2019,

and lastly $1,875 from 7/1/2019 to 12/31/2019.
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Figure 3: Time Series of Key Variables in the EV Market

our data period. It was not until the Inflation Reduction Act of 2023 that used EVs were eligible for EV

tax credits. On a different note, a growing electric range and a network of charging stations motivate

delaying an EV purchase. It is important to incorporate these possible dynamic considerations when

modeling consumer choice about purchasing an EV.

6.2 Consumer Dynamic Demand Model for EV

Our empirical model closely follows the theoretical framework with a few changes to address specific

empirical issues. Most notable is the inclusion of multidimensional unobserved heterogeneity and model

characteristics that evolve post-purchase and impact future flow utilities. It is also important to highlight

upfront that we do not model EV purchasing as a replacement problem akin to an iPhone upgrading

each year due to the lack of initial vehicle data. That said, we further support the use of the above

model with additional evidence. While we acknowledge that EV technology is quickly evolving during

the studied time frame, the duration a consumer holds/owns a car is longer than the four years of data

we possess–the average is 11.6 years.26 Moreover, for the few EVs sold before our data period, the length

of ownership would likely take it beyond our observed data period. Lastly, we further assume that the

replacement value associated with an individual’s current automobile at the time of EV consideration

is normalized to zero. We believe this is a reasonable assumption since the average resale value of a

car declines “approximately 20 percent of its value in the first year and 15 percent each year after that

until, after 10 years, it’s worth around 10 percent of what it originally cost”.27 To further support this

assumption, note the average price of a new car sold in 2006 was $22, 500 leaving a depreciated value of

$2, 250 in 2016.28 Because we do not have individual level data, the heterogeneous value of one’s current

vehicle can only be treated as a part of εi0t.

26https://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states
27https://smallbusiness.chron.com/average-depreciation-rate-vehicle-64934.html
28https://www.aei.org/carpe-diem/new-real-car-prices-fell-by-2500-from-1998-2006/
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Consumers are heterogeneous in price and MPGe coefficients. Similar to MPG for gasoline automobiles

which tracks fuel efficiency, we allow preferences for “fuel” efficient vehicles to vary across consumers for

electric vehicles through MPGe.

Individual heterogeneity is determined by income group membership D
(g)
i and continuous heterogene-

ity Ui = (Ui,mpge, Ui,p)
′. We let(

ηi

αi

)
=

(
η(1)

α(1)

)
+D

(2)
i

(
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(
Ui,mpge
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)
,

where Ω is a diagonal matrix with the diagonal elements ωmpge and ωp. Assume that Ui follows the

standard bivariate normal distribution. A consumer i is said to be of type (g, U) with U = (Umpge, Up)
′

when ηi = η(1) + τ
(g)
mpg + Umpge and αi = α(1) + τ

(g)
p + Up. Let τ = (τ

(2)
mpge, . . . , τ

(G)
mpge, τ

(2)
p , . . . , τ

(G)
p )′ and

ω = (ωmpge, ωp)
′.

The expected lifetime payoff is a “sum” of expected discounted per period or flow utilities. We first

state the flow utilities for a consumer. If consumer i does not purchase in period t, she receives the flow

utility εi0t in period t and stays in the market. When consumer i purchases EV j at time t, her indirect

flow utility during the purchase period t is

fijt =
K∑
k=1

δmake,kMakejk + γ′1X
ev
jt + γ′2X

cnty
t + ξjt + ηiMPGejt − αiPjt + εijt

where fijt is the flow utility in purchase period t. HereMakejk is a dummy variable for make k = 1, . . . ,K.

If EV j is manufactured by make k, Makejk = 1 and = 0 otherwise. So δmake,k is the make fixed effect.

There are K = 17 makes in the sample. We let the Nissan Leaf be the base product 1, because it appears

in all markets, time periods, and groups. Also, let Nissan be make 1. Xev
jt consists of various vehicle

characteristics including horsepower, natural log of electric range, a dummy variable for BEV, a dummy

variable of sport utility vehicle (SUV), the interaction between BEV and SUV indicator, the interaction

term between the dummy variable of BEV and the gasoline price in the market, and the interaction term

between the dummy variable of BEV and the number of charging stations in the market. We assume the

value of the number of EV charging stations in a county is normalized to zero for PHEVs as an electric

charging network does not provide any utility given its gas consumption and small battery pack. The

vector Xcnty
t consists of the county market characteristic, gasoline price. Pjt is defined similarly to the

discussion above but includes all tax incentives as immediate price discounts.29

As for ξjt, we refer to ξjt as the unobserved characteristics of product j at time t. A possible in-

terpretation of these unobservable product characteristics is product quality. “If the firm has quality

control in the production process, then there is likely some degree of randomness or stochasticity in the

manufacturing process. This would vary by product period and fit the assumptions about ξjt” Chou,

Derdenger and Kumar (2019). In our application ξjt can be thought of as the quality of EVs, battery

life, durability, etc. The other possible interpretation is that of advertising or the combination of quality

and advertising as ξjt is the term that captures all unobserved aspects of the product. We do not have

product-period advertising data in our application. It is important to highlight that the model estimation

29This is a slight deviation from practice as state incentives are immediately accounted for due to the state of Washington

not having an income tax whereas the federal tax credit in practice is recovered by filing a federal tax return. We simplify

the model and assume both credits are immediately accounted for in the price of the EV at the time of purchase.
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and the counterfactual analysis do not need to assume that ξjt are independent across different products

j. For example, the unobserved characteristics of the two car models from the same manufacturer (e.g.

Tesla Model 3 and Model Y) could be correlated even after controlling for make fixed effect.

Following her purchase, she expects to receive the following flow utility from period τ > t

fijτ =

K∑
k=1

δmake,kMakejk + γ′1 E(X
ev
jτ |Xev

jt ) + γ′2 E(X
cnty
τ |Xcnty

t ) + ηiMPGejt + ξjt

The conditional expectations are to capture consumers’ expectations about the value of future state

variables, such as the expected number of Level 3 DC charging stations nearby in the next quarter of a

year given the information consumers have at present. In practice, for the variables of Xev
jt and Xcnty

t

that evolve, we assume that consumers believe they increase at a fixed growth rate. More specifically,

E(Xev
jτ,k |Xev

jt ) = qτ−t
ev,kX

ev
jt,k for k = 1, . . . , dev = dim(Xev

jt ), and similarly E(Xcnty
τ,k |Xcnty

t ) = qτ−t
cnty,kX

cnty
t,k

for k = 1, . . . , dcnty = dim(Xcnty
t ). If a product characteristic or market specific variable does not vary

over time, the associated growth rate is just 1.

For a consumer i of type-(g, U), we write v
(g)
jt (U) to denote her expected lifetime payoffs vijt from EV

j. Given the fact that consumers exit the market after the purchase of any EV, a consumer’s expected

lifetime payoff can be written as the sum of the current period t utility and the stream of discounted

utilities in periods following purchase:

v
(g)
jt (U) =

∑K
k=1 δjMakejk + ηiMPGejt + ξjt

1− β
+

dev∑
k=1

γ1k
1− βqev,k

Xev
jt,k+

dcnty∑
k=1

γ2k
1− βqcnty,k

Xcnty
t,k −αiPjt (10)

The discount factor is β ∈ [0, 1). The expected lifetime value for all variables take the form γ1k
1−βqev,k

′Xev
jt,k

or γ2k
1−βqcnty,k

′Xcnty
t,k from the property of the infinite summation of a geometric series where the geometric

component is βqev,k or βqcnty,k, which is less than 1. It is important to note that all the listed variables

except for gasoline price and the number of charging stations, do not change after purchase. For the

variables that do (the number of level 3 charging stations, gasoline price × EV, and gasoline price), the

growth rates are greater than 1.

From above, the structural estimation relies on30

Yjmt =

K∑
k=1

δmake,k − δmake,1

1− β
Makejk +

dev∑
k=1

(Xev
jmt,k −Xev

1mt,k)
γ1k

1− βqev,k
− α(1)(Pjmt − P1mt)

+
η(1)

1− β
[MPGejmt −MPGe1mt] +

ξjmt − ξ1mt

1− β
. (11)

Note that γ2 does not appear in and cannot be identified from the above equation. This is because the

county market variables do not vary across the products in the county. From this first stage, we obtain the

estimates of the make effect (δmake,2−δmake,1)/(1−β), . . . , (δmake,K−δmake,1)/(1−β), γ1k/(1−βqev,k) (k =

1, . . . , dev), η
(1)/(1− β) and price coefficient α(1). In this regression, car price Pjmt and the interaction

term between the BEV dummy variable and the number of charging stations are endogenous. The

instrumental variables (IV) for the price of the product j in our estimates is the cost of the battery pack

multiplied by the natural log of the electric range, which can be viewed as a proxy of the battery size

30Appendix D collects the details of estimating CCP function with multidimensional unobserved heterogeneity.
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of an EV. The average lithium battery pack price in 2019 was about half of its price in 2016 according

to Bloomberg.31 For this reason we specify battery pack price in its log form. We also include its

log battery pack price without the interaction with the natural log of the electric range. Note, the IV

employed accounts for the difference between product 1 and product j as seen in eq. (7)—battery pack

cost in period t times the difference in electric range between products 1 and j in period t. These sets of

instruments vary over time due to the declining nature of battery pack prices and cross-sectional variation

from the difference between product one and the product j’s electric range. This estimator is similar to

the set of instruments where a time-varying instrument interacts with product dummy variables to allow

for the time-varying variable to impact individual products differently (Villas-Boas, 2007). The F-statistic

for the first stage excluded instruments is 11.6105 indicating non-weak instruments for price. For the

number of charging stations times BEV, we follow a variant of Zhou and Li (2018) and use the log number

of public facilities (such as universities, hospitals, supermarkets, etc.) which is time-varying and declining

over our observed data period and its interaction with BEV. This comes from the observation that many

EV charging stations are located in the parking lots of these public facilities, which were built before

there was an EV market–thus uncorrelated with ξ. Charging stations are typically under the ownership

of public facilities and are strategically installed to draw in customers and enhance their environmental

image, among other motivations. The parking lots of these establishments present ideal locations for

charging stations, offering EV drivers the potential convenience of charging their vehicles while they

shop, work, or learn–hence is correlated with the number of charging stations in market m and period t.

The weak instrument test of the excluded instruments for the number of stations is 6.7425e+ 03.32

6.3 Empirical Results

Given our methodology focuses on estimating unobserved heterogeneity, the most important parameter

estimates are those linking to MPGe and price, which recover respective sensitivities (η(1), τ
(g)
mpg, α(1), τ

(g)
p

) for each consumer type as well as ωmpg and ωp, which again measures the variation of unobserved

consumer heterogeneity within each group.

Our estimates in Table 6 indicate the price sensitivity for those whose income resides in the 90-

th percentile or higher (High Income) is 2.5576, followed by group 2 (income between 75-th and 90-th

percentile or Medium Income in the table) whose price sensitivity is α(1) + τ
(g=2)
p = 3.2127. On average,

Group 3 consumers whose income is below the 75th percentile (Low Income) are the most price-sensitive

consumers with (3.2131 = 2.5576 + 0.6555). Additionally, there is a statistically significant estimate of

within-group unobserved heterogeneity (ωp = 0.4971) in price sensitivity. To provide economic meaning

to these price estimates, we determine that a permanent 1% price increase for all EVs would lead to

a fall in sales by 3.9284%. With respect to MPGejt, we find that sensitivities decrease. Consumer

segment 1 whose income is above the 90th percentile is statistically not different from zero. Consumers

in groups 2 and 3 negatively value MPGe compared to group 1, with sensitivity estimates of (−0.0084)

and (−0.2383), respectively. There is also statistically significant unobserved heterogeneity with respect

31See “Battery Pack Prices Fall to an Average of $132/kWh, But Rising Commodity Prices Start to Bite,” BloombergNEF,

accessed May 3, 2022, https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-ris

ing-commodity-prices-start-to-bite/
32Per the request of the review team, discussion of the estimation of δmake,1, β and γ2k/(1− βqcnty,k) are in Appendix E.
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to MPGe (ωmpg = 0.2926). The goodness-of-fit statistic of our first stage nonlinear least-squares model

is 0.99.

We include several other observable product characteristics in our estimation, in addition to price and

MPGe. We report and discuss these results in terms of their lifetime effect (γ1/(1−β)). Most notably, we

include make fixed effects in addition to variables for ln[Electric Range], SUV, BEV, and the interaction

for BEV× SUV. The variable for ln[Electric Range] is found to be positive and significant, indicating

consumers value longer-range electric vehicles. Additionally, the indicator variable for BEVs is negative

and significant. This suggests that after controlling the price and electric range difference, between

BEVs and PHEVs, Americans prefer PHEVs over BEVs. Furthermore, consumers have a preference for

larger vehicles (SUV=1.2123) and for BEV SUVs (3.4435). Consumers of EVs also illustrate utility to

horsepower as the parameter estimate is statistically significant at (2.0532) which may be driven by the

out-sized sales of Telsa and its powerful engines.

In the following, we discuss the results associated with state variables whose measures change after

purchase and impact future flow utilities. We report parameter estimates in terms of their lifetime effect

(i.e. γ1k/(1 − βqev,k)). Our results determine that BEV demand is driven by the network of charging

stations in the residing county (0.0042). This effect indicates that consumers value the size and existence

of the network of electric charging stations for BEVs. Our estimates also indicate that a strong driver of

the adoption of BEVs is the current price of gas, with a greater effect for BEVs (0.7102). The general

term of gasoline for all electric vehicles is statistically significant with an estimate of 13.790.33

Finally, we discuss our discount factor estimate. The first note of interest is that we are able to

precisely estimate it. Additionally, the magnitude (0.8625) is in line with the standard assumption of

a monthly discount factor of β = 0.965. In order to put this estimate into perspective our estimate of

β = 0.8625 equates to consumers valuing utility 13 years in the future—by the 52th quarter or 13th year

after the purchase date, the associated flow utility is valued at near zero by the consumer in period t = 1

(β4×13 = 0.0004). How reasonable is this estimate? It is quite sensible according to the leading industry

magazine, Consumer Reports reports EV battery packs last 13-17 years, which is based upon a total of

200, 000 miles.34

6.4 Short-Term Temporary Policy Simulation

Since 2010, the federal government has incentivized the purchase of new electric vehicles with federal

tax credits. To date, many BEV and PHEV buyers have benefited from this program. With consumer

preference estimates in hand, we are able to compare the existing federal tax credit based on battery

size to a new policy that is based on electric range. To make a fair comparison of these two policies, we

simulate the impact on sales and CO2 emissions for only period 9 in our data (the middle of the data

period), as the new policy must be treated as a temporary unexpected change to the existing policy as

we have not estimated any state transition distributions. Moreover, we hold the cost of the new policy

equal to the existing cost of the policy in period 9 across all three counties.

Before we discuss the details of our new policy and its results, it is important to understand how the

33We determine the growth rate for the number of charging stations is 1.0301%
34Ceyhan Cagatay, “How Long Should An Electric Car’s Battery Last?”, MyEV, accessed May 16 2022, https://www.my

ev.com/research/ev-101/how-long-should-an-electric-cars-battery-last.
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Table 6: Estimation of EV Demand

Variables Estimate SE

Price 2.5576** (0.7747)

Price × I[Medium Income] 0.6555** (0.0130)

Price × I[Low Income] 0.6551** (0.0198)

MPGe 3.0477 (2.1431)

MPGe × I[Medium Income] −0.0084 (0.0172)

MPGe × I[Low Income] −0.2383** (0.0413)

ln[Electric Range] × BEV 0.7881* (0.4616)

BEV −2.7099** (0.9975)

SUV 1.2123** (0.4795)

SUV × BEV 3.4435** (1.2727)

Horsepower 2.0532** (0.7274)

Gas Price 13.7900** (4.9848)

Gas Price × BEV 0.7102** (0.3278)

EV Stations × BEV 0.0042** (0.0012)

ωmpge—MPGe 0.2926** (0.0341)

ωp—Price 0.4971** (0.0510)

Discount Factor (β) 0.8625** (0.2888)

Note: Make fixed effects are not reported to save space. Price is scaled by 1/10,000. MPGe and HP are scaled by 1/100.

Estimates for observed charac. report values γ/(1−β) or γ/(1−βq). NLS stage has a reported R2 = 0.99. ** 95 percent

significance; * 90 percent significance.

tax credit works, and which cars are eligible. First, the vehicle must be new and it must be purchased

rather than leased. The IRS tax credit for 2016 ranged from $2, 500 to $7, 500 per new electric vehicle

purchased. The exact credit amount is based upon the size of the EV battery. For instance, there is

a base payment of $2, 500 for any battery size. For EVs with larger batteries, the policy provides an

additional credit of $417 per kilowatt hour for batteries that are in excess of 5 kilowatt hours and is

capped at $5, 000. The total federal tax credit is therefore limited to $7, 500.35 36

Our new policy leverages vehicle electric range to incentivize EV adoption, rather than battery ca-

pacity.37 For our policy simulation we propose a new federal tax incentive that is a linear function of

electric range: Tax Credit ($) = Electric Range×$35.48. This latter measure is found by aggregating the

tax credits from all EVs sold during Q1 of 2018 in the 3 counties of Washington state.

The new proposed policy rewards not only cars with larger batteries but also more efficient cars

compared with the existing policy. To put this into perspective, a Tesla Model S in 2018 had an electric

range of 250 miles and a 95kWh battery and received a federal tax credit of $7, 500. Under our proposed

policy that tax credit would increase to $8, 870. Contrast that with a BMW X5 PHEV with an electric

range of 14 miles and a 9.1 kWh battery in 2018. Under the current policy, the consumer received

35https://www.efile.com/electric-vehicle-car-tax-credits/
36There are other details of the policy that are omitted as they are not relevant to the current counterfactual simulation

(e.g. phasing out of the tax credit over time after a manufacturer reaches a total of 200,000 BEV or PHEV vehicles sold

nationally since 2010).
37Electric range captures the efficacy of the car and size of the electric battery.
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a $4, 668 tax credit whereas under our policy a consumer would only receive $496.72—a roughly 89%

reduction in the federal tax credit.

In order to simulate the results of our new temporary policy, we assume the change in the tax rebate

was unexpected to the consumers and is believed to be temporary (one period). We leverage the structural

parameter estimates along with the series multinomial logit estimates of the CCP (ρjmt1, ρjmt2, and ρjmt3)

to simulate new choice probabilities under the new proposed tax policy. We show below that only ρjmt1

and ρjmt2 change from their initial estimates. Note, that policies that are not temporary cannot leverage

the series multinomial logit CCP parameters to simulate new CCPs as such policies would require a

change in the beliefs and/or evolution of the state space.

Proposition 3 (Transformation of the series multinomial logit parameters for a temporary and unex-

pected policy change). Define ρ̌jmt1, ρ̌jmt2 and ρ̌jmt3 as CCP series multinomial logit parameters under

the new policy. We have

ρ̌jmt1 = ρjmt1 − α(1)∆Pjmt, ρ̌jmt2 =

(
ρ̌jmt2,1

ρ̌jmt2,2

)
=

(
ρjmt2,1

ρjmt2,2 −∆Pjmtω2

)
, ρ̌jmt3 = ρjmt3,

where ∆Pjmt is the (after-tax-credit) price difference between the new and old policy for product j in

period t and county m.

The results of our proposed policy are reported in Table 7, and highlight a sizable reduction in total

CO2 emissions (11.78%) with a (-0.61%) reduction in the total number of EVs sold (10 car). This indicates

under the new policy consumers substituted away from PHEV vehicles for more efficient BEV vehicles

(209 more BEVs were sold) but at the cost of 10 gasoline-powered cars remaining on the road. In Q1 of

2018, the original policy sold 1,619 units whereas the new policy sold 10 fewer cars at 1,609 cars. Given

our policy emphasizes electric range (a combination of battery efficiency and size rather than simply

capacity), we analyze the policy’s effect on CO2 emissions. Leveraging data from the US Department of

Energy we can determine the change in CO2 due to the change in tax policy. It is important to note

that the results that pertain to CO2 emissions do include emissions from the generation of electricity to

charge the EVs. To account for the 10 fewer cars sold in our policy experiment, we add the differential

in total carbon emissions between PHEV and gasoline automobiles times the number of fewer EVs sold

to the total CO2 policy calculation. Using the same data from the Department of Energy we determine

in the state of Washington that gasoline-powered cars emit 2.3 times more total CO2 than PHEVs and

equates to 55.92 tons of CO2 in our simulation. Even with 10 fewer EVs sold, our proposed policy

reduces total CO2 emissions by 11.78% or 354 tons of CO2 from 3, 006 tons to 2, 652 tons. In summary,

we show a cost-neutral temporary policy that emphasizes electric range over battery storage can reduce

CO2 emissions by incentivizing consumers to switch from PHEVs to BEVs, and in particular lighter more

efficient BEVs.

6.5 Long-Term Policy Simulations

We present two additional permanent long-term policies. The first of these two is identical to the one

above but such a policy is now permanent and runs over the entire data period. We again determine the

credit per mile in electric range that equates to the total cost between the existing storage-focused policy
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Table 7: Policy Simulation Results: Temporary Electric Range Tax Credit

Existing Policy (kWh) Proposed Policy (Elec. Range) % change

Sales (units) 1,619 1,609 -0.61%

BEV Sales (units) 1,172 1,381 17.83%

PHEV Sales (units) 447 228 -49.01%

Total CO2 (tons) 3,006 2,652 -11.78%

Total Cost ($) 10,920,283.60 10,920,314.98 -2.8734e-04%

and our new efficiency policy for the observed data period. The second policy simulation addresses the

trade-off between incentivizing EV purchases through tax credits versus an investment in infrastructure

in order to provide a deeper understanding of how to seed a market with indirect network effects.

It is important to note that to determine the impact of each policy we must specify the state space and

the assumption on how consumers form expectations about the evolution of those state variables. This is

required as our methodology for estimation is agnostic to such. Moreover, we determine that to identify

the time, model, and market-specific structural errors (ξjtm) we also must make such an assumption.

In practice, many papers have used the inclusive value sufficiency (IVS) assumption of Gowrisankaran

and Rysman (2012) with aggregate data to estimate dynamic demand models. Yet, Derdenger and

Kumar (2019) have highlighted the IVS estimation procedure is a biased and inconsistent estimator

unless beliefs follow such an assumption. At this given time there is not a method to determine whether

the IVS assumption is a valid assumption for a given data set. That said, consumer beliefs are required to

proceed with our counterfactual simulations given our estimator is belief agnostic. Any specified consumer

beliefs (including IVS) may well be wrong. Note again, the benefit of our estimator is that (potentially)

incorrect beliefs are not assumed until after estimation and are only used in counterfactual simulation

rather than for estimation AND counterfactual simulations such as other estimators.

In practice, we select the IVS assumption for its computational ease. Since all utility preferences

are estimated and known at this stage, including parameters that capture observed and unobserved

heterogeneity in price and MPGe, we leverage the IVS assumption to identify the model ξ′s. This involves

matching the simulated market shares given the estimated utility parameters and the assumption of IVS

to the observed data. The IVS assumption reduces the state space to one dimensional inclusive value.

For consumer i of type (g, U), the inclusive value ιit is defined as follows,

ιit = Eε

[
max

j=1,...,J
vijt + εijt

]
= ln

 ∑
j=1,...,J

exp
(
v
(g)
jt (U)

)
where v

(g)
jt (U) is from eq. (10).

The Bellman equation can consequently be expressed in terms of the inclusive values of the car models

on the market,

V̄it (ιit) = ln

exp (ιit)︸ ︷︷ ︸
Purchase

+exp
(
β E

[
V̄it(ιi,t+1)

∣∣∣ ιit])︸ ︷︷ ︸
No Purchase


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Table 8: Long-Term Policy Simulation Results: Electric Range Tax Credit

Existing Policy (kWh) Proposed Policy (Electric Range) % change

Sales (units) 30,638 30,999 1.18%

BEV Sales (units) 25,287 27,399 8.35%

PHEV Sales (units) 5,352 3,600 -32.73%

Total CO2 (tons) 51,872 46,150 -11.03%

Total Cost ($) 180,813,613 180,813,613 2.29e-04%

Note: Policy Rebate=30.54 per mile of electric range

with the evolution of the inclusive value being specified as evolving according to an AR(1) process with

Gaussian random shocks.38 After the model ξ′s have been identified, we proceed with counterfactual

simulations where we adjust the relevant model characteristics, as well as assume that the AR(1) process

of the inclusive value adjusts given that consumers form new beliefs about the new inclusive value term.

In Table 8 we present the result of a permanent long-term policy focused on battery efficiency. Like

the first policy simulation above, we determine the cost-neutral price (between the old and new policy)

is $30.54 per mile of electric range. The policy increases the total number of BEVs sold by 2, 112 but the

number of PHEVs sold decreases by 1, 752 units for a total increase of 1.18%. Yet, CO2 emissions decrease

by 6.78% or 3, 519. This number under-reports the reduction in CO2 emissions as it does not adjust for

the 361 additional EV vehicles that were sold (hence 361 fewer internal combustion engine vehicles on the

road). Consequently, we reduce the total calculated CO2 emissions by 2, 209.32 = 361×6.12 to provide a

total CO2 emission of 46, 150 tons. The policy reduces CO2 emissions by 11.03%. With that, it should be

highlighted that the total C02 emissions under the new policy are lower than the observed data (51, 872)

amount even without the adjustment (48, 353).

To glean more insight into the result, we present in Table 9 the analysis of the impact by income group.

What is evident is that under the new policy, many of the more price-sensitive low-income consumers

(those who fall under the 90th percentile) exit the overall market (BEV plus PHEV) by not purchasing

any EVs. Whereas those who are relatively less price sensitive substitute PHEVs for more efficient BEVs

as a whole and within the class of BEVs. Thus, the impact of such a policy has a disparate impact on

differing income groups as BEVs are on average $6k more expensive than PHEVs.

It is important to note that our counterfactual results do not account for how EV characteristics

may change because of the new policy. That said, we believe this new policy based on the electric range

of the EV could incentivize EV manufacturers to change and design more tax-efficient vehicles. The

implication is that under such a setting, the tax rate per electric mile would decrease due to the increase

in sales caused by the positive preference for a larger range for BEVs holding the policy cost neutral to

the existing one. The net effect on price may be minimal as long as the price per mile is reduced by the

same percentage as the increase in the electric range. If this is the case, the impact on CO2 emissions is

a lower bound.

Our last long-term permanent policy simulation looks to address how best to seed a market with indi-

rect network effects. The question of whether individual tax credits versus investments in infrastructure

38We refer the reader to Gowrisankaran and Rysman (2012) for details.
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Table 9: Long-Term Policy Simulation Results: Electric Range Tax Credit

Income ≤ Income Income ≥
75th Percentile between 90th and 75th Percentile 90th Percentile

BEV Sales (units) 4,274 5,372 15,640

BEV Sales CF (units) 4,630 5,675 17,093

PHEV Sales (units) 1,493 1,292 2,566

PHEV Sales CF (units) 835 951 1,812

Note: Policy Rebate=30.54 per mile of electric range. “CF” stands for counterfactual policy.

through the subsidizing of a larger charging network is an important question to address. To implement

this policy, we eliminate tax credits to consumers and replace them with investment in level 3 charging

stations in the three markets. The US Department of Energy reports the max cost of purchasing and

installing a level 3 DC station is $90, 000 in November of 2015.39 The DOE also reports that the state of

Washington offered a $15k tax incentive for the purchase and installation of each level 3 charger leading

to a price of $75, 000 per level 3 charger. The policy we run looks to determine the increase in the number

of new charging stations in each period that would make such a policy cost-neutral to the existing tax

credit policy based on battery size over the observed data period.40 For each of the three counties, we

determine that an increase in the mean growth rate from 6.89% to 12.34% makes this policy cost-neutral.

Note that any new station built is present in each of the subsequent periods.

Table 10 presents the results of the policy. Specifically, we see a 25.75% increase in BEVs sold (6, 511)

and a reduction of 32.13% in PHEV sales (2, 288). Thus, a policy that emphasizes infrastructure and

incentivizes consumer adoption through a larger and more dense network of level 3 charging stations

provides a greater effect on BEV adoption than consumer tax credits. To address the impact on CO2,

as we do in the above policies, we must assume the type of EVs sold for the extensive margin. Here

we assume that the additional 4, 792 EVs are BEVs and replace gasoline-powered automobiles, leading

to a reduction in carbon emissions from gasoline-powered cars of 7.65 tons per total CO2 to 1.53 tons.

Consequently, we reduce the total calculated CO2 emissions by 29, 327 = 4, 792× 6.12 to provide a total

CO2 emission of 25, 245 tons (without this adjustment the total CO2 is 54,572).

We acknowledge that there is the potential for changes to product characteristics due to policy changes

(e.g. PHEVs with larger batteries). Moreover, we assume that the price before any tax incentives remains

constant with what is observed in the data. As is always the case with demand-side counterfactuals, when

the modeling of other supply-side decisions does not occur, such counterfactual results will only present

a partial equilibrium viewpoint. This is a limitation of our counterfactual analysis—potentially price

before tax incentives may increase due to the incentive to increase battery size and its subsequent cost.

39https://afdc.energy.gov/files/u/publication/evse˙cost˙report˙2015.pdf
40We accomplish this by estimating an AR1 process for the existing number of charging stations and adjust the AR1

coefficient to find the cost neutral allocation. We then determine the growth rate for the existing and new simulated set of

charging stations to adjust for the new coefficient γ/(1− βq′)
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Table 10: Long-Term Policy Simulation: Level 3 Charging Infrastructure Network

Existing Policy New Infrastructure % change

Policy

Sales (units) 30,638 35,430 15.64%

BEV Sales (units) 25,287 31,798 25.75%

PHEV Sales (units) 5,352 3,064 -32.13%

Total CO2 (tons) 51,872 25,245 -51.33%

Total Cost ($) 180,813,613 180,827,340 0.01%

Note: All prior federal tax credits are eliminated

7 Conclusion

We study the effects of a few competing government incentives on EV adoption by building a structural

dynamic discrete demand model. We develop a new approach to estimating the model with aggregate

consumer group sales data. We find that building an EV charging network is better than awarding a tax

rebate for purchasing an EV in terms of nurturing the EV market. Even for the design of a tax rebate

program, we find the rebate based on electric range is more effective than the current rebate program

that is based on battery size for bringing more EVs on the road and reducing CO2 emission.

The estimation method we develop in this paper has a broader application than the study of EV

adoption. In estimating dynamic discrete choice demand models for durable goods, it is essential to

account for unobserved consumer heterogeneity and product characteristics to obtain unbiased estimates

of important parameters like price elasticities. However, in the implementation of such models, it is

inevitable to address the curse of dimensionality caused by the large number of products on the market and

the high dimension of product characteristics. Our new approach using group market share data includes

continuous unobserved consumer heterogeneity and unobserved product characteristics but avoids the

curse of dimensionality. As a result, our methodology can be used in the markets with many differentiated

products.

The implementation of our method is simple and requires only NLS and 2SLS. It allows researchers

to consider various model specifications at little computational and programming cost. In addition to

these practical benefits, our method also has a few theoretically appealing properties. We find that the

identification of the dynamic demand model requires the same conditions as the identification of the static

demand model, which requires instrumental variables to address the endogeneity of variables like price.

Our data requirement is group market shares (or sales). This is weaker than requiring consumer-

level panel data, from which we can construct the group market shares. To collect customer-level panel

data, companies need to track customers over time. For durable goods, this could be very costly and

impractical due to their longer life span (last at least 3 years by the definition of the US Census Bureau41).

Additionally, in the digital age where privacy is a concern, customers are becoming more unwilling to be

tracked over time, and companies are unwilling to share their customer-level data with researchers.42 As

41See for example: “Manufacturers Place Orders When Economy Improves,” United States Census Bureau, accessed

December 24, 2020,https://www.census.gov/library/stories/2018/07/manufacturers-durable-goods.html
42Dropbox once shared its customer data with researchers and incurred ethical concerns. See the report by
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a result, we believe the need for such a method will grow. For instance, Google recently announced that

its Chrome internet browser will stop supporting third-party cookies (a user-tracking technology) by late

2023 making it very difficult for digital advertising companies to individually target consumers.43 As an

alternative, Google has been testing a new tool called Floc which allows advertisers to follow cohorts of

users rather than individuals. We therefore expect our method to be applicable to the data generated

by Floc or other similar privacy amicable technologies.
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Online Appendix

A Asymptotics

The asymptotics is built on T → ∞ with the number of products J and the number of groups G being

fixed. Let θ ≡ (θ1, θ2), where θ1 ≡ (τ, ω, ρ, (δ2 − δ1)/(1 − β), . . . , (δJ − δ1)/(1 − β), γ/(1 − β), α(1)), and

θ2 ≡ (β, δ1). We decompose θ into these two parts, because the estimation of θ2 relies on the estimation

of θ1. Let θ̂1 and θ̂2 denote the estimator of θ1 and θ2, respectively.

It is easier to derive the asymptotic distribution backwardly from θ2 ≡ (β, δ1). We use eq. (Linear-

Reg-2) to estimate θ2. In the estimation of θ2, we fix U at certain number. In particular, we let U = 0

here to simplify the discussion. For exposition simplicity, we ignore the dependence on U below. Let

Ŵ (g)(θ̂1) ≡ T−1
T∑
t=1

W
(g)
t (U = 0, θ̂1), and ℓ̂(g)(θ̂1) ≡ T−1

T∑
t=1

lnσ
(g)
0t (U = 0; θ̂1).

Then

θ̂2 = [A(θ̂1)
′A(θ̂1)]

−1A(θ̂1)
′Y2(θ̂1).

where A(θ̂1) is G× 2 matrix, and Y2(θ̂1) is G× 1 vector defined below:

A(θ̂1) ≡


1 Ŵ (1)(θ̂1) + ℓ̂(1)(θ̂1)
...

...

1 Ŵ (G)(θ̂1) + ℓ̂(G)(θ̂1)

 and Y2(θ̂1) ≡


Ŵ (1)(θ̂1)

...

Ŵ (G)(θ̂1)

 .

They are defined in this way so that Y2 is the “dependent variable” and A is the “design matrix” of

eq. (Linear-Reg-2). Because θ̂2 is analytical function of random variables Ŵ (g)(θ̂1) and ℓ̂(g)(θ̂1), its

variance can be easily obtained by simulation provided that we know the asymptotic distribution of

Ŵ (g)(θ̂1) and ℓ̂(g)(θ̂1).

Now, we derive the distribution of Ŵ (g)(θ̂1) and ℓ̂(g)(θ̂1), whose definition requires W
(g)
t (0; θ̂1) and

σ
(g)
0t (0; θ̂1). We have

W
(g)
t (0; θ̂1) = ln

[
σ̂
(g)
1t (0)

σ̂
(g)
0t (0)

]
−X ′

1t

̂( γ

1− β

)
+ (α̂(1) + τ̂ (g))P1t

= ln

[
σ̂
(1)
1t (τ̂

(g)/ω̂)

σ̂
(1)
0t (τ̂

(g)/ω̂)

]
−X ′

1t

̂( γ

1− β

)
+ (α̂(1) + τ̂ (g))P1t

=
[
ρ̂jt1 + ρ̂jt2

τ̂ (g)

ω̂
+ ρ̂jt3

( τ̂ (g)
ω̂

)2]
−X ′

1t

̂( γ

1− β

)
+ (α̂(1) + τ̂ (g))P1t,

and σ
(g)
0t (0; θ̂1) = σ

(1)
0t (τ̂

(g)/ω̂; θ̂1) has the series logit expression. Both W
(g)
t (0; θ̂1) and σ

(g)
0t (0; θ̂1) are

analytical functions of θ̂1. We then can determine the variance of Ŵ (g)(θ̂1) and ℓ̂(g)(θ̂1) by randomly

drawing samples from the asymptotic distribution of θ̂1.
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Lastly, we derive the distribution of θ̂1. We estimate θ1 by

θ̂1 ≡ arg min
θ1∈Θ1

T−1
T∑
t=1

ht(θ)
′ht(θ)

subject to constraints eq. (B.4) below,

where

ht(θ1)
′ ≡ (h1t(θ1)

′, h2t(θ1)
′, . . . , hJt(θ1)

′),

and

hjt(θ1) ≡


S
(1)
jt −GH

(G)
jt (τ, ω, ρ)

...

S
(G)
jt −GH

(G)
jt (τ, ω, ρ)

XIV
jt

[
Yjt − δj−δ1

1−β − (Xjt −X1t)
′ γ
1−β + α(1)(Pjt − P1t)

]

 .

Here XIV
jt is a vector of IV in eq. (Linear-Reg-1) satisfying E[XIV

jt (ξjt − ξ1t)] = 0. This is a standard

M-estimation problem, so under the regularity conditions,
√
T (θ̂1 − θ1) →d N (0, Σ1). The asymptotic

variance Σ1 is readily reported by most statistical softwares, or computed using numerical score and

Hessian matrices.

B Proofs

Proof of Proposition 1. First, without attrition, the pool of consumers does not change with time. So

that f
(g)
t (u) = f

(g)
1 (u) = ϕ(u) for any period t. In the rest, we focus on the case of attrition.

When t = 1, f
(g)
1 (u) = ϕ(u) by Assumption 5. We will prove

f
(g)
t (u) = ϕ(u)×

t−1∏
s=1

σ
(g)
0t (u)

S
(g)
0t

, t ≥ 2. (B.1)

by the induction. Define a few notations for exposition. Let Ait denote the discrete purchasing choice

made by consumer i in period t. Particularly, Ait = 0 means not purchase in period t. Let Zt ≡ (X ′
t, P

′
t , ξ

′
t)
′

denote the vector of product characteristics in period t. Also recall that D
(g)
i = 1 denotes that i is from

group g.

When we randomly draw a consumer i with unobserved price sensitivity Ui from group g, f
(g)
t (u) is

the probability that Ui = u provided that consumer i still exists in period t. Because consumers leave

the market after purchasing, a consumer would exist in period t if and only if she had chosen not to

purchase in all the previous periods given the past product characteristics. In other words, f
(g)
t (u) is

the probability that Ui = u conditional on that D
(g)
i = 1 (so i is from group g) and consumer i did not

purchase from period 1 to t− 1 with the past product characteristics Z1, . . . , Zt−1. That is

f
(g)
t (u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1).

The above conditioning variables just restrict the population to be the remaining consumers after t − 1

periods. Because all the remaining consumers in period t face the same product state variables Zt, we

2



also have the following conditional independence,

f
(g)
t (u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1)

= Pr(Ui = u |D(g)
i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1, Zt).

(B.2)

We now prove eq. (B.1) by the induction. Starting with period 2, we have

f
(g)
2 (u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, Z1)

=
f(Ui = u |D(g)

i = 1, Z1)f(Ai1 = 0 | Ui = u,D
(g)
i = 1, Z1)

f(Ai1 = 0 |D(g)
i = 1, Z1)

= ϕ(u)× σ
(g)
01 (u)

S
(g)
01

.

The third line used f(Ui = u |D(g)
i = 1, Z1) = f(Ui = u |D(g)

i = 1) because all consumers in group g face

the same product characteristics Z1 in the first period.

Suppose eq. (B.1) holds for period t. We will prove that this equation also holds for period t+1. We

have

f
(g)
t+1(u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Ait = 0, Z1, . . . , Zt)

= Pr(Ui = u |D(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

×
f(Ait = 0 | Ui = u,D

(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

f(Ait = 0 |D(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

= f
(g)
t (u)×

f(Ait = 0 | Ui = u,D
(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

f(Ait = 0 |D(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

by eq. (B.2)

= f
(g)
t (u)

σ
(g)
0t (u)

S
(g)
0t

= ϕ(u)×
t∏

s=1

σ
(g)
0s (u)

S
(g)
0s

.

Note that the purchase choice Ait in period t depends only on the payoffs vijt, which are functions of

(Ui, D
(g)
i , Zt) only. So that Ait ⊥⊥ (Ai1, . . . , Ait−1, Z1, . . . , Zt−1) | (Ui, D

(g)
i , Zt), and the last line follows.

This completes the proof. ■

Proposition B.1 (Group composition due to attrition). Suppose consumers leave the market after pur-

chasing. Let π
(g)
t denote the proportion of group g consumers in period t, and let S0t denote the share of

consumers who choose the outside option (not purchase) in period t. We have

π
(g)
t = π

(g)
1 ×

(t−1∏
s=1

S
(g)
0s

S0s

)
. (B.3)

Proof. The proof is similar to the proof of Proposition 1 and we keep using the notation defined in that

proof. We prove by induction. Starting from period 2, we have the following by definition,

π
(g)
2 = Pr(D

(g)
i = 1 |Ai1 = 0, Z1)

=
Pr(D

(g)
i = 1 | Z1) Pr(Ai1 = 0 |D(g)

i = 1, Z1)

Pr(Ai1 = 0, Z1)

= π
(g)
1 × S

(g)
01

S01
.
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Suppose eq. (B.3) holds for period t. We want to show the statement holds for period t+ 1, we have

π
(g)
t+1 = Pr(D

(g)
i = 1 |Ai1 = 0, . . . , Ai,t−1 = 0, Ait = 0, Z1, . . . , Zt)

= Pr(D
(g)
i = 1 |Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1, Zt)

×
Pr(Ait = 0 |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt)

Pr(Ait = 0 |Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt)

= π
(g)
t

S
(g)
0t

S0t
.

The last line follows because the vector product characteristics Zt is the same for different groups of

remaining consumers after t− 1 periods, so that Pr(D
(g)
i = 1 |Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1, Zt) =

Pr(D
(g)
i = 1 |Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1) = π

(g)
t . This completes the proof. ■

Proof of Proposition 2. We claim that the dynamic model implies the following constraints on the pa-

rameters ρt in the CCP function:

ρjt2 − ρ1t2 = −ω(Pjt − P1t) and ρjt3 − ρ1t3 = 0, j = 2, . . . , J . (B.4)

The above constraints eliminate many parameters, leaving the following to estimate in the NLS problem,

eq. (5):

(ρ1t1, . . . , ρJt1)
′, ρ1t2, ρ1t3, ω, τ, for t = 1, . . . , T .

The degree of freedom of the NLS problem is JGT − JT − 2T − G, where JGT is the number of

observations, JT results from ρjt1 for each j = 1, . . . , J and t = 1, . . . , T , 2T comes from (ρ1t2, ρ1t3) for

each t = 1, . . . , T , and G refers to one ω plus (G − 1) × 1 vector τ . The most stringent case is when

G = 2, in which we need at least three products (J ≥ 3) and (J − 2)T > G. In practice, such NLS with

the above constraints takes very little time and is robust to the choice of initial guess.

To see how we obtain the above constraints, note that in dynamic model, we have ln[σ
(g)
jt (U)/σ

(g)
1t (U)] =

v
(g)
jt (U)− v

(g)
1t (U). Using the definition of the payoffs, we can compute the derivative:

d ln
[
σ
(g)
jt (U)/σ

(g)
1t (U)

]
dU

= −ω(Pjt − P1t)

By the series logit approximation, we have

ln

[
σ
(g)
jt (U)

σ
(g)
1t (U)

]
= (ρjt1 − ρ1t1) +

[(ρjt2
ω

)
−
(ρ1t2

ω

)]
(ωU + τ (g)) +

[(ρjt3
ω2

)
−
(ρ1t3
ω2

)]
(ωU + τ (g))2, (B.5)

which implies

d ln
[
σ
(g)
jt (U)/σ

(g)
1t (U)

]
dU

= ω
[(ρjt2

ω

)
−
(ρ1t2

ω

)]
+ 2

[(ρjt3
ω2

)
−
(ρ1t3
ω2

)]
(ωU + τ (g))ω.

Equalizing the two formulas of the same derivative gives rise to the conclusion in eq. (B.4).

A useful conclusion is the following. Applying the constraints about ρ to eq. (B.5) for the first group,

g = 1, we have

ln

[
σ
(1)
jt (U)

σ
(1)
1t (U)

]
= (ρjt,1 − ρ1t,1)− ωU(Pjt − P1t).
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The dependent variable Yjt of eq. (Linear-Reg-1), whose definition is copied below, has a simple expression,

Yjt ≡
∫

ln

[
σ
(1)
jt (U)

σ
(1)
1t (U)

]
dF

(1)
t (U) + ω(Pjt − P1t)

∫
U dF

(1)
t (U) = ρjt,1 − ρ1t,1.

This is useful, because the NLS step will estimate ρjt,1−ρ1t,1. After which, one can estimate (δj−δ1)/(1−
β), γ/(1 − β) and α(1) by running 2SLS of (ρjt,1 − ρ1t,1) on (Xjt − X1t) and (Pjt − P1t) according to

eq. (Linear-Reg-1). This also proves Proposition 2. ■

Proof of Proposition 3. For expositional simplicity, we omit the market index m in this proof. Also note

that U = (U1, U2)
′ involves two-dimensional unobserved heterogeneity, and U1 and U2 are associated with

a variable MPGe and price, respectively. Correspondingly, τ (g) = (τ
(g)
1 , τ

(g)
2 )′. Thus, what is below is a

generalized proof of for two dimensions of heterogenity and not just one. We begin by first specifying the

log market share ratio under each policy where the current policy follows from eq. (E.1), and the new

policy takes the form of

ln

[
σ̌
(g)
jt (U)

σ̌
(g)
0t (U)

]
=

δj
1− β

+X ′
jt

γi
1− β

− (α(1) + τ
(g)
2 + ω2U2)P̃jt +

ξjt
1− β

− β E[V̄
(g)
t+1(U) |Xt, Pt, ξt], (B.6)

where P̃jt is the new price of the EV vehicle with the proposed tax credit. Its series representation is

that

ln

[
σ̌
(g)
jt (U)

σ̌
(g)
0t (U)

]
= ρ̃jt1 + ρ̃′jt2Ω

−1
(
ΩU + τ (g)

)
+
(
ΩU + τ (g)

)′
Ω−1ρ̃jt3Ω

−1
(
ΩU + τ (g)

)
,

with unknown coefficients ρ̃jt1, ρ̃jt2, and ρ̃jt3. Ω is a diagonal matrix whose diagonal elements are ω1 and

ω2. The objective is to solve for ρ̃jt1, ρ̃jt2, and ρ̃jt3. Define P̃jt = Pjt+∆Pjt. First note that by eq. (E.1),

we have

ln

[
σ̌
(g)
jt (U)

σ̌
(g)
0t (U)

]
= ln

[
σ
(g)
jmt(U)

σ
(g)
0mt(U)

]
− (α(1) + τ

(g)
2 + ω2U2)∆Pjt

= ρjt1 + ρ′jt2Ω
−1
(
ΩU + τ (g)

)
+
(
ΩU + τ (g)

)′
Ω−1ρjt3Ω

−1
(
ΩU + τ (g)

)
− (α(1) + τ

(g)
2 + ω2U2)∆Pjt

= ρjt1 − (α(1) + τ
(g)
2 )∆Pjt + ρ′jt2Ω

−1
(
ΩU + τ (g)

)
+
(
ΩU + τ (g)

)′
Ω−1ρjt3Ω

−1
(
ΩU + τ (g)

)
− ω2U2∆Pjt.

Note that ρjt2 is a two-dimensional vector:

ρjt2 =

(
ρjt2,1

ρjt2,2

)
and ρ′jt2Ω

−1 = (ρjt2,1ω
−1
1 , ρjt2,2ω

−1
2 ),

where ρjt2,1 is associated with MPGe, and ρjt2,2 is with price. Next, we write ω2U2∆Pjt = (ω2U2 +

τ
(g)
2 )∆Pjt − τ

(g)
2 ∆Pjt so that

ln

[
σ̌
(g)
jt (U)

σ̌
(g)
0t (U)

]
= ρjt1 − α(1)∆Pjt +

(
ρjt2,1

ρjt2,2 −∆Pjtω2

)
Ω−1

(
ΩU + τ (g)

)
+

ρjt3
ω2

(
ΩU + τ (g)

)2
.
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Thus,

ρ̃jt1 = ρjt1 − α(1)∆Pjt, ρ̃jt2 ≡

(
ρ̃jt2,1

ρ̃jt2,2

)
=

(
ρjt2,1

ρjt2,2 −∆Pjtω2

)
, ρ̃jt3 = ρjt3.

■

C Initial values

Good initial values help solve the NLS in eq. (5). We need initial values of τinit = (τ
(2)
init, . . . , τ

(G)
init )

′, ρinit,

and ωinit. We follow two steps to obtain the initial values, and these steps are based on the first order

Taylor expansion of CCP function σ
(g)
jt (U).

In the first step, we find τinit by running 2SLS for the following linear regression,

ln

(
S
(g)
jt

S
(g)
1t

)
=

δj − δ1
1− β

+ (Xjt −X1t)
′ γ

1− β
− (α(1) + τ (g))(Pjt − P1t) +

ξjt − ξ1t
1− β

.

To see the rationale, recall the identity

S
(g)
jt = E[σ

(g)
jt (U∗)Γ

(g)
t (U∗)], U∗ ∼ N (0, 1),

and consider the first order Taylor expansion of CCP function σ
(g)
jt (U∗)Γ

(g)
t (U∗) at 0, which is the mean

of U∗ ∼ N (0, 1), for each group g. We have

S
(g)
jt = E[σ

(g)
jt (U∗)Γ

(g)
t (U∗)]

≈ σ
(g)
jt (0)Γ

(g)
t (0) +

(
dσ

(g)
jt (U∗)Γ

(g)
t (U∗)

dU∗

)
U∗=0

E(U∗ − 0)

= σ
(g)
jt (0)Γ

(g)
t (0).

The first order Taylor expansion leads to S
(g)
jt ≈ σ

(g)
jt (0)Γ

(g)
t (0). Thus,

S
(g)
jt

S
(g)
1t

≈
σ
(g)
jt (0)

σ
(g)
1t (0)

.

The application of this conclusion to eq. (Linear-Reg-1) when U = 0 gives rise to the stated regression.

In the second step, we find ρjt1,init for all j = 1, . . . , J , and (ρ1t2/ω)init, (ρ1t3/ω
2)init by running OLS

for the following linear regression,

ln

(
S
(g)
jt

S
(g)
0t

)
+ (Pjt − P1t)τ

(g)
init = ρjt1 +

(ρ1t2
ω

)
τ
(g)
init +

(ρ1t3
ω2

)
(τ

(g)
init)

2.

We now explain how we got the above regression. It follows from series logit that

ln

[
σ
(g)
jt (0)

σ
(g)
0t (0)

]
= ln

[
σ
(1)
jt (τ (g)/ω; ρt)

σ
(1)
0t (τ

(g)/ω; ρt)

]
= ρjt1 +

(ρjt2
ω

)
τ (g) +

(ρjt3
ω2

)
(τ (g))2

= ρjt1 +
(ρ1t2

ω

)
τ (g) − (Pjt − P1t)τ

(g) +
(ρ1t3
ω2

)
(τ (g))2.
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The second line follows from imposing the constraints eq. (B.4). By the approximation,

ln

(
S
(g)
jt

S
(g)
0t

)
≈ ln

[
σ
(g)
jt (0)

σ
(g)
0t (0)

]
,

we have the stated regression.1

D Multidimensional Unobserved Heterogeneity

In this appendix, we extend our main results to include multidimensional unobserved heterogeneity. We

have two observations. First, our estimation method works for multidimensional unobserved heterogeneity

after some modification in the stage of CCP estimation. Second, a higher dimension of unobserved

heterogeneity does not cause the curse of dimensionality for our CCP estimation that involves a series

polynomial approximation of CCP as a function of multidimensional unobserved heterogeneity. This is

because the structural model imposes certain restrictions that can eliminate a large number of parameters

in CCP function.

D.1 Model

We now have the new dimension of unobserved heterogeneity γi associated with product characteris-

tics Xjt. Particularly, when Xjt includes the product dummy variable, the above specification says

that consumers could have heterogeneous valuation about the unobserved product characteristics (e.g.

advertising).2

Using our group specification, we write(
γi

αi

)
=

(
γ(1)

α(1)

)
+D

(2)
i

(
τ
(2)
1

τ
(2)
2

)
+ · · ·+D

(G)
i

(
τ
(G)
1

τ
(G)
2

)
+Ω

(
Ui1

Ui2

)
, (D.1)

where Ω is a diagonal matrix,

Ω ≡

(
Ω1

ω2

)
.

The diagonal elements Ω1, which is also a diagonal matrix, and ω2 determine the within group variation

of γi and αi, respectively. Below, let τ (g) ≡ (τ
(g)
1

′
, τ

(g)
2 )′ and let Ui ≡ (U ′

i1, Ui2)
′. Use q to denote the

dimension of (X ′
jt, Pjt)

′. Again, let τ (1) ≡ 0. Let ϕ(U) denote the PDF of the multivariate normal

distribution N (0, I).

Under the specification of (γ′i, αi) in Equation (D.1), the expected lifetime payoff of purchasing product

j at time t becomes

v
(g)
jt (Ui) =

δj + γ′iXjt + ξjt
1− β

− αiPjt, j = 1, . . . , J.

1We do not have a clever initial value of ωinit. In our simulation, we varied the initial value ωinit substantially, and our

optimization routine seems very robust.
2For example, suppose Xjt is just the product dummy variable that equals 1 for product j and 0 otherwise. The expected

payoff of product j in period t then reads vijt = δj + γi + ξjt −αiPjt, and γi serves as random effect that explains consumer

heterogeneity in the valuation of unobserved product characteristics.
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Correspondingly, the CCP of type-(g, U) is

σ
(g)
jt (U) =

exp(v
(g)
jt (U))

exp(v
(g)
0t (U)) +

∑J
k=1 exp(v

(g)
kt (U))

.

Because v
(g)
jt (U) = v

(1)
jt (U +Ω−1τ (g)), we still have shifting formula σ

(g)
jt (U) = σ

(1)
jt (U +Ω−1τ (g)). So the

CCP estimation can be based on the same NLS problem excepting for the constraints about the series

approximation coefficients. Once the CCP functions are known, it will be easy to estimate the model

structural parameters using our procedures in the post-CCP estimation section.

The constraints about ρt result from the comparison between the derivatives of the log CCP ratio

with respect to U in the structural demand model and the same derivatives in the series approximation.

Particularly, we have

ln

[
σ
(g)
jt (U)

σ
(g)
1t (U)

]
= v

(g)
jt (U)− v

(g)
1t (U)

=
δj − δ1
1− β

+
(γ(1) + τ

(g)
1 )′

1− β
(Xjt −X1t)− (α(1) + τ

(g)
2 )(Pjt − P1t) +

ξjt − ξ1t
1− β

+

((1− β)−1Ω1U1)
′(Xjt −X1t)− ω2U2(Pjt − P1t).

This gives rise to

d ln[σ
(g)
jt (U)/σ

(g)
1t (U)]

dU
=

(
(1− β)−1Ω1(Xjt −X1t)

−ω2(Pjt − P1t)

)
,

and any higher order derivatives are zeros. Comparing the above derivatives with the resulted derivatives

from series logit form, we conclude

ρjt2 − ρ1t2 =

(
(1− β)−1Ω1(Xjt −X1t)

−ω2(Pjt − P1t

)
, (ρjt3 − ρ1t3) = (ρjt4 − ρ1t4) = · · · = 0.

In the series approximation, we only consider the second order approximation. So for the dynamic model

with multidimensional heterogeneity, the CCP estimation stage involves the following unknowns,

(ρ1t1, . . . , ρJt1)
′, ρ1t2, ρ1t3, (1− β)−1Ω1, ω2, τ, for all t.

Note that in this step of CCP estimation, we are only able to estimate (1−β)−1Ω1 as a whole and cannot

separately estimate β from Ω1. Recall q is the dimension of (X ′
jt, Pjt)

′, and ρ1t3 is a q × q triangular

matrix. The degree of freedom of the NLS problem is GJT − (JT +(3q+ q2)T/2+2q). In order to make

this degree of freedom be positive, it is necessary to satisfy (G− 1)J − (3q + q2)/2 > 0.3 Depending on

the number of dimension of unobserved heterogeneity, we may or may not need a large number of groups

or products. It is interesting to point out that even when the number of groups is small, we can ensure a

positive degree of freedom by including a large number of products. This manifests one advantage of our

method—the number of products, rather than causing the curse of dimensionality, helps solve the curse

of dimensionality if we are willing to assume that purchasing is a terminal action in the dynamic model,

which is reasonable for the market of durable goods.

3We writeGJT−(JT+(3q+q2)T/2+2q) = [(G−1)J−(3q+q2)/2]T−2q. When T is relatively large, (G−1)J−(3q+q2)/2 >

0 will also be sufficient to have positive degree of freedom.
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Table D.1: Simulation Results: Multi Dimensional Heterogeneity

DGP: M = 2, T = 48 and J = 8

δ = −0.1 -0.0923 (0.0097)

γ = 0.03 0.0289 (0.0017)

α(1) = 0.10 0.0963 (0.0175)

τ
(2)
X = 0.05 0.0484 (0.0032)

τ
(3)
X = 0.10 0.0968 (0.0063)

τ
(4)
X = 0.15 0.1453 (0.0098)

τ
(5)
X = 0.20 0.1942 (0.0137)

τ
(6)
X = 0.25 0.2434 (0.0182)

τ
(2)
p = 0.05 0.0507 (0.0016)

τ
(3)
p = 0.10 0.1014 (0.0034)

τ
(4)
p = 0.15 0.1519 (0.0053)

τ
(5)
p = 0.20 0.2024 (0.0073)

τ
(6)
p = 0.25 0.2528 (0.0092)

ωX = 0.1 0.0980 (0.0065)

ωp = 0.075 0.0754 (9.72e-5)

β = 0.90 0.9088 (0.0078)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

Starting values follow the procedure in the appendix and vary with each

simulation run. The starting value for ω = 0.25 for all simulation runs.

D.2 Multi Dimensional Monte Carlo Simulation

In Table D.1, we report the results of Monte Carlo simulations where within group unobserved hetero-

geneity is present in both price and the X variable. The data generating process is identical to the

uni-dimensional simulations with the exception of the Gaussian Hermite quadrature approximation of

the normal distribution for the price and X coefficients uses 6 nodes rather than 12. This is done for

computation time as with 12 we would have 144 individuals to simulation in the DGP process.

E Empirical Application: Estimation of δmake,1, β and γ2k/(1− βqcnty,k)

The next step is to use

ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
=

δmake,1

1− β
+

dev∑
k=1

Xev
1mt,k

γ1k
1− βqev,k

+

dcnty∑
k=1

Xcnty
mt,k

γ2k
1− βqcnty,k

+

(
η(1)

1− β
+

τ
(g)
mpge

1− β
+ ωmpgeUmpge

)
MPGe1mt

− (α(1) + τ (g)p + ωpUp)P1mt +
ξ1mt

1− β
+ β E[V̄

(g)
t+1(U) |Xmt, Pmt, ξmt]. (E.1)

to recover δmake,1, γ2k/(1− βqcnty,k) (k = 1, . . . , dcnty) and the discount factor β.
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Letting

W
(g)
mt (U) ≡ ln

[
σ
(g)
1t (U)

σ
(g)
0t (U)

]
−[

dev∑
k=1

Xev
1mt,k

γ1k
1− βqev,k

+

(
η(1)

1− β
+

τ
(g)
mpge

1− β
+ ωmpgeUmpge

)
MPGe1mt − (α(1) + τ (g)p + ωpUp)P1mt

]
, (E.2)

we have the conclusion following the similar arguments in section 4.2:

W
(g)
mt (Ũ) = δmake,1 +

dcnty∑
k=1

Xcnty
mt,k

γ2k
1− βqcnty,k

+
ξ1mt

1− β
+

β E

W
(g)
m,t+1(Ũ)−

dcnty∑
k=1

Xcnty
m,t+1,k

γ2k
1− βqcnty,k

+ lnσ
(g)
0,m,t+1(Ũ)− ξ1,m,t+1

1− β

∣∣∣∣∣∣Xmt, Pmt, ξmt

, (E.3)

for a fixed Ũ .

To estimate the discount factor β and γ2, one possible approach is to consider the unconditional

expectation again and to have the following conclusion:

E[W
(g)
mt (Ũ)] = δmake,1+β E[W

(g)
m,t+1(Ũ)+lnσ

(g)
0,m,t+1(Ũ)]−

dcnty∑
k=1

E[(Xcnty
mt,k−βXcnty

m,t+1,k)]
γ2k

1− βqcnty,k
= 0,

for a fixed Ũ . Then we can solve β and γ2k/(1 − βqcnty,k) from the above equation by the variation of

groups. For this particular application, this approach is infeasible because some of our state variables

are nonstationary as illustrated by the time series plot in Figure 3. For example, the number of charging

stations is clearly non-stationary.

As an alternative, we note that in eq. (E.3), for a fixed Ũ , the random variable W
(g)
mt (Ũ) is a function

of the vector (Xmt, Pmt, ξmt). So we have a conditional moment condition:

E

(
W

(g)
mt (Ũ)− βW

(g)
m,t+1(Ũ)− δmake,1 − β lnσ

(g)
0,m,t+1(Ũ)−

dcnty∑
k=1

(Xcnty
mt,k − βXcnty

m,t+1,k)
γ2k

1− βqcnty,k

− ξ1mt − βξ1,m,t+1

1− β

∣∣∣∣Xmt, Pmt, ξmt

)
= 0.

Suppose there is a vector of Xmt,IV , which are elements or functions of the conditioning variables

(Xmt, Pmt, ξmt) and satisfy

E(Xmt,IV ξ1mt) = E(Xmt,IV ξ1m,t+1) = 0.

We have the moment conditions of

E

[
Xmt,IV

(
W

(g)
mt (Ũ)−βW

(g)
m,t+1(Ũ)−δmake,1−β lnσ

(g)
0,m,t+1(Ũ)−

dcnty∑
k=1

(Xcnty
mt,k−βXcnty

m,t+1,k)
γ2k

1− βqcnty,k

)]
= 0.

We then can estimate δmake,1, β and γ2k/(1 − βqcnty,k) from the above equation using the moment

estimator. In our empirical estimates, we let Ũ = 0 and define Xmt,IV as a vector of ones, gascntymt , the

log battery price in period t, and the log number of EV makes in a given period t.
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