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Preface

”Mathematics is the art of reducing any problem to linear algebra.”

”If you can reduce a problem to linear algebra, you’ve won. If you reduce it to
combinatorics, you’re screwed.”

I’m unsure who these quotes are attributed to, but they are widely known in the
mathematics community because they highlight two important features:

(1) Linear algebra is a tool that captures many fundamental ideas in mathematics;

(2) The basic theory of linear algebra (unlikely many other areas, such as combi-
natorics) is complete.

In this class, we’ll learn the fundamental objects of linear algebra: matrices and 
linear transformations. We’ll introduce these objects by building off of the intuitive 
problem of solving systems of linear equations (which we will see in the first sec-
tion). My hope for this semester is for you to leave with a conceptual understanding 
of linear algebra and an appreciation of its strength both in mathematics and in 
the sciences. 

These lecture notes will follow Alayont and Schlicker’s “Linear Algebra and Applica-
tions: An Inquiry-Based Approach” and will be accompanied by in-class activities. 
Please keep in mind that these notes are only to be used for Lecture 3 of 21-241 in 
Spring 2023 at CMU, and are not to be distributed. Let me know if you catch any 
mistakes or typos along the way.

v

https://scholarworks.gvsu.edu/cgi/viewcontent.cgi?article=1021&context=books
https://scholarworks.gvsu.edu/cgi/viewcontent.cgi?article=1021&context=books


vi Preface

List of Notation.

The following list will be updated as new notation appears in the notes.

R the set of real numbers

C the set of complex numbers

Q the set of rational numbers

Rn n-dimensional Euclidean space

∈ is an element of

∀ for all

∃ there exists

TA the linear transformation corresponding to the matrix A, given by TA(x⃗) = Ax⃗.

AT the defining matrix of a linear transformation T , as constructed in Theorem 1.46

[x⃗]B the coordinates of a vector x⃗ with respect to the basis B

A⊤ the matrix transpose

Nul(A) the null space of A

Col(A) the column space of A

Eλ the λ-Eigenspace

det(A) the determinant of A

χA the characteristic equation of A

x⃗ · y⃗ the dot product

∥x⃗∥ the norm



Chapter 1

Systems of Linear Equations

1.1. Introduction to Systems of Linear Equations

The following definition is meant to formalize our intuitive understanding of systems
of linear equations.

Definition 1.1. A linear equation in variables x1, x2 . . . , xn is an equation of
the form

a1x1 + a2x2 + · · ·+ anxn = b,

for constants ai, b ∈ R. A system of linear equations is a collection of one
or more linear equations in the same variables. A tuple (s1, . . . , sn) ∈ Rn is a
solution to a system of linear equations if (s1, . . . , sn) is a solution to every linear
equation in the system.

Example 1.2. The equation 2x+ y = z is linear, while the equations

x2 − y = 3, ex +
√
y = z3,

x

y
+ 2 = zw

are not linear.

In Worksheet 0, you encountered a few systems of linear equations in three vari-
ables. My guess (which we’ll discuss later) is that you used some ad-hoc methods
to find their solutions. Our goal in the next section will be to introduce matrices
as the appropriate bookkeeping in order to solve systems of linear equations algo-
rithmically (so that we can program a computer to do this hard work for us).

This bookkeeping will also help us build a theory behind what our solution sets
can look like. But it’s difficult to make conjectures with bookkeeping alone (this
is certainly not how the theory was developed). Let’s first build some geometric
intuition before we dive into the theory.

1
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1.1.1. Some Geometry of Solution Sets of Linear Equations. Let’s look at
some geometry of systems linear equations in two and three variables.

Two Variables. Since the graph of a linear equation in two variables is a line,
solving systems of linear equations in two variables is equivalent to finding inter-
section points of lines in R2. If our system has two equations, then there are three
possible situations:

(i) lines are parallel and distinct:

(ii) lines are not parallel:

(iii) lines are equal:

In this case, our system of equations either has no solutions, one solutions, or
infinitely many solutions, respectively.
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Three Variables. Since the graph of a linear equation in three variables is a
plane, solving systems of linear equations in two variables is equivalent to finding
intersection points of planes in R3.

A system of two linear equations in three variables then corresponds to the number
of points two planes in R3 may intersect at. We have the following cases:

(i) If the planes are parallel and distinct, then our system has no solutions.

(ii) If the planes are equal, then our system has infinitely many solutions.

(iii) If the planes are not parallel, then our system has infinitely many solutions,
and the solution set is given by a line as below

A system of three linear equations in three variables corresponds to the number
of points three planes in R3 may intersect at. We have the following cases:

(i) One or more of the planes are equal, in which case we’re back to the previous
situation (zero or infinitely many solutions).

(iv) All planes are distinct, and two or more of the planes are parallel, such as in
the picture below (in which case we have zero or infinitely many solutions)
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(ii) Planes intersect at a point, as in the picture below

(iii) Planes intersect in a line, as in the picture below

1.1.2. Consequence and Limitations of our Geometric Intuition. In all of
our previous examples, we saw that our geometric objects either intersected at no
points, one point, or infinitely many points. This leads to the following conjecture.

Conjecture 1.3. Any system of linear equations either has no solutions, one so-
lution, or infinitely many solutions.

Using our geometric intuition helped us form this conjecture, and will be used
throughout the course to help us get our barrings. Learning how to reason through
what’s going on (through examples, geometry, etc) is an invaluable part of the
mathematical process. But this process is not complete until we can provide rigor-
ous proofs of our claims. The machinery we’ll need to prove Conjecture 1.3, and to
generate algorithms to find our solutions, is the matrix.

1.2. The Matrix Representation of a Linear System

Recall our system of equations from Worksheet 0

x− y − z = 1

2x− 3y − z = 3

−x+ y − z = −3
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Since our variables must all be the same in any system of linear equations, it’s a
bit redundant to write them every time. Instead, we could just write down the
important pieces of this system in an array

1 −1 −1 1
2 −3 −1 3
−1 1 −1 −3

The first three columns of this array correspond to our three independent variables,
and the last column corresponds to the constant on the right-hand side of our linear
equations. This array is a matrix and will be our basic bookkeeping device. Let’s
give some formal definitions.

Definition 1.4. A matrix is any rectangular array of quantities or expressions.
The quantities or expressions in a matrix are called its entries. If a matrix has n
rows and m columns, then we call this an n×m matrix.

In this class, our matrices will generally typically contain real number entries (or
sometimes variables working as placeholders for real number entries). Matrices are
often written using soft brackets, such as in the 2× 2 matrix below(

1 2
0 −3

)
or by using hard brackets, such as in the 3× 2 matrix below0 π

3 2
1 7

 .

I’ll be using soft brackets throughout these notes, since that’s what I’m used to,
but either one is perfectly fine.

Definition 1.5. Consider a general system of linear equations

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

an1x1 + · · ·+ annxn = bn.

The matrix of coefficients corresponding to this system is given bya11 · · · a1n
...

. . .
...

an1 · · · ann

 .

The augmented matrix of this system isa11 · · · a1n b1
...

. . .
...

...
an1 · · · ann bn

 .

Note that the augmented matrix accounts for the constants on the right-hand side
of our equations, while the coefficient matrix does not.
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Let’s develop our ad-hoc methods of solving systems of linear equations into some-
thing more algorithmic, which will be easier to keep track of with the use of matrices.

Definition 1.6. We call two systems of linear equations equivalent if they have
the same solution set.

Observation 1.7. Given a system of linear equations, we can perform the three
elementary operations to obtain an equivalent system:

(E1) Replace one equation by the sum of that equation and a scalar multiple of
another equation;

(E2) Interchange two equations;

(E3) Replace an equation by a nonzero multiple of itself.

Example 1.8. Let’s solve the following system of equations (which we first en-
countered in Worksheet 0) using the elementary operations above

x− y − z = 1

2x− 3y − z = 3

−x+ y − z = −3.

Since we’re trying to find a way to do this algorithmically, let’s be systematic. First,
we’ll try to remove two of the variables from the third equations, one variable from
the second equation, and then use back substitution.

(1) Replace third equation with the sum of the first and the third equation:

x− y − z = 1

2x− 3y − z = 3

0x+ 0y − 2z = −2.

(2) Next, replace the second equation with -2 times the first equation plus the
second:

x− y − z = 1

0x− y + z = 1

0x+ 0y − 2z = −2.

(3) Finally, we apply back substitution to solve our system. From the third equation
we get z = 1 and so

−y + 1 = 1 ⇒ y = 0

which gives

x− 0− 1 = 1 ⇒ x = 2.

So, this equation has the unique solution

(x, y, z) = (2, 0, 1).

Our next goal will be to understand the method of back substitution in the language
of matrices. This will help us to develop an algorithmic method to find solutions
to systems of linear equations, and to show that this method always works.
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In Activity 1.2, you kept track of the corresponding augmented matrices at each
step. We should have found out that the elementary operations given above corre-
spond to the following elementary row operations

(ER1) Replace one row by the sum of that row and a scalar multiple of another
row;

(ER2) Interchange two rows;

(ER3) Replacing a row by a nonzero scalar multiple of itself.

Definition 1.9. We say that two matrices are row equivalent if one can be ob-
tained by some sequence of elementary row operations from another. Observe that
if two augmented matrices are row equivalent, then the system of linear equations
that they represent are also equivalent.

1.3. Echelon Forms of a Matrix

Example 1.8 continued... Let’s keep track of the augmented matrices at each
step of our solution using back substitution to Example 1.8. The augmented matrix
of our original equation is  1 −1 −1 1

2 −3 −1 3
−1 1 −1 −3


Step (1) of our solution corresponds to replacing the third row of this matrix with
the sum of the first and third row, which gives the matrix1 −1 −1 1

2 −3 −1 3
0 0 −2 −2


Step (2) coressponds to replacing the second row with -2 times the first row plus
the second, which gives the matrix1 −1 −1 1

0 −1 1 1
0 0 −2 −2

 .

Once we’re at this step, we applied back substitution. Observe that the matrix we
ended up with has zeros in every entry below the diagonal.

Definition 1.10. The pivot (aka the leading entry) of a row in a matrix is the
leftmost nonzero entry.

Definition 1.11. A matrix is said to be in row echelon form if

(1) all rows consisting only of zeros are at the bottom, and

(2) the pivot of each row is in a column to the right of the leading entry of the
row above it.

A matrix which is in row echelon form is also called upper triangular, because
the only nonzero entries form a triangle in the upper right-hand corner of the
matrix.
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We have the following key observations.

Observation 1.12. Once an augmented matrix is in row echelon form, we can
use back substitution to find the solutions to the corresponding system of linear
equations.

In fact, we can use our matrices to perform the back substitution process as well.

Example 1.8 continued... Recall we had the augmented matrix1 −1 −1 1
0 −1 1 1
0 0 −2 −2

 .

Our next step was to note the final row corresponded to the equation

−2z = −2

and so we canceled −2 on both sides. Instead, we could do this as an elementary
row operations to the augmented matrix above: replace R3 by − 1

2R3 to get the
row equivalent matrix 1 −1 −1 1

0 −1 1 1
0 0 1 1

 .

This tells us z = 1. Next, we plugged z = 1 into the equation −y + z = 1 to get

−y + 1 = 1 ⇒ −y + 0 = 0.

This corresponds to the elementary row operation: replace R2 by R2 − R3 to get
the row equivalent matrix 1 −1 −1 1

0 −1 0 0
0 0 1 1


and then replace R2 with −R2 to get1 −1 −1 1

0 1 0 0
0 0 1 1


telling us y = 0. Finally, we plugged in z = 1, y = 0 to the equation x− y − z = 1
from the top row to solve for x. This corresponds to using the second and third
rows to cancel the coefficients of y and z in the first row: replacing R1 by R1 +R3

gives the row equivalent matrix 1 −1 0 2
0 1 0 0
0 0 1 1


and finally replacing R1 with R1 +R2 gives the row equivalent matrix1 0 0 2

0 1 0 0
0 0 1 1

 .
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Now, we can just read off our solution from the matrix above: just as before, we
get the unique solution

(x, y, z) = (3, 0, 1).

Definition 1.13. A matrix is said to be in reduced row echelon form if the
matrix is in echelon form and

(1) the leading term (aka the pivot) in each nonzero row is 1, and

(2) each leading term is the only nonzero entry in its column.

The process of applying elementary row operations to obtain the reduced row ech-
elon form of a matrix is called Gauss-Jordan Elimination.

In Activity 1.3, you practiced finding row echelon and reduced row echelon forms of
further matrices. My hope is that you began to convince yourself of the following
observations.

Theorem 1.14. Every matrix is row equivalent to a matrix in row echelon form.
The method of finding an equivalent matrix in row echelon form using the elemen-
tary row operations (ER1)-(ER3) is often called Gaussian elimination.

Theorem 1.15. Every matrix is row equivalent to a matrix in reduced row echelon
form. Furthermore, the reduced row echelon form of any matrix is unique.

On your next homework, I’ll ask you to give a proof of these two results in the 3×3
case (we’ll practice some formal proof writing before you need to turn these in).

The important takeaway for now is that every matrix can be written in (reduced)
row echelon form (and in fact there are efficient algorithms to do so), and once a
matrix is in one of these forms, we can easily find the solutions to our system. This
completely resolves our problem of finding solutions to linear equations.

In practice, if you have a system of linear equations you’d like to solve, this is what
you should do:

(1) Write down the augmented matrix of your system

(2) Ask a computer to find the reduced row echelon form

(3) Read off the solutions

Let’s look at the systems of equations you solved in Activity 1.3.

Example 1.16. Suppose we have a system of linear equations with the following
augmented matrix  1 2 −2 3 1

−2 −4 4 2 6
0 0 4 8 6

 .

Just for practice, let’s perform Gauss-Jordan elimination by hand to find the re-
duced row echelon form of this matrix. Note that this method is not unique (you
may swap the order of some steps), but the matrix we end up with is.
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(1) Replace R2 with R2 + 2R1 to get1 2 −2 3 1
0 0 0 8 8
0 0 4 8 6

 .

(2) Next, swap R2 and R3, and then replace R3 with 1
8R31 2 −2 3 1

0 0 4 8 6
0 0 0 1 1

 .

(3) Now, replace R1 with R1 − 3R3 and R2 with R2 − 8R1 to get1 2 −2 0 −2
0 0 4 0 −2
0 0 0 1 1

 .

(4) Finally, we replace R1 with R1+
1
2R2, and then replace R2 with 1

4R2 to get our
matrix in reduced row echelon form1 2 0 0 −3

0 0 1 0 − 1
2

0 0 0 1 1

 .

Now, let’s try to read off our solution as before. Let’s use variables x, y, z, w to get
soloution

z = −1/2, w = 1

from the second and third columns. But we have

x+ 2y = −3

from the first column. Note that this does not have a unique solution! We can
choose either of our variables to be free to describe the solution set. Let y = t be
free. Then we get

x = −3 + 2t

and so all solutions to this system of linear equations can be described by

(x, y, z, w) = (−3 + 2t, t,−1/2, 1)

where t is any real number.

Example 1.17. Suppose that you have a system of linear equations with the
following augmented matrix 1 −1 1 2

1 1 −3 1
3 −1 −1 6

 .

Asking a computer to perform Gauss-Jordan elimination for you gives that the
reduced row echelon form of this matrix is1 0 −1 0

0 1 −2 0
0 0 0 1

 .
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But then the final row of this matrix says that

0 · z = 1 ⇒ 0 = 1.

This is nonsense, and so our system of linear equations must have no solution.

It turns out that the (reduced) row echelon form of a matrix can always tell us
how many solutions a system of linear equations may have, and will help us resolve
Conjecture 1.3

1.3.1. The Number of Solutions to Systems of Linear Equations. Recall that
we conjectured a system of linear equations either has no solutions, one solution,
or infinitely many solutions.

Definition 1.18. We say that a system of linear equations is consistent if there
exists at least one solution. Otherwise, we call a system inconsistent.

Theorem 1.19. Suppose that a system of linear equations has augmented matrix
written in reduced row echelon form as the matrix A.

(1) The system is inconsistent if and only if there is a pivot in the last column of
A.

(2) The system of equations has exactly one solution if and only if there is a pivot
in each column of A, but no pivot in the last column of A.

(3) The system has infinitely many solutions if and only if it is consistent and
there is a column with no pivot.

Note that Conjecture 1.3 follows as a Corollary to Theorem 1.19, since A must
either have a pivot in the last column or not.

The process of mathematics happens in two steps: first, you have to convince your-
self what’s happening. After that, you have to convince other people you know
what’s happening. So far, we’ve been focusing on the first step. As we progress
through the course, we’ll start to practice the formal method of mathematical ar-
gument: the mathematical proof. Before we move on to further course material,
we take a brief interlude to cover some of the basics of constructing formal mathe-
matical proofs.

Keep in mind that formal proofs are not just a formality. Oftentimes we can trick
ourselves into thinking a false statement is true (or vice versa) unless we write
down all of the details and make sure our logic is sound. Sometimes (oftentimes?)
examples we think will generalize will not and geometric intuition fails us. The
rigor of mathematical proof saves us from making these mistakes. However, if we
don’t work with examples and intuition, we won’t be able to generate statements
to prove. Both aspects of the mathematical process are necessary, and we will aim
to practice them equally throughout the course.
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Interlude: Introductory Remarks on Proofs

Generally, in mathematics we are trying to prove or disprove whether certain state-
ments are true or false. Not all statements fall into the binary of true or false.
For example, if someone said ”working as a postdoc at Carnegie Mellon is a great
experience” I would say that is true in some ways, but not in others. In mathemat-
ics, we are typically looking at something which has a definite answer of “true” or
“false”.

Definition 1.20. A proposition is a declarative sentence that is either true or
false.

Example 1.21. The statement “2+2=4” is a true proposition. The statement
“2+2=5” is a false proposition.

Definition 1.22. A proof is a logical argument that demonstrates a given propo-
sition has a truth value of “true”. A disproof is a logical argument that demon-
strates a given proposition has a truth value of “false”.

Note that to prove anything, we must make some assumptions. Formally, what
we assume in mathematics are the axioms (most mathematicians work with ZFC).
Going all the way back to the axioms to prove a statement is wildly impractical. In
reality, we allow ourselves to start with “common knowledge”, which is not partic-
ularly well defined. Unfortunately what we exchange for practicality is ambiguity.
Good mathematical writing takes a bit of practice, with time you’ll become more
comfortable with what is reasonable for your reader to assume.

Mathematicians typically use different language for different propositions depending
on their importance or use. Here are some synonyms and when they’re typically
used:

Proposition: the default label for a result that stands on its own but isn’t
the main result of a work;

Theorem: this typically refers to an important proposition that much of your
work is building up to;

Lemma: these are propositions which help to prove larger results like Theo-
rems;

Corollary: these are proposition which follow as a direct consequence of a
previous proposition or theorem.

My opinion is, the best way to learn how to write mathematical proofs is to write
mathematical proofs. If you’d like a primer on some of the logic behind proof writ-
ing, see the proof writing resources in the “Pages” tab on our Canvas page. My
plan for the course will be to give you the information needed to construct a proof
when it comes up.
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1.4. Vector Representations

Definition 1.23. A vector in Rn is a list of n real numbers in a specified order,
which we’ll write in the form

v⃗ =


v1
v2
...
vn

 .

We call the real numbers vi the entries or components of the vector v⃗.

Addition of two vectors and multiplication of a vector times as “scalar” (that is, a
constant in R) is performed component-wise. That is, if

u⃗ =


u1

u2

...
un

 and v⃗ =


v1
v2
...
vn


are vectors in Rn and c ∈ R is a scalar, then we have

u⃗+ v⃗ :=


u1 + v1
u2 + v2

...
un + vn

 and cu⃗ :=


cu1

cu2

...
cun

 .

Example 1.24. Here is one way to solve Scenario One from Activity 1.6. Let

h⃗ =

(
3
1

)
and m⃗ =

(
1
2

)
.

Let x denote the number of times you travel along the vector h⃗ with the hoverboard,
and y the number of times you travel along the vector m⃗ with the magic carpet.
Observe that it doesn’t matter whether we switch between the two vehicles mid
trip, or just stay on the hoverboard for its full distance and then switch to the
magic carpet for the remaining time y (the paths will be different, but we will end
up in the same location! can you convince yourself of this fact?). So it suffices to
find real numbers x and y satisfying

(1.1) x

(
3
1

)
+ y

(
1
2

)
=

(
107
64

)
.

Adding our vectors on the left gives(
3x+ y
x+ 2y

)
=

(
107
64

)
.

For these vectors to be equal, their components must also be equal. That is, we
need to solve the system of linear equations

3x+ y = 107

x+ 2y = 64.
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This system has augmented matrix(
3 1 107
1 2 64

)
which is row equivalent to the matrix(

1 0 30
0 1 17

)
.

That is, x = 30, y = 17, which tells us that yes we can reach Gauss’s cabin using
our two modes of transportation.

Equation 1.1 is an example of a linear combination of the vectors h⃗ and m⃗.

Definition 1.25. A linear combination of vectors v⃗1, v⃗2, . . . , v⃗m in Rn is any
vector of the form

c1v⃗1 + c2v⃗2 + · · ·+ cmv⃗m,

where c1, c2, . . . , cm are scalars (i.e. constants in R) which we will refer to as the
weights.

The following result generalizes our strategy from Activity 1.6.

Theorem 1.26. The vector equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = w⃗

has the same solution set as the linear system represented by the augmented matrix(
v⃗1 v⃗2 · · · v⃗m w⃗

)
.

In particular, the system has a solution if and only if w⃗ is a linear combination of
the vectors v⃗1, v⃗2, . . . , v⃗m.

Example 1.27. In Scenario Two of our carpet ride problem (in Activity 1.7) we
asked whether there are places Gauss can move so that you cannot reach him using
your two modes of transportation. Let’s say Gauss is located x miles East and y

miles North from your home. Then, we would like to know if the vector

(
x
y

)
is a

linear combination of h⃗ and m⃗. By the Theorem above, this is equivalent to asking
the question: for what values of x and y does the system of linear equations with
augmented matrix (

3 1 x
1 2 y

)
have a solutions? Observe that this matrix is row equivalent to(

1 0 ∗
0 1 ∗

)
where ∗ denotes some real number. Since this system is consistent and each row
has a pivot, we know that there is in fact a unique solution for any value of x and
y. That is, there is nowhere Gauss can hide on land.
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Definition 1.28. The span of vectors v⃗1, v⃗2, . . . , v⃗m in Rn is the set

Span(v⃗1, . . . , v⃗m) = {c1v⃗1 + · · ·+ cnv⃗n | c1, c2, . . . , cm ∈ R}.
That is Span(v⃗1, . . . , v⃗m) is the set of all linear combinations of vectors v⃗1, . . . , v⃗m.

Using this terminology, our solution to P1 from Activity 1.7 is equivalent to saying
that

Span(⃗h, m⃗) = R2.

Example 1.29. Continuing our carpet ride problem, P2 of Activity 1.7 asks if
we can reach Gauss’s hovercabin using our two modes of transportation in flying
mode. Let’s say Gauss parks his cabin x miles East, y miles North, and z miles

above ground. Then, we would like to know which vectors

(
x
y

)
are in the span of

H⃗ =

3
1
1

 and M⃗ =

1
2
3

 .

By our Theorem above, this is equivalent to asking the question: for what values
of x, y, z does the system of linear equations with augmented matrix3 1 x

1 2 y
1 3 z


have a solution? Observe that this matrix is row equivalent to1 0 ∗

0 1 ∗
0 0 (!)


where ∗ denotes some real number. Note that we cannot guarantee this system is
consistent, because it may be possible that the last entry in the last row (which
we’ve labeled as “(!)”) is nonzero. We have a few options here to find a point
(x, y, z) making the system inconsistent: we can either go through our row opera-
tions carefully to get an expressions for “(!)” and find when this expression is zero.
Or, we can guess-and-check. For purposes of laziness, I used the latter method to
find that the matrix 3 1 1

1 2 1
1 3 1


is row equivalent to 1 0 0

0 1 0
0 0 1


which is inconsistent. So, we cannot reach Gauss’s cabin if he parks it 1 mile East,
1 mile North, and 1 mile above ground.

Note that we could also argue geometrically: since the linear combination of two
vectors in R2 forms either a line or a plane (we’ll talk more about this formally
later), we’re going to miss “most” of the points in R3. So there should be plenty of
space for Gauss to hide in his hovercabin.
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1.5. The Matrix-Vector Form of a Linear System

Recall from Activity 1.6, to solve Scenario One from the carpet ride problem we
decided that we needed to solve the vector equation

x

(
3
1

)
+ y

(
1
2

)
=

(
107
64

)
Here we introduce some new notation, which in short order will lead to our next
topic in the course. This new notation will treat the coefficient matrix of the
corresponding linear system

3x+ y = 107

x+ 2y = 64

as an object that transforms the vector

(
x
y

)
into the vector

(
107
64

)
. We’ll write(

3 1
1 2

)(
x
y

)
:= x

(
3
1

)
+ y

(
1
2

)
.

In general, we have the following.

Definition 1.30. Let A be an n×m matrix and x⃗ a vector in Rm. Write

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 and x⃗ =


x1

x2

...
xm


The matrix-vector product Ax⃗ is the vector in Rm defined by

Ax⃗ := x1


a11
a21
...

an1

+ x2


a12
a22
...

an2

+ · · ·+ xm


a1m
a2m
...

anm

 .

Example 1.31. Let

A =

 1 2
0 1
−1 1

 , v⃗ =

(
2
1

)
and w⃗ =

0
1
3

 .

Then,

Av⃗ =

 1 2
0 1
−1 1

(2
1

)
= 2

 1
0
−1

+ 1 ·

2
1
1

 =

 4
1
−1

 .

Note that Aw⃗ is undefined, since w⃗ ∈ R3 but A only has two columns. In fact, the
vector product Au⃗ is only defined for vectors u⃗ in R2.

Example 1.32. In Activity 1.8, we looked at the matrix-vector equation(
1 2 −1
2 1 3

)x
y
z

 =

(
2
6

)
.
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Observe that finding a vector solution to this matrix equation is equivalent to
finding a solution x, y, z to the system of linear equations

x+ 2y − z = 2

2x+ y + z = 6.

This linear system has augmented matrix(
1 2 −1 2
2 1 1 6

)
which is row equivalent to the matrix in reduced row echelon form(

1 0 1 10/3
0 1 −1 −2/3

)
.

So all solutions to our system of linear equations above can be written as

(x, y, z) = (10/3− t,−2/3 + t, t).

Finding solutions to this system of linear equations is also equivalent to solving the
vector equation

x

(
1
2

)
+ y

(
2
1

)
+ z

(
−1
3

)
=

(
2
6

)
.

So, any solution (x, y, z) to our linear system should also satify the vector equation
above. For example, if we choose the solution (x, y, z) = (10/3,−2/3, 0) this shows
that (

2
6

)
=

10

3
·
(
1
2

)
− 2

3

(
2
1

)
+ 0 ·

(
−1
3

)
.

That is, the vector

(
2
6

)
is in the span of the vectors(

1
2

)
,

(
2
1

)
, and

(
−1
3

)
.

Observe that we now have multiple ways to represent and study our original prob-
lem of solving systems of linear equations. We should aim to become comfortable
with all of the equivalent representations below, as we can learn something using
each of these perspectives (as demonstrated in the previous example). The follow-
ing representations are all equivalent.

Representation 1: Systems of Linear Equations

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2

...

an1x1 + an2x2 + · · ·+ anmxm = bn.

Why? This representation is familiar, and can model situations from different dis-
ciplines we may need to solve.
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Representation 2: Augmented matrix
a11 a12 · · · a1m b1
a21 a22 · · · a2m b2
...

...
. . .

...
...

an1 an2 · · · anm bm


Why? This representation is convenient for computation. We’ve developed theory
to solve systems of linear equations algorithmically by manipulating the correspond-
ing augmented matrix.

Representation 3: Vector equation

x1


a11
a21
...

an1

+ x2


a12
a22
...

an2

+ · · ·+ xm


a1m
a2m
...

anm

 =


b1
b2
...
bn


Why? Vector equations arise as another intuitive problem (recall our magic carpet
activities from last week). Being able to understand vector equations as equivalent
to systems of linear equations helped us solve vector equation problems. In turn,
understanding systems of linear equations as vector equations can help us under-
stand possible solutions to linear equations geometrically (as the span of a set of
vectors).

Representation 4: Matrix-vector equation
a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm




x1

x2

...
xm

 =


b1
b2
...
bm

 .

Why? In the following section, we’ll see how matrices can be interpreted as “lin-
ear transformations”. The representation above shows us that this matrix-vector
operation sends a vector in Rm to another vector in Rm.

Remark 1.33. The remaining problems in Activity 1.8 asked you to move between
these perspectives to see how the concepts of solving matrix-vector equations, show-
ing an element is in the span of some set of vectors, and solving systems of linear
equations, are all the same. My hope is that you came up with some parts of the
following result.

Theorem 1.34. Let A be an n×m matrix. The following statements are equivalent.

(1) The matrix-vector equation Ax⃗ = b⃗ has a solution for every vector b⃗ in Rn;

(2) The system of equations with augmented matrix(
A b⃗

)
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is consistent for any vector b⃗ in Rn.

(3) The reduced row echelon form of the matrix A has a pivot in each row;

(4) The span of the columns of A is equal to Rn;

Note: When we say the statements above are “equivalent”, we mean that statement
(i) is true if and only if statement (j) is true, for all combinations of i, j ∈ {1, 2, 3, 4}.
More intuitively, we should think of this theorem as saying: if you want to show a
matrix A satisfies any one of the properties itemized above, you can instead show
that it satisfies any of the other properties itemized above. Let’s look at a quick
example before sketching this proof.

Example 1.35. Recall again the matrix-vector equation from Activity 1.8(
1 2 −1
2 1 3

)x
y
z

 =

(
2
6

)
.

Since the matrix

A =

(
1 2 −1
2 1 3

)
is row equivalent to (

1 0 1
0 1 −1

)
.

and this matrix has a pivot in every row, we know that the matrix-vector equation

Ax⃗ = b⃗

has a solution for any vector b⃗ in Rn. We also know that

Span

((
1
2

)
,

(
2
1

)
,

(
−1
3

))
= R2

and that the system of linear equations

x+ 2y − z = b1

2x+ y + 3z = b2

has a solution for any b1, b2 ∈ R.

Interlude: Conditional Statements

The most common type of proposition we’ll see in the class is the conditional
statement, which takes the form

“if blah then blah”.

For example, “if x is even, then x2 is even” is a true conditional statement, and
“if x = 1 then x + 1 = 5” is a false conditional statement. To prove a conditional
statement directly we do the following:

(1) Assume the hypothesis is true

(2) Use some direct logical reasoning

(3) Deduce that the conclusion is also true.
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Hopefully this proof method feels intuitively true, but if you’d like a breakdown for
why this is logically sound, visit the Proof Writing Guides page in the “Pages” tab
on Canvas. Let’s look at an example.

Proposition 1.36. If x is even, then x2 is even.

To prove this proposition, it’s important that we recall the formal definition of an
even integer.

Definition 1.37. An integer x is even if there exists an integer k so that x = 2k.

We now prove our proposition directly.

Proof. Suppose that x is even (Here we assume the hypothesis is true). Then,
there exists an integer k so that

x = 2k

(Here we appealed to the formal definition of even integers). So we have

x2 = (2k)2 = 2(2k2).

Letting ℓ = 2k2 we see that
x2 = 2ℓ,

for ℓ ∈ Z. So, x2 is even. (Using our definition of an even integer, we deduce the
conclusion is true by using direct logical reasoning.). □

We will also see the biconditional statement, which takes the form

“blah if and only if BLAH”

and means “if blah then BLAH and if BLAH then blah”. To prove a biconditional
statement, we need to prove that both conditional statements are true. For example,
if we wanted to prove the proposition:

“x is even if and only if x2 is even”

we would need to prove the two conditional statements are true:

(1) “if x is even then x2 is even” and

(2) “if x2 is even then x is even”.

1.5 Continued

We now have the tools to prove our result. Here’s my writeup of this proof without
the scaffolding from Activity 1.10.

Proof of Theorem 1.34. Note that (1) ⇔ (2) follows directly from translating
our matrix-vector product in Representation 4 into an augmented matrix as in
Representation 2. Next, by Theorem 1.19 we know that the system represented by
the augmented matrix (

A b⃗
)

is consistent if and only if there is no pivot in the last column. If A has a pivot in
every row already, then by definition there cannot be a pivot in the last column of(
A b⃗

)
. If A does not have a pivot in the kth row, then letting b⃗ be any vector
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with a nonzero kth entry would make our system inconsistent. This proves (2) ⇔
(3). Finally, we show (4) ⇔ (1). Recall that solutions

x⃗ =


x1

x2

...
xm


to the matrix-vector equation Ax⃗ = b⃗ (as in Representation 4) are identical to the
solutions x1, x2, . . . , xm to the vector equation

x1


a11
a21
...

an1

+ x2


a12
a22
...

an2

+ · · ·+ xm


a1m
a2m
...

anm

 = b⃗

(as in Representation 3). So, the matrix-vector equation Ax⃗ = b⃗ having a solution

for every b⃗ ∈ Rn is equivalent to every vector b⃗ in Rn being in the span of the
columns of A. Observe that our proof is complete, since we’ve shown (4) ⇔ (1) ⇔
(2) ⇔ (3), and so all biconditional statements follow by transitivity.

□

1.6. Linear Independence and Bases

In Activity 1.11, we looked at the span of vectors

v⃗1 =

 2
1
−3

 , v⃗2 =

1
1
0

 and v⃗3 =

 1
−1
−6

 .

Note that we can write

v⃗3 = 2v⃗1 − 3v⃗2.

So, if we take any c⃗ ∈ Span(v⃗1, v⃗2, v⃗3) then we could write

c⃗ = av⃗1 + bv⃗2 + cv⃗3

= av⃗1 + bv⃗2 + c(2v⃗1 − 3v⃗2)

= (a+ 2c)v⃗1 + (b− 3c)v⃗2.

So, c⃗ ∈ Span(v⃗1, v⃗2). Since every element of Span(v⃗1, v⃗2) is in Span(v⃗1, v⃗2, v⃗3), we
get the equality

Span(v⃗1, v⃗2) = Span(v⃗1, v⃗2).

So, it was redundant to include the vector v⃗3 in our definition. We next build some
machinery so that we don’t waste our time describing spanning sets with redundant
vectors.

Definition 1.38. A set of vectors S = {v⃗1, v⃗2, . . . , v⃗m} in Rn is called linearly
dependent if there exists constants c1, . . . , cm ∈ R not all equal to zero so that

c1v⃗1 + · · ·+ cmv⃗m = 0⃗.
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Otherwise, the set S is called linearly independent. That is, the set of vectors
{v⃗1, . . . , v⃗m} are linearly independent if the only solution to

c1v⃗1 + · · ·+ cmv⃗m = 0⃗

is c1 = c2 = · · · = cm = 0. Note that sometimes we’ll say the vectors v⃗1, v⃗2, . . . , v⃗m
are linearly (in)dependent if the set of vectors {v⃗1, v⃗2, . . . , v⃗m} is.

Example 1.39. Since
2v⃗1 + (−3)v⃗2 + v⃗3 = 0⃗,

we see that the set {v⃗1, v⃗2, v⃗3} is linearly dependent. To see that the set {v⃗1, v⃗2} is
linearly independent, observe that finding solutions to

(1.2) x1v⃗1 + x2v⃗2 = 0⃗

is equivalent to solving the system of linear equations with augmented matrix 2 1 0
1 1 0
−3 0 0


which is row equivalent to 1 0 0

0 1 0
0 0 0

 .

So, the vector equation (1.2) only has the solution x1 = x2 = 0. Hence, v⃗1, v⃗2 are
linearly dependent.

The following theorem tells us that the notion of linear dependency precisely mea-
sures whether we’ve included redundant vectors in our definition of a spanning set.
Our proof will work similarly to the examples we saw in Activity 1.11.

Theorem 1.40. A set of vectors {v⃗1, . . . , v⃗m} in Rn is linearly dependent if and
only if at least one of the vectors in the set can be written as a linear combination
of the others.

Proof. Suppose that v⃗1, . . . , v⃗m are linearly dependent. Then, there exists nonzero
c1, . . . , cm ∈ R not all equal to zero so that

c1v⃗1 + · · ·+ cmv⃗m = 0⃗.

Without loss of generality, assume that c1 ̸= 0 (that is, just relabel everything so
you’ve listed the first vector as the one having a nonzero coefficient in the equation
above). Then, we can write at least one of our constants ci is nonzero, which means
we can write

v⃗1 =
c2
c1

v⃗2 + · · ·+ cm
c1

v⃗m,

making v⃗1 a linear combination of v⃗2, . . . , v⃗m. Conversely, suppose that v⃗i is a linear
combination of the other vectors. Again, for convenience, we relabel so that v⃗1 is
a linear combination of v⃗2, . . . , v⃗m. Then, there exist constants a2, . . . , am ∈ R so
that

v⃗1 = a2v⃗2 + · · ·+ amv⃗m

⇒ (−1)v⃗1 + a2v⃗2 + · · ·+ amv⃗m = 0⃗.

Since −1 is nonzero, this shows our vectors v⃗1, . . . , v⃗m are linearly dependent. □
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The following result should generalize your conjectures from Activity 1.12.

Theorem 1.41. A set S = {v⃗1, . . . , v⃗m} of vectors in Rn is linearly independent if

and only if then there is only one way to write b⃗ ∈ Span(S) as a linear combination
of the vectors v⃗1, . . . , v⃗m.

Proof. Suppose that the set S is linearly independent, and that we could write

b⃗ = a1v⃗1 + · · ·+ amv⃗m

and

b⃗ = b1v⃗1 + · · ·+ bmv⃗m.

Subtracting these two equations gives

0⃗ = (a1 − b1)v⃗1 + · · ·+ (am − bm)v⃗m.

But since our vectors v⃗1, . . . , v⃗m are linearly independent, we must have

ai − bi = 0 ⇒ ai = bi

for all i. So, our two representations of b⃗ as a linear combination of the vectors
v⃗1, . . . , v⃗m are the same.

Conversely, if S is a linearly dependent set, then there is a nonzero solution to the
equation

x1v⃗1 + · · ·+ xmv⃗m = 0⃗.

This means there must be infinitely many solutions to the matrix-vector equation
above, and so the matrix A with columns given by v⃗i has a column without a
pivot. □

Theorems 1.40 and 1.41 tell us two things: (1) if we describe a span by a linearly
independent set we don’t have any redundancy, and (2) if we describe a span by a
linearly independent set, every element in that span can be written uniquely. This
means, sets of linearly independent vectors are the “best” way to describe spans
Rn. Let’s give a name to these nice sets.

Definition 1.42. Let S be a set of vectors in Rn and V = Span(S). A subset B
of V is a basis for V if B is linearly independent and Span(B) = V .

On your next homework, you’ll show the following for vectors in R3. Note that the
proof holds identically for the more general statement below.

Theorem 1.43. For vectors v⃗1, . . . , v⃗n in Rn,

Span(v⃗1, . . . , v⃗n) = Rn

if and only if {v⃗1, . . . , v⃗n} is a linearly independent set.

In a future section, we’ll use the notions of spans and bases to define certain subsets
of Rn called vector spaces. Before we do that, we pause this discussion and turn
to a new perspective of the matrix-vector product.
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1.7. Linear Transformations

Let A be an n × m matrix. Recall that the matrix-vector product Ax⃗ is defined
for a vector x⃗ in Rm and yields a vector y⃗ = Ax⃗ in Rn. So, this product defines a
function TA : Rm → Rn, given by

TA(x⃗) := Ax⃗.

In P4, I asked you to observe that TA satisfy a linearity property. Let

A =
(
a⃗1 · · · a⃗m

)
where a⃗i are the columns of an n×m matrix A, which we recall can be thought of
as vectors in Rn. Then, for any vectors

x⃗ =


x1

x2

...
xm

 and y⃗ =


y1
y2
...
ym


’ in Rm and constants c, d ∈ R, we have

TA(cx⃗+ dy⃗) = A(cx⃗+ dy⃗)

= (cx1 + dy1)⃗a1 + (cx2 + dy2)⃗a2 + · · ·+ (cxm + dym)⃗am

= c(x1a⃗1 + · · ·+ xma⃗m) + d(y1a⃗1 + · · ·+ yma⃗m)

= cAx⃗+ dAy⃗

= cTA(x⃗) + dTA(y⃗).

That is, TA distributes over addition and scalar multiplication. Functions satisfying
this property make up a special family.

Definition 1.44. A function F : Rm → Rn is called linear if the following
property holds

F (cx⃗+ dy⃗) = cF (x⃗) + dF (y⃗)

for all c, d ∈ R and vectors x⃗, y⃗ in Rm.

Note that sometimes people call functions transformations, and so oftentimes
we’ll refer to functions with the property above as linear transformations.

Example 1.45. The function F : R2 → R2, x⃗ 7→ 2x⃗ is linear (can you show this?),
but the function

G : R2 → R2,

(
x
y

)
7→
(
x2

y2

)
is not linear, since for example

G(4) =

(
16
16

)
but

G(2) +G(2) =

(
8
8

)
so G(4) ̸= G(2) +G(2).
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From our discussion above, every function TA defined by an n×m matrix is a linear
transformation. We’ll see next that the converse also holds.

Theorem 1.46. Let F : Rm → Rn be a linear function. Then, there exists an
n×m matrix A so that F = TA.

First, we need a definition. In P2 and P3 of Activity 1.13, you should have been
able to find the matrix A given TA defined on some basis elements. These special
basis elements will be given a name.

Definition 1.47. Let

e⃗1 =



1
0
0
...
0
0


, e⃗2 =



0
1
0
...
0
0


, . . . , e⃗n =



0
0
0
...
0
1


.

The set {e1, e2, . . . , en} is called the standard basis for Rn.

Note that in fact this is a basis for Rn, because it is a linearly independent spanning
set. We are now ready to prove our result.

Proof. Suppose that F : Rm → Rn is a linear function. Define the n ×m matrix
A to be the matrix with column vectors equal to F (e⃗i) for i = 1, . . . , n. We claim
that F = TA. We have

(1.3) F (e⃗i) = TA(e⃗i)

for every i ∈ {1, . . . ,m}. Now, take any x⃗ ∈ Rm. Since {e⃗1, e⃗2, . . . , e⃗m} form a
basis for Rm we can write x⃗ uniquely as

x⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xme⃗m.

So, we have

F (x⃗) = F (x1e⃗1 + x2e⃗2 + · · ·+ xme⃗m)

= x1F (e⃗1) + x2F (e⃗2) + · · ·+ xmF (e⃗m) by linearity of F

= x1TA(e⃗1) + x2TA(e⃗2) + · · ·+ xmTA(e⃗m) by (1.3)

= TA(x1e⃗1 + x2e⃗2 + · · ·+ xme⃗m) by linearity of TA

= TA(x⃗).

So, we have F (x⃗) = TA(x⃗) for every vector x⃗ in Rm, which means F = TA as
functions. □

The previous results allow us to define the following.

Definition 1.48. Given a matrix A, we call TA the matrix transformation
corresponding to the matrix A. Given a linear transformation T : Rm → Rn, we
call the n × m matrix AT constructed in Theorem 1.46 the defining matrix of
the transformation T .
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Next, we see how what the theory we’ve developed about matrices so far says about
linear transformations. First, we recall some definitions.

Definition 1.49. Let F : Rm → Rn be a function.

(1) F is called one-to-one (or injective) if the following property holds: for

every vector b⃗ in Rn, there is at most one vector x⃗ in Rm so that F (x⃗) = b⃗.
We often use the arrow F : Rm ↪→ Rn to indicate when a function is injective.

(2) F is called onto (or surjective) if the following property holds: for every

vector b⃗ in Rn there is at least one vector x⃗ in Rm so that F (x⃗) = Rn. We
often use the arrow F : Rm ↠ Rn to indicate when a function is surjective.

Example 1.50. This may be familiar from your calculus courses for functions
between one-dimensional Euclidean space. For example, the function

f : R → R, x 7→ 2x+ 1

is one-to-one and onto. The function

g : R → R, x 7→ x2

is neither one-to-one nor onto.

In Activity 1.14, you investigated what we can say about matrix transformations
(and hence linear transfromations) by looking at the shape of the corresponding
matrix. My hope is that you were able to come up with some version of the
following.

Theorem 1.51. Let A be an n×m matrix. Then

(1) TA is injective if and only if every column in the reduced row echelon form of
A has a pivot.

(2) TA is surjective if and only if every row in the reduced row echelon form of A
has a pivot.

Proof. This follows directly from Theorem 1.19. □

We introduce one more definition

Definition 1.52. Given a function F : Rm → Rn, the kernel of F is the subset
of Rm given by

ker(F ) := {x⃗ ∈ Rm | F (x⃗) = 0⃗}.

Example 1.53. In Activity 1.15, you looked at ker(TA) where

A =

1 1 2
0 −1 8
2 1 12

 .

Observe that A is row equivalent to1 0 10
0 1 −8
0 0 0

 ,
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and so all vectors

x
y
z

 ∈ ker(TA) satisfy

x = −10z, y = 8z.

That is,

ker(TA) = Span

−10
8
1

 .

In the next chapter, we’ll explore what ker(TA) can look like in general, but for now
let’s observe that TA is not one-to-one since there is more than one vector being
mapped to 0⃗.

In fact, the kernel precisely determines when a linear function is one-do one. We
have the following.

Theorem 1.54. For a linear function F : Rm → Rn, ker(F ) = {⃗0} if and only if
F is one-to-one.

Proof. Recall, this is a biconditional statement, so we need to prove both implica-
tions. Let A be the defining matrix of F , so that F = TA (which we showed exists
in Theorem 1.46).

Suppose first that ker(F ) = {⃗0} and that F (x⃗) = F (y⃗) for some vectors x⃗, y⃗ in Rm.
Then we have

F (x⃗) = F (y⃗)

⇒ Ax⃗ = Ay⃗

⇒ A(x⃗− y⃗) = 0⃗.

So, x⃗− y⃗ ∈ ker(F ) = {⃗0} which gives x⃗ = y⃗.

Conversely, suppose that F is one-to-one. By definition, we have

F (⃗0) = A0⃗ = 0⃗

so 0⃗ ∈ ker(F ). Since F is one-to-one, there cannot be another vector x⃗ satisfying

F (x⃗) = 0⃗. So ker(F ) = {⃗0}. □





Chapter 2

Matrix Operations

2.8. The Matrix Product

Given sets A,B,C,D and functions f : A → B and g : B → C, recall that the
composite function f ◦ g : A → C is defined by

(f ◦ g)(a) = f(g(a)).

Let’s look at how function composition behaves on linear transformations. Given an
n×k matrix A and an ℓ×mmatrix B, we have the associated linear transformations

TA : Rk → Rn, x⃗ 7→ Ax⃗

TB : Rm → Rℓ, x⃗ 7→ Bx⃗.

So, for the composition TA ◦ TB to be defined, we need Rk = Rℓ. That is, k = ℓ.
In this case, we have TA ◦ TB : Rm → Rn defined by

(2.1) (TA ◦ TB)(x⃗) = A(Bx⃗).

In Activity 1.16, you showed that the composition of two linear functions is linear.
So, by Theorem 1.46, there exists an n×m matrix C so that

TA ◦ TB = TC .

Also in Activity 1.16, you found the matrix C for various examples of A and B in
order for equation (2.1) to be satisfied. Let’s derive what the matrix C looks like
in general, and learn some tools to speed up this computation. Write

x⃗ =


x1

x2

...
xm


and suppose B has column vectors

b⃗1, b⃗2, . . . , b⃗m.
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Then we have

A(Bx⃗) = A
(
x1⃗b1 + x2⃗b2 + · · ·+ xmb⃗m

)
= x1Ab⃗1 + x2Ab⃗2 + · · ·+ xmAb⃗m

= Cx⃗,

where the second equality follows by linearity of TA. So, if we let C be the matrix
with column vectors

Ab⃗1, A⃗b2, . . . , Ab⃗m

then we have TA ◦ TB = TC . We’ll call the matrix C the matrix product of A
and B. Let’s write this definition down formally.

Definition 2.1. Let A by an n× k matrix and B be a k ×m matrix. Write

B =
(⃗
b1 b⃗2 · · · b⃗m

)
where b⃗i are vectors in Rk. Then, the matrix product AB is the n ×m matrix
defined by

AB :=
(
Ab⃗1 Ab⃗2 · · · Ab⃗m

)
.

From our discussion above, note that AB satisfies TA ◦ TB = TAB .

Let’s look at some examples.

Example 2.2. Let

A =

(
1 0 3
1 1 −1

)
and B =

 1 2
0 3
−1 1


as in P2 of Activity 1.16. Since A is 2× 3 and B is 3× 2, the matrix product AB
is a 2× 2 matrix. We have

AB =
(
a⃗1 a⃗2

)
where

a⃗1 =

(
1 0 3
1 1 −1

) 1
0
−1

 , and a⃗2 =

(
1 0 3
1 1 −1

)2
3
1

 .

So,

AB =

(
−2 5
2 4

)
,

which should match what you found in P1(c). With practice, we can perform this
computation a bit more quickly. Let’s perform the steps above by just keeping
track of how we’re generating each entry:(

1 0 3
1 1 −1

) 1 2
0 3
−1 1

 =

(
−2 5
2 4

)
(
1 0 3
1 1 −1

) 1 2
0 3
−1 1

 =

(
−2 5
2 4

)
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(
1 0 3
1 1 −1

) 1 2
0 3
−1 1

 =

(
−2 5
2 4

)
(
1 0 3
1 1 −1

) 1 2
0 3
−1 1

 =

(
−2 5
2 4

)
Remark 2.3. Note that if A is an m×k matrix and B is ℓ×m matrix, the matrix
product AB is only defined when k = ℓ. So, in the example above, the matrix BA
also happens to be defined and gives a 3× 3 matrix.

Let’s practice a few more examples.

Example 2.4. Let

A =

(
1 0 1 −1
0 2 3 1

)
, B =


0 −1
3 0
1 0
−1 4

 and C =

1 1 2 0
0 1 4 1
0 0 −2 1

 .

Then,

AB =

(
2 −5
8 4

)
, BA =


0 −2 −3 −1
3 0 3 −3
1 0 1 −1
−1 8 11 5

 , and CB =

 5 −1
6 4
−3 4

 .

Note that the matrix products BC,AC, and CA are undefined, because they do
not have compatible dimensions.

2.10. The Inverse of a Matrix

In Activity 1.17, you were introduced to the following definitions.

Definition 2.5. The identity matrix In is the n × n matrix with 1s on the
diagonal, and zeros everywhere else. For example,

I2 =

(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1

 , and I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We call In the identity matrix because it “does nothing” under matrix multiplica-
tion. That is, AIn = A for any m × n matrix A. This should feel similar to how
1 is the identity element with respect to multiplication: for any nonzero a ∈ R we
have a · 1 = 1.

Definition 2.6. Let A be an n × n matrix. Then inverse matrix of A, if it
exists, is the n× n matrix B satisfying

AB = BA = In

If such a matrix B exists, we say that the matrix A is invertible, and we write
B = A−1.
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Note that if B = A−1 then we have

(TA ◦ TB)(x⃗) = ABx⃗ = Inx⃗ = x⃗,

(TB ◦ TA)(x⃗) = BAx⃗ = Inx⃗ = x⃗

and so TB is the inverse transformation of TA; that is,

TA−1 = T −1
A .

Observe, as you did in P2 of Activity 1.17, that the converse also holds; that is,
the defining matrix of the inverse of a linear transformation is the inverse of the
defining matrix of the linear transformation. So, finding matrix inverses is the same
problem as finding inverses of linear transformations. In this section, we look at one
tool to compute the inverse of a matrix, and determine when a matrix is invertible.

Example 2.7. Let

A =

1 1 1
0 2 1
0 1 1

 .

Observe that if A−1 exists, it must satisfy

AA−1 =

1 0 0
0 1 0
0 0 1


and so A−1 must have column vectors b⃗1, b⃗2, b⃗3 satisfying the matrix-vector equa-
tions

Ab⃗1 =

1
0
0

 , A⃗b2 =

0
1
0

 , and Ab⃗3 =

0
0
1

 .

We can use row reduction to solve the first matrix-vector equation, as below1 1 1 1
0 2 1 0
0 1 1 0

 ∼

1 1 1 1
0 1 0 0
0 1 1 0

 , subtracting R3 from R2

∼

1 0 0 1
0 1 0 0
0 1 1 0

 , subtracting R3 from R1

∼

1 0 0 1
0 1 0 0
0 0 1 0

 , subtracting R2 from R3

This gives

b⃗1 =

1
0
0

 .
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Observe that we can use exactly the same row operations to solve for b⃗2 and b⃗3:1 1 1 0
0 2 1 1
0 1 1 0

 ∼

1 1 1 0
0 1 0 1
0 1 1 0

 , subtracting R3 from R2

∼

1 0 0 0
0 1 0 1
0 1 1 0

 , subtracting R3 from R1

∼

1 0 0 0
0 1 0 1
0 0 1 −1

 , subtracting R2 from R3

so that b⃗2 =

 0
1
−1

 and similarly we compute

1 1 1 0
0 2 1 0
0 1 1 1

 ∼

1 1 1 0
0 1 0 −1
0 1 1 1

 , subtracting R3 from R2

∼

1 0 0 −1
0 1 0 −1
0 1 1 1

 , subtracting R3 from R1

∼

1 0 0 −1
0 1 0 −1
0 0 1 2

 , subtracting R2 from R3

so that b⃗3 =

−1
−2
1

, which gives

A−1 =

1 0 −1
0 1 −1
0 −1 2

 .

Note that, since we performed the same row operations for every matrix-vector
equation, we could performed the same operations as above by instead looking at
the augmented matrix

(
A I3

)
, as follows1 1 1 1 0 0

0 2 1 0 1 0
0 1 1 0 0 1

 ∼

1 1 1 1 0 0
0 1 0 0 1 −1
0 1 1 0 0 1

 , subtracting R3 from R2

∼

1 0 0 1 0 −1
0 1 0 0 1 −1
0 1 1 0 0 1

 , subtracting R3 from R1

∼

1 0 0 1 0 −1
0 1 0 0 1 −1
0 0 1 0 −1 2

 , subtracting R2 from R3

and observe that the matrix on the right is A−1. The following Theorem tells us
that in fact this always works as a general strategy.
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Theorem 2.8. Let A be an n×n matrix. If
(
A In

)
is row equivalent to

(
In B

)
for an n× n matrix B, then then A is invertible with A−1 = B.

Proof. Suppose that
(
A In

)
is row equivalent to

(
In B

)
for an n×n matrix B,

and and write

B =
(⃗
b1 b⃗2 · · · b⃗n

)
Let u⃗i be the vector in Rn with 1 in the ith component and 0s everywhere else.

From above, we have that
(
A u⃗i

)
is row equivalent to

(
In b⃗i

)
, and so b⃗i is

a solution to the matrix-vector equation Ax⃗ = u⃗i. This gives AB = In. Next,
observe that

(
A In

)
being row equivalent to

(
In B

)
implies that

(
B In

)
is row

equivalent to
(
In A

)
(this is not immediate, you may try convincing yourself of

this with some examples). Following the same reasoning as above gives BA = In
and so B = A−1. □

If you and your neighbor found different answers from A−1 in P3 of Activity 1.17,
there must have been a computational error. We have the following.

Proposition 2.9. If a matrix A is invertible, then its inverse A−1 is unique.

Proof. Suppose that B and C are two matrices satisfying

AB = BA = In

AC = CA = In.

This gives

B = BIn = B(AC) = (BA)C = InC = C

and so B = C. □

We can use this process to find a general formula for the inverse of a 2× 2 matrix.

Proposition 2.10. Let

A =

(
a b
c d

)
If ad− bc ̸= 0 then A is invertible with

A−1 =
1

ad− bc

(
d −b
−c a

)
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Proof. We have(
a b 1 0
c d 0 1

)
∼

(
a b 1 0

0
ad− bc

a
− c

a
1

)
R2 −

c

a
R1

∼

(
a b 1 0

0 1 − c

ad− bc

a

ad− bc

)
a

ad− bc
R2

∼

a 0
ad

ad− bc

−ab

ad− bc

0 1
−c

ad− bc

a

ad− bc

 R1 − bR2

∼

1 0
d

ad− bc

−b

ad− bc

0 1
−c

ad− bc

a

ad− bc

 1

a
R1

□

Next class, we’ll show that the converse of Theorem 2.8 also holds, and look at
some equivalent conditions to help us determine when a matrix is invertible.

2.11. The Invertible Matrix Theorem

In Theorem 2.8 we saw that an invertible n × n matrix A must be equivalent to
the identity matrix In. The converse also turns out to be true. The main theorem
in this section gives equivalent conditions to determine when an n × n matrix is
invertible. We first need a definition.

Definition 2.11. An n× n matrix is called elementary if it can be obtained by
performing exactly one row operation to the identity matrix.

Since we have three elementary row operations, there should be three types of ele-
mentary matrices. In Activity 1.18, you looked at the following:

Row-switching matrices: let Sij be the matrix which is obtained by swapping
the ith and jth rows of the identity matrix. For example, for 3 × 3 matrices we
have

S1,3 =

0 0 1
0 1 0
1 0 0

 .

Observe that multiplying a matrix on the left by T1,3 swaps the first and third row:0 0 1
0 1 0
1 0 0

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a31 a32 a33
a21 a22 a23
a11 a12 a13

 .

In general, multiplying a matrix on the left by Ti,j swaps the ith and jth rows .
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Row-multiplying matrix: Let Mi(c) be the matrix which is obtained by multi-
plying the ith row of the identity matrix by a constant c. For example, for 3 × 3
matrices we have

M2(5) =

1 0 0
0 5 0
0 0 1

 .

Observe that multiplying a matrix on the left by M2(5) multiplies the 2nd row of
that matrix by 5:1 0 0

0 5 0
0 0 1

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
5a21 5a22 5a23
a31 a32 a33

 .

In general, multiplying a matrix on the left by Mi(c) multiplies the ith row of that matrix by c .

Row-addition matrix: Let Ai,j(c) be the matrix with 1’s on the diagonal, c in
the (i, j) entry, and zeros everywhere else. That is, Ai,j(c) is the matrix which is
obtained by adding c times the jth row to the ith row of the identity matrix. For
example, for 3× 3 matrices we have

A1,2(5) =

1 5 0
0 1 0
0 0 1

 .

Observe that multiplying a matrix on the left by A1,2(5) adds 5 times the 2nd row
to the first row:1 5 0

0 1 0
0 0 1

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11 + 5a21 a12 + 5a22 a13 + 5a23
a21 a22 a23
a31 a32 a33

 .

In general, multiplying a matrix on the left by Ai,j(c) adds c times the jth row to the ith row .

Observation 2.12. Note that every elementary matrix is invertible. Indeed, we
have

SijSij = In

Mi(c)Mi(1/c) = Mi(1/c)Mi(c) = In

Ai,j(c)Ai,j(−c) = Ai,j(−c)Ai,j(c) = In

Theorem 2.13 (The Invertible Matrix Theorem). Let A be an n× n matrix. The
following are equivalent:

(1) A is invertible;

(2) The matrix-vector equation Ax⃗ = b⃗ has a unique solution for any vector b⃗ in
Rn;

(3) The reduced row echelon form of A is In;

(4) A is a product of elementary matrices.
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Note that further equivalent conditions also hold (see Theorem 11.1 in your text),
but my opinion is that we should only remember the conditions that take some
work to prove as part of this theorem. The rest we can easily figure out when we
need them. We need one lemma before we prove our main result.

Lemma 2.14. For n× n matrices A,B we have

(AB)−1 = B−1A−1

Proof. In Activity 1.18 you saw that matrices do not necessarily commute. So,
the order we write the product of our inverses in is important! We have

(AB)(B−1A−1) = AInA
−1 = AA−1 = In

(B−1A−1)(AB) = B−1InB = B−1B = In

so (AB)−1 = B−1A−1. □

We are now prepared to prove the Invertible Matrix Theorem.

Proof of 2.13. We’ll prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).

(1) ⇒ (2): Suppose that A is invertible. Observe that

A(A−1⃗b) = (AA−1)⃗b = Inb⃗ = b⃗,

and so A−1⃗b is a solution to the matrix-vector equation Ax⃗ = b⃗. To see this solution
is unique, suppose that we have another solution y⃗. Then,

Ay⃗ = b⃗ and A(A−1⃗b) = b⃗

⇒ Ay⃗ = A(A−1⃗b).

Multiplying the above equation on both sides by A−1 gives

A−1Ay⃗ = A−1A(A−1⃗b)

⇒ y⃗ = A−1⃗b,

showing uniqueness.

(2) ⇒ (3): Since the matrix-vector equation Ax⃗ = b⃗ has a unique solution, we must
have a pivot in every column of the RREF of A. But since A is n× n, this means
we must also have a pivot in every row of the RREF of A. The only n× n matrix
with a pivot in every column and row is In.

(3) ⇒ (4): Since A is row equivalent to In, there is a series of elementary row
operations which transform A to In. This is equivalent to the equality

In = AE1 · · ·Eℓ

where Ei are elementary matrices. Since elementary matrices are invertible, we get

A = E−1
1 · · ·E−1

ℓ

and so the result follows because the inverse of an elementary matrix is an elemen-
tary matrix.
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(4) ⇒ (1): If A = E1E2 · · ·Em for elementary matrices Ei. then by Lemma 2.14

A−1 = E−1
m · · ·E−1

1 ,

and so A is invertible (since the inverse exists!). □



Chapter 3

Vector Spaces

3.12. The Structure of Rn

A major task in mathematics is to take a concrete idea and generalize it to other
contexts. Distilling our object of interest down to its essential parts allows us to
study a broader class of concepts all at once, and often leads to a deeper under-
standing of our original object by placing it in a broader context. In this chapter,
we’ll aim to do this with one of our main objects in this course: n-dimensional
Euclidean space. First, we’ll look at the defining properties of Rn. Then, we’ll
define any object satisfying these properties as a vector space. Finally, we’ll
look for correspondences between these new general objects and concrete example
of Euclidean space.

In Section 1.4, we defined two operations on vectors in Rn: vector addition and
scalar multiplication. Observe that these operations satisfy the following properties.

Vectors u⃗, v⃗, w⃗ Rn satisfy

(1) Closure under addition: u⃗+ v⃗ ∈ Rn;

(2) Commutativity: u⃗+ v⃗ = v⃗ + u⃗;

(3) Associativity: (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗);

Furthermore, scalars c, d ∈ R and vectors u⃗, v⃗ in Rn satisfy

(4) Closure under scalar multiplication: cu⃗ ∈ Rn;

(5) Compatability of scalar multiplication: c(du⃗) = (cd)u⃗

(6) Distributivity of scalar multiplication: c(u⃗+ v⃗) = cu⃗+ cv⃗;

(7) Disributivity of scalar addition: (c+ d)u⃗ = cu⃗+ du⃗.

Finally, the space Rn contains

(8) An additive identity: v⃗ + 0⃗ = v⃗ for any vector v⃗ in Rn;

39
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(9) Additive inverses: v⃗ + (−v⃗) = 0⃗ for any vector v⃗ in Rn;

(10) Scalar identity: 1v⃗ = v⃗ for any v⃗ in Rn.

We’ll see in this chapter that these are the defining properties of Euclidean space
(in a way we’ll formalize rigorously later on). Any other set which satisfies these
defining properties will be called a vector space.

To write out the most general definition of a vector space, we would need to know
what a field is. Since we won’t be doing things quite so generally in this course,
I’m going to sweep this definition under the rug. Instead, you can think of a field as
one of the following sets with the usual operations of addition and multiplication:
R, C or Q.

Definition 3.1. Let F be a field and V a set whose elements we’ll call vectors.
Then, a vector space V over F is any set satisfying all of the following axioms:
Vectors u⃗, v⃗, w⃗ in V satisfy

(1) Closure under addition: u⃗+ v⃗ ∈ V ;

(2) Commutativity: u⃗+ v⃗ = v⃗ + u⃗;

(3) Associativity: (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗);

Furthermore, scalars c, d ∈ F and vectors u⃗, v⃗ in V satisfy

(4) Closure under scalar multiplication: cu⃗ ∈ V ;

(5) Compatability of scalar multiplication: c(du⃗) = (cd)u⃗

(6) Distributivity of scalar multiplication: c(u⃗+ v⃗) = cu⃗+ cv⃗;

(7) Disributivity of scalar addition: (c+ d)u⃗ = cu⃗+ du⃗.

Finally, the space V contains

(8) An additive identity 0⃗: for any vector v⃗ in V we have v⃗ + 0⃗ = v⃗;

(9) Additive inverses −v⃗: for any vector v⃗ in V we have v⃗ + (−v⃗) = 0⃗ ;

(10) Scalar identity: for any v⃗ in V we have 1v⃗ = v⃗.

Example 3.2. The following are all vector spaces over the indicated field. To
prove this, we would need to check each of these sets with the indicated operations
satisfies all 10 axioms above, but we omit this for the sake of time. (Note: you’ll
prove the last example is a vector space on your next Worksheet).

(1) The set of polynomials with coefficients in C is a vector space over C;
(2) The set of continuous function f : R → R is a vector space over R;
(3) The set of n×m matrices with entries in Q is a vector space over Q;

Linear algebra as a discipline studies general vector spaces, and allows us to assign
structure to strange examples such as those given above. In this class, we’ll mainly
focus on getting our footing in this general context by studying one particular family
of vector spaces: vector space over R which are contained in Euclidean space. We
define the following.
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Definition 3.3. A subspace W of Rn is any subset of Rn that is also a vector
space over R. In general, a vector subspace W of a vector space V is any subset
of V which is also a vector space.

The following theorem will make our lives much simpler when verifying a given set
is a subspace. Rather than checking all 10 axioms above, we can instead do the
following.

Theorem 3.4. A subset W of a vector space V is a vector space (and hence a
vector subspace of V ) if and only if W is

(1) closed under addition,

(2) closed under scalar multiplication, and

(3) contains the zero vector 0⃗.

We omit the details of the proof here, but this isn’t meant to be too challenging.
Looking through the axioms, as long as W satisfies the above three properties, the
remaining axioms are satisfied because W is defined under the same operations as
the vector space V .

The following Theorem tells us that in fact we have already been studying the
vector subspaces of Rn.

Theorem 3.5. A subset W is a vector subspace of Rn if and only if exists vectors
v⃗1, v⃗2, . . . , v⃗m so that

W = Span (v⃗1, v⃗2, . . . , v⃗m) .

Proof. Suppose first the W = Span (v⃗1, v⃗2, . . . , v⃗m). Observe that 0⃗ ∈ W since we
can write

0⃗ = 0v⃗1 + · · ·+ 0v⃗m.

Furthermore, for x⃗, y⃗ ∈ W we can write

x⃗ = c1v⃗1 + · · ·+ cmv⃗m

y⃗ = d1v⃗1 + · · ·+ dmv⃗m

for scalars ci, di ∈ R and so

x⃗+ y⃗ = (c1 + d1)v⃗1 + · · ·+ (cm + dm)v⃗m ∈ Span(v⃗1, . . . , v⃗m)

and for any a ∈ R we have

ax⃗ = (ac1)v⃗1 + · · ·+ (acm)v⃗m ∈ Span(v⃗1, . . . , v⃗m).

So, by Theorem 3.4, W is a subspace of Rn.

Conversely, suppose thatW is a vector space of Rn. By Theorem 1.43, any subset of
Rn contains between 0 and n linearly independent vectors. Let B = {v⃗1, v⃗2, . . . , v⃗m}
be a linearly independent subset of W where m ≤ n is maximal. Since W is a vector
space, we know that

Span(v⃗1, v⃗2, . . . , v⃗m) ⊆ W.
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For the opposite set inclusion, take any w ∈ W . If w = vi ∈ B then certainly
w ∈ Span(v⃗1, v⃗2, . . . , v⃗m) by writing

w = 0v⃗1 + · · ·+ 1 · v⃗i + · · ·+ 0v⃗m.

So, suppose that w ̸∈ Span(v⃗1, v⃗2, . . . , v⃗m). Sincem is maximal, the set {v⃗1, v⃗2, . . . , v⃗m, w⃗}
must be linearly dependent. So, there exist scalars c1, . . . , cm+1 ∈ R not all equal
to zero so that

c1v⃗1 + c2v⃗2 + · · ·+ cmv⃗m + cm+1w⃗ = 0⃗.

Furthermore, cm+1 ̸= 0 since the set {v⃗1, v⃗2, . . . , v⃗m} is linearly independent. So
we have

w =
1

cm+1
(c1v⃗1 + c2v⃗2 + · · ·+ cmv⃗m) ∈ Span(v⃗1, v⃗2, . . . , v⃗m).

□

In particular, we obtain the following important Corollary.

Corollary 3.6. Every vector subspace of Rn contains a basis.

In fact, we have the more general result.

Theorem 3.7. Any vector space V over a field F contains a basis.

The proof of Theorem 3.7 is beyond the scope of the course, but we state it here
since we’ll see later on that this is the key step to proving one of the fundamental
structure theorems on vector spaces.

3.15. Bases and Dimension

In Activity 1.21, I asked you to find two distinct bases of some of the sets from P1.
There are actually infinitely many different bases you could have chosen from, but
what I hoped you notice is that the size of your two bases (that is, the number of
elements your basis contains) for a given vector space are the same. Let’s give a
formal proof of this fact.

Theorem 3.8. Let W be a vector subspace of Rn. Then, the size of any basis for
W is unique.

The proof of this fact uses a proof method called proof by contradiction. We
take another short interlude to introduce this method formally, and then return to
the proof of this theorem.

Interlude: Proof by Contradiction

Recall that a conditional statement is a statement of the form “if P then Q”. We
learned how to prove a conditional statement directly in a previous interlude, by
assuming the hypothesis P is true, and using some logical arguments to conclude
that the conclusion Q must also be true.

Sometimes, proving a statement directly is out of reach. Instead, we have the fol-
lowing crafty strategy. Note that this works to prove any type of statement (not
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just conditional statements).

Suppose that we want to prove statement X is true.

(1) Assume that X is false.

(2) Use some logical reasoning to show that this implies a contradiction (that is,
some nonsense that certainly isn’t true, like 2 = 4 or π is an integer, etc).

(3) Conclude that statement X must have been true.

Hopefully, it feels intuitive that the only way for a statement to imply something
false is if the statement itself was false (note that the statement “X is false” being
false means that X is true). But if you’re interested in why proof by contradiction
is valid using formal logic, I would look at Section 3.3 Sundstrum’s text (also linked
in the Proof Writing Guides page on the ”Pages” tab on Canvas).

Let’s look at a quick example of proof by contradiction.

Proposition 3.9. The sum of a rational number and an irrational number is
irrational.

Proof. Suppose that x is rational and y is irrational. Then we can write x = a/b
for integers a and b with b ̸= 0. For a contradiction, suppose that x+ y is rational.
Then, there exist integers c and d ̸= 0 so that x+ y = c/d. We get

a

b
+ y =

c

d

⇒ y =
c

d
− a

b
=

cb− ad

bd
,

which implies that y is rational. Since a real number cannot be both rational
and irrational, we have a contradiction. So, it must be the case that x + y is
irrational. □

3.15 Continued

We are now prepared to prove our result.

Proof of Theorem 3.8. Suppose that W is a vector subspace of Rn with bases

B = {v⃗1, v⃗2, . . . , v⃗k}, and C = {u⃗1, u⃗2, . . . , u⃗m}.

We need to show that k = m.

For a contradiction, suppose that k < m. We’ll show this implies the set C is linearly
dependent (similar to the examples you showed in Activity 3.22), contradicting
the fact that it’s a basis. For each i ∈ {1, . . . ,m} write

(3.1) u⃗i = ai1v⃗1 + ai2v⃗2 + · · ·+ aikv⃗k.

Now, consider the vector equation

(3.2) 0⃗ = x1u⃗1 + · · ·+ xmu⃗m

https://www.tedsundstrom.com/mathematical-reasoning-writing-and-proof
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with unknowns x1, . . . , xm. Replacing each u⃗i with its representation in terms of
the basis elements from B as in Equation (3.1) and collecting coefficients, we obtain

0⃗ = (x1a11 + x2a21 + · · ·+ xmam1)v⃗1

+ (x1a12 + x2a22 + · · ·+ xmam2)v⃗2

...

+ (x1a1k + x2a2k + · · ·+ xmamk)v⃗k.

Now, since the v⃗i are linearly independent, each of the coefficients above must be
equal to zero. This yields the system of linear equations

x1a11 + x2a21 + · · ·+ xmam1 = 0

x1a12 + x2a22 + · · ·+ xmam2 = 0

...

x1ak1 + x2ak2 + · · ·+ xmamk = 0,

which is equivalent to the matrix-vector equation

Ax⃗ = 0⃗

where

A =
(
aji
)
and x⃗ =


x1

x2

...
xm

 .

Since A is a k × m matrix and k < m, there are more columns than rows, which
means we have a column with no pivot. Since a homogeneous system is always
consistent, then Theorem 1.19 tells us that this system has infinitely many so-
lutions. Namely, we have a nontrivial solution to (3.2), which means our set
C = {u⃗1, . . . , u⃗m} is linearly dependent, a contradiction.

Note that if k > m, then we could follow the argument above to show that B is
linearly dependent. Since k is neither smaller nor larger than m, we must have
k = m as desired.

□

This gives rise to the following definition.

Definition 3.10. Let V be a vector subspace of Rn. Then, the dimension of V ,
denoted dimV , is equal to the size of any basis for V . We define the dimension of
the trivial subspace {⃗0} to be 0.

In the next section, we’ll look at strategies to compute bases and the dimension of
vector spaces. First, let’s prove the key structure theorem I’ve been alluding to for
a few weeks now (hopefully this will clear up questions many of you have had as
well!). First, we need a definition.
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Definition 3.11. Let V and W be vector spaces. An isomorphism between V
and W is a linear map T : V → W that is both one-to-one and onto. In this case,
we write V ∼= W .

Theorem 3.12. Let V be a vector subspace of Rn of dimension m. Then V ∼= Rm.

Proof. Let B = {⃗b1, b⃗2, . . . , b⃗m} be a basis for V . Define the function T : V → Rm

by sending T (⃗bi) = e⃗i and extend linearly. That is,

T (a1⃗b1 + · · ·+ amb⃗m) = a1e⃗1 + · · ·+ ame⃗m.

Observe that T is linear. To see that T is one-to-one, suppose that v⃗ ∈ kerT .

Writing v⃗ = a1⃗b1 + · · ·+ amb⃗m this gives

T (v⃗) = 0⃗ ⇒ a1v⃗1 + · · ·+ amb⃗m ≡ 0⃗.

But since B is a basis, it’s linearly independent, so we must have ai = 0 for all i.
Hence, v⃗ = 0⃗ and so kerT = {⃗0}. For surjectivity, note that any x⃗ ∈ Rm can be
written in the form x⃗ = a1e⃗1 + · · ·+ ame⃗m and so

T (a1⃗b1 + · · ·+ amb⃗m) = x⃗.

Hence, T is an isomorphism, and we have V ≡ Rm. □

Remark 3.13. The Theorem above tells us that the defining feature of a vector
space is its dimension. Geometrically, every vector subspace of Rn of dimension m
“looks like” a copy of Rm sitting inside of Rn. For example, 2-dimensional vector
spaces are all planes through the origin in R3, and 1-dimensional vector spaces are
all lines through the origin.

3.13. The Null and Column Space of a Matrix

Example 3.14. In Activity 3.23 I asked you to find a basis (that is, a linearly
independent generating set) for the vector subspace V = Span(v⃗1, v⃗2, v⃗3, v⃗4) of R4

where

v⃗1 =


1
1
0
0

 , v⃗2 =


1
3
−1
1

 , v⃗3


0
2
−1
1

 , and v⃗4 =


1
−1
1
−1

 .

We can observe by hand that

v⃗3 = 2v⃗1 − v⃗2 and v⃗4 = −v⃗1 + v⃗2

and so v⃗3, v⃗4 ∈ Span(v⃗1, v⃗2). Furthermore, we can check that {v⃗1, v⃗2} is a linearly
independent set, and so we can take this to be a basis. This method is perfectly
fine, but is a bit lengthy and depends quite a lot on our choice of generating set
(imagine if we were looking at something like 100 vectors in R57!). Let’s use this
example to develop a more systematic way to find bases.
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Let A be the matrix with column vectors v⃗1, v⃗2, v⃗3, v⃗4. Then A has reduced row
echelon form

X =


1 0 −1 2
0 1 1 −1
0 0 0 0
0 0 0 0

 .

Observe that columns 3 and 4 of X have no pivot, so there’s a nontrivial solution
to the vector equation

x1v⃗1 + x2v⃗2 + x3v⃗3 + x4v⃗4 = 0⃗.

which implies the set {v⃗1, v⃗2, v⃗3, v⃗4} is linearly dependent. So, we need eliminate
one of our vectors. BUT we don’t want to change our vector space, so we need
to make sure the vector we remove is in the span of the other three. I claim that
we can remove any vector that’s not in a “pivot column” of A and not change the
span. Let’s understand why this works in general before continuing this example.

Lemma 3.15. Let A be the m× n matrix

A =
(
v⃗1 v⃗2 · · · v⃗n

)
and suppose that the reduced row echelon form of A is given by the matrix

X =
(
x⃗1 x⃗2 · · · x⃗n

)
.

If the column x⃗n of X does not have a pivot, then

Span(v⃗1, v⃗2, . . . , v⃗n) = Span(v⃗1, v⃗2, . . . , v⃗n−1).

We call a vector v⃗i a pivot column of A if the column x⃗i contains a pivot in
X. In general, we can remove any column of A that is not a pivot column and not
change the span of its column vectors.

Proof. Since there is no pivot in the column x⃗n, we know that the system of linear
equation with augmented matrix(

v⃗1 v⃗2 · · · v⃗n−1 v⃗n
)

has a solution. So, v⃗n ∈ Span(v⃗1, . . . , v⃗n−1). □

Example 3.16 (Example 3.14 continued...). Since v⃗4 is not a pivot column of A,
then by Lemma 3.15 we have

V = Span(v⃗1, v⃗2, v⃗3).

Now, the matrix with columns v⃗1, v⃗2, v⃗3 has reduced row echelon form

X =


1 0 −1
0 1 1
0 0 0
0 0 0


which still has a column with no pivot. So our set is still linearly dependent, which
means we should remove another vector. Since there is only one column with no
pivot, we should remove v⃗3 By Lemma 3.15 again, we have

V = Span(v⃗1, v⃗2).
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Furthermore, the reduced row echelon form of the matrix with columns v⃗1, v⃗2 is
given by

X =


1 0
0 1
0 0
0 0


and so the set {v⃗1, v⃗2} is also linearly independent, making it a basis for V .

We have the following.

Theorem 3.17 (Finding Bases). Let V be a vector subspace of Rn written in the
form

V = Span(v⃗1, . . . , v⃗m).

If A is the matrix with column vectors v⃗1, . . . , v⃗m then the pivot columns of A will
form a basis for V .

Let’s omit the proof of this theorem for the sake of time, and believe that our Ex-
ample 3.14 generalizes.

3.13.1. The Column Space. Observe that finding bases of a vector space had
to do with finding the space spanned by a certain matrix. Sometimes we might want
to reverse this problem (as we’ll see later on when we look for images of matrix
transformations) and look for the span of the columns of a matrix A. We define
the following.

Definition 3.18. Let A be an n×m matrix with column vectors v⃗1, . . . , v⃗m. Then
the column space of A is the vector subspace Col(A) of Rn defined by

Col(A) := Span(v⃗1, v⃗2, . . . , v⃗m).

The rank of A is defined to be the dimension of the column space of A. That is,

rank(A) = dim(Col)(A).

We say that an n×m matrix A has full rank if rank(A) = m.

Remark 3.19. The column space of a matrix is particularly useful when studying
linear transformations: if TA : Rm → Rn, observe that the image of TA is precisely
equal to the column space of A. The final main theorem of this Chapter gives a
relation between the image of a linear transformation and its kernel. First, we have
the following important observation.

Lemma 3.20. Let T : V → W be a linear transformation between vector spaces V
and W . Then,

kerT = {v⃗ ∈ V | T (v⃗) = 0⃗}
is a vector subspace of W .

Proof. By definition, kerT is a subset of the vector space W , so we just need to
check the three properties in Theorem 3.4. Since T is linear, we must have T (⃗0) = 0⃗.
Now, take any u⃗, v⃗ ∈ kerT . Then, using the linearity property for T we have

T (u⃗+ v⃗) = T (u⃗) + T (v⃗) = 0⃗ + 0⃗ = 0⃗.
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Hence, u⃗+ v⃗ ∈ kerT . Now, for any scalar c ∈ R and vector v⃗ ∈ V , again using the
linearity property for T we have

T (cv⃗) = cT (v⃗) = 0⃗.

Hence, kerT is a vector space. □

3.13.2. The Null Space. Note that, for an n×m matrix A, we have

kerTA = {x⃗ ∈ Rm | Ax⃗ = 0⃗}.
This gives rise to the following definition.

Definition 3.21. The null space of an n ×m matrix A is the vector subspace
of Rm defined by

Nul(A) := {x⃗ ∈ Rm | Ax⃗ = 0⃗}.
The nullity of A is defined to be the dimension of the null space of A. That is,

nullity(A) := dim(Nul(A)).

Example 3.22. Let V = {v⃗1, v⃗2, v⃗3, v⃗4} be the vector space in Example 3.14, and
A the matrix with column vectors v⃗i. To find Nul(A), we need to find all vector
solutions x⃗ to the homogeneous system

Ax⃗ = 0⃗,

which are equal to the solution to

Xx⃗ = 0⃗

where X is the reduced row echelon form of A. Since

X =


1 0 −1 2
0 1 1 −1
0 0 0 0
0 0 0 0


then we have two free variables, call them z, w. So, all solutions to Ax⃗ = 0⃗ can be
written in the form 

x
y
z
w

 =


z − w
−z + w

z
w

 .

Observe that this gives

Nul(A) = Span




1
−1
0
0

 ,


−1
1
0
0




and so nullity(A) = 2.

In the example above, we used the number of free variables to say something about
the nullity of A. In general, we have the following.

Theorem 3.23. Let A be an n×m matrix with r pivot columns. Then,

rank(A) = r and nullity(A) = m− r.
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Proof. The fact that the rank of A is equal to the number of pivot columns follows
from Theorem 3.17. Now, suppose that A has reduced row echelon form equal to
X. If X contains r columns with pivots, then that means X will have m − r free
variables. To make our notation simpler, let’s assume the pivots are in the first r
columns (note that the argument follows identically by an appropriate relabeling
of the column vectors if not). So, if

x1

x2

...
xm

 ∈ Nul(A)

then we can write x1, . . . , xr in terms of the remainingm−r free variables xr+1, . . . , xm.
That is, there are real numbers ai with

x1 = a1,r+1xr+1 + a1,r+2xr+2 + · · ·+ a1,mxm

x2 = a2,r+1xr+1 + a2,r+2xr+2 + · · ·+ a2,mxm

...

xr = ar,r+1xr+1 + ar,r+2xr+2 + · · ·+ ar,mxm.

So, as in Example 3.22, we have

Nul(A) = Span





a1,r+1

a2,r+1

...
ar,r+1

1
0
0
...
0


,



a1,r+2

a2,r+2

...
ar,r+2

0
1
0
...
0


, . . . ,



a1,m
a2,m
...

ar,m
0
0
0
...
1


.


.

Finally, observe that the m − r vectors above are linearly independent, since the
matrix with the vectors above as its columns has a pivot in every column. □

We have the following consequence to Theorem 3.23, often referred to as the rank-
nullity theorem.

Corollary 3.24 (The Rank-Nullity Theorem). Let A be an n×m matrix. Then,

rank(A) + nullity(A) = m.

Equivalently, for a linear transformation T : Rm → Rn we have

dim(imT ) + dim(kerT ) = m.





Chapter 4

Eigenvalues and Eigenvectors

4.16. The Determinant Part I: Motivation

Recall, in Proposition 2.10 we found that the inverse of a 2× 2 matrix is given by(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

This tells us that a 2× 2 matrix is invertible precisely when ad− bc ̸= 0. Our goal
in this section is to generalize this straightforward computation in order to gain
a new tool to determine whether any n × n matrix is invertible. Using geometric
reasoning we’ll develop a function, called the determinant, which inputs a matrix
and outputs a real number that is nonzero precisely when that matrix is invertible.

(Note: much of the content in the remainder of this section, including the pictures,
are pulled from the notes for similar course taught at Georgia Tech (see this link)).

Let A be an n × n matrix. Recall that A is invertible if and only if Col(A) = Rn.
Another way to say this is that A is not invertible if and only if Col(A) is a proper
subspace of Rn (that is, Col(A) ̸= Rn). For example, in R3, all of the matrices
that are not invertible either have column space equal to a plane (i.e. an isomorphic
copy of R2), a line (i.e. an isomorphic copy of R1) or a point. We’ll capture this
idea by computing the volume of a certain object, which will be zero exactly when
we’re “missing” a dimension. We have the following definition.

Definition 4.1. Let B = {v⃗1, v⃗2, . . . , v⃗m} be a subset of Rn. Then, the paral-
lelepiped of the set B is defined by

PB := {a1v⃗1 + a2v⃗2 + · · ·+ amv⃗m | 0 ≤ ai ≤ 1}.

Example 4.2. If B contains two linearly independent vectors, the parallelepiped
P = PB is just a parallelogram
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If B contains three linearly independent vectors, the parallelepiped P = PB looks
like a skewed cube, as below.

Observation 4.3. Let A be an n×n matrix and B the set containing the column
vectors of A. Then, A is not invertible if and only if the volume of PB is equal to
0.

Notation. For notational convenience, for an n× n matrix A, we’ll let PA be the
parallelepiped defined by the columns of A.

This gives us an idea: why don’t we just define the determinant of a matrix to be
equal to the volume of the parallelepiped defined by the columns of A? This would
capture the property we want, but the trouble is it’s not easy to find a formula for
the volume of these objects. So we’ll have to be a bit more crafty. First, we note
the following.

Lemma 4.4. Let B = {v⃗1, v⃗2, . . . , v⃗n} be a subset of Rn and let PB be the paral-
lelepiped defined by the set B. Let C = {v⃗1, v⃗2, . . . , v⃗n−1} be the subset of B with
v⃗1 removed. Then, the volume of PB is equal to the area of the “base” PC times
the height of the vector v⃗n from the “base” PC , as in the example below
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We’ll skip the proof of this Lemma, but note it could be done using calculus by
representing the volume of PB as an integral. Lemma 4.4 allows us to make the
following observations.

(1) If one of the vectors v⃗i is equal to 0, then the volume of PB is equal to zero.

(2) If we replace v⃗n by v⃗n + cv⃗i, this just translates the vector v⃗n parallel to the
base, which does not change the height, and so does not change the volume.

(3) Scaling a vector v⃗n by c > 0 changes the height by a factor of c which multiplies
the volume by c.
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(4) We can reorder the vectors and not change the volume

(5) If B is the standard basis for Rn, that is if B = {e⃗1, e⃗2, . . . , e⃗n} then the
volume of PB is equal to 1.

Example 4.5. Using the properties above, we can now easily compute the area of
any parallelepiped. For example, let B = {v⃗1, v⃗2, v⃗3} where

v⃗1 =

1
1
0

 , v⃗2 =

0
1
0

 , v⃗3 =

0
0
5

 .

We can obtain PB by taking the parallelepiped formed by the standard basis,
replacing e⃗1 by e⃗1 + e⃗2 (which does not change the volume) and the by scaling
e⃗3 by 5. Using the properties above, this gives us a parallelepiped of volume 5.

Example 4.5 should look familiar from yesterday’s activity. Observe that Properties
(2)-(4) look a lot like row reducing a matrix!

In the second part of this section, we’ll show how the properties in Lemma 4.4 can
give us a closed formula for the volume of any fundamental parallelepiped. Note
that in theory we could just use the method in the example above, but we’d like
to find a closed formula in order to show this method always works, and to help us
come up with better strategies to make this computation more efficient.

We’ll turn our attention back to defining this operation on matrices. Since the
operations in Lemma 4.4 looked like row operation, we’ll instead define the deter-
minant to match the volume of the parallelepiped defined by the rows of A (rather
than the columns), but we’ll get a fix for this at the end of the section.
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4.16. The Determinant Part II: Existence and Uniqueness

Definition 4.6. The determinant of an n× n matrix is a function

det : Matn(R) → R

that satisfies the following properties:

(1) For any matrix B obtained from A by the elementary row operation that
replaces Ri with Ri + cRj , we have det(B) = det(A)

(2) For any matrix C obtained from A by the elementary row operation that
replaces Ri with cRi, we have det(C) = cdet(A).

(3) For any matrix D obtained from A by the elementary row operation that
swaps two rows of A, we have det(D) = − det(A).

(4) det(In) = 1.

To show that this function is well-defined (that is, this function exists and is unique)
we’ll need to show the determinant satisfies some further properties. First, we need
some definitions.

Definition 4.7. Let A be an n× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

Then, the diagonal entries of A are the entries a11, a22, . . . , ann (highlighted in
red in the matrix above). We say that A is upper triangular if the only nonzero
entries are those on or above the diagonal entries of A; that is

aij = 0 for all i > j.

We say A is lower triangular if the only nonzero entries are those on or below
the diagonal entries of A; that is,

aij = 0 for all i < j.

Example 4.8. The matrix 1 3 0
0 2 −1
0 0 1


is upper triangular with diagonal entries 1, 2, 1, and the matrix1 0 0

3 0 0
7 1 2


is lower triangular with diagonal entries 1, 0, 2.
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Properties of the Determinant. Below we derive several properties of the de-
terminant by using Definition 4.6. You will be asked to fill in the missing details
for each of the following six proofs on Homework 6.

Proposition 4.9 (Determinants of Triangular Matrices). If A is upper or lower
triangular with diagonal entries d1, d2, . . . , dn then

det(A) = d1d2 · · · dn.

Proof. Let’s prove this in the 3 × 3 case, and note that the general case follows
similarly. Suppose first that A is upper triangular. Then we can write

A =

d1 a12 a13
0 d2 a23
0 0 d3

 .

(a) Show that A is row equivalent to a matrix of the formd1 0 0
0 d2 0
0 0 d3


using only row operations of the form: replace Ri with Ri + cRj for i ̸= j.

So, we have det(A) = det

d1 0 0
0 d2 0
0 0 d3

.

(b) Use what we’ve shown above and Definition 4.6 of the determinant from our
course lecture notes to show that det(A) = d1d2d3.

Next, if A is lower triangular then we can write

A =

 d1 0 0
a21 d2 0
a31 a32 d3

 .

(c) Use a similar method to what we did in the upper triangular case to show that
det(A) = d1d2d3.

□

Proposition 4.10 (Determinants Detect Invertibility). A matrix A is invertible if
and only if det(A) ̸= 0.

Proof. Suppose first that A is invertible.

(a) Show that if A is invertible, then there exists a nonzero constant c with

det(A) = cdet(In).

By Property (4) in our definition of the determinant (Definition 4.6) we know that
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det(In) ̸= 0. Since c ̸= 0 as well, then by what you’ve shown in part (c) we have

det(A) ̸= 0.

Next, suppose that A is not invertible.

(b) Let X be the reduced row echelon form of A. Explain why at least one of the
diagonal entries of X must be equal to 0 when A is not invertible.

(c) Show that there exists a nonzero constant c with

det(A) = cdet(X).

Since the reduced row echelon form of a square matrix is upper triangular, then by
part (b) and Proposition 4.9 we have

det(A) = c · 0 = 0.

So, we’ve shown if A is not invertible, then det(A) = 0. Note that this is equivalent
to the statement: if det(A) ̸= 0 then A is invertible. Formally, this is called the
contrapositive (my hope is that this logic feels intuitive, but you can also read
about this in our proof writing resources). □

Proposition 4.11 (The Determinant is Multiplicative). For matrices A and B we
have

det(AB) = det(A) det(B).

Proof. Suppose first that A is an elementary matrix, as defined in Definition 2.11.

(a) For each of the elementary matrices E given in Definition 2.11, find det(E).

Recall that multiplication on the left by an elementary matrix corresponds to an
elementary row operation.

(b) Show that det(EB) = det(E) det(B) for an elementary matrix E.

Now, let A be an arbitrary matrix. If A is invertible, then by Invertible Matrix
Theorem (Theorem 2.13) we know that A is a product of elementary matrices, say

A = E1E2 · · ·Em.

(c) Use what we’ve shown above to prove that

det(AB) = det(A) det(B)

when A is invertible.

Next, suppose that A is not invertible.

(d) Show that AB is not invertible. (Hint: look at Problem 9 from Homework 4.)



58 4. Eigenvalues and Eigenvectors

By Proposition 4.10 we have

det(AB) = 0 and det(A) = det(B) = 0,

and so det(AB) = det(A) det(B) as desired. □

Proposition 4.12 (Invariance Under the Transpose). For any n× n matrix A we
have det(A) = det(A⊤).

Proof. Suppose first that A is not invertible. Then det(A) = 0 by Proposition 4.10.

(a) Show that det(A⊤) = 0 when A is not invertible.

So, det(A) = det(A⊤) in this case.

Next, suppose that A is invertible. By the Invertible Matrix Theorem (Theorem
2.13) we can write A as a product of elementary matrices, say

A = E1E2 · · ·Em.

So by Problem 1(c) of Worksheet 4 we have

A⊤ = E⊤
mE⊤

m−1 · · ·E⊤
1 .

(b) For an elementary matrix E, show that det(E) = det(E⊤).

(c) Use part (b) and Property 4.11 to show that det(A⊤) = det(A) when A is
invertible.

□

Proposition 4.13 (Reduction). If A is an n× n matrix of the form

A =


1 0 0 · · · 0

∗
∗
...
∗

B

 ,

for an (n− 1)× (n− 1) matrix B and where ∗ denotes any real number (possibly
zero, but possibly not), then det(A) = det(B).

Proof. Let A and B be as above. Suppose first that B is invertible. Then, by the
Invertible Matrix Theorem, there exist elementary matrices E1, . . . , Em so that

(4.1) Em · · ·E2E1B = In.
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For an (n− 1)× (n− 1) elementary matrix E define the n× n matrix

Ẽ :=


1 0 0 · · · 0

0
0
...
0

E

 .

(a) Show that Ẽ is also an elementary matrix with det(Ẽ) = det(E).

Next, observe the following identity, which can be verified just by chasing through
the definition of matrix multiplication carefully (I won’t make you do this, but I do
suggest you make sure to understand why this holds)

(4.2) ẼA =


1 0 0 · · · 0

∗
∗
...
∗

EB


Applying equation (4.2) repeatedly, we get

Ẽm · · · Ẽ2Ẽ1A =


1 0 0 · · · 0

∗
∗
...
∗

Em · · ·E2E1B

 =


1 0 0 · · · 0

∗
∗
...
∗

In−1


where the second equality follows by definition of the Ei in Equation (4.1).

(b) Use the equality above to show that

det(A) = 1/ det(Ẽm · · · Ẽ2Ẽ1).

(Hint: the matrix on the right-hand side is diagonal).

Using Proposition 4.11 repeatedly along with what you showed in part (a) we get

det(Ẽm · · · Ẽ2Ẽ1) = det(Ẽm) · · · det(Ẽ2) det(Ẽ1)

= det(Em) · · · det(E2) det(E1)

= det(Em · · ·E2E1).

(c) Conclude that
det(A) = det(B).

(Hint: use the equality above, Equation (4.1), and part (b)).

□



60 4. Eigenvalues and Eigenvectors

Proposition 4.14 (Row Additivity). The determinant is additive in the rows of
a matrix. That is,

det


x11 + y11 x12 + y12 · · · x1n + y1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 = det


x11 x12 · · · x1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

+ det


y11 y12 · · · y1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


Proof. Let’s prove this in the 2 × 2 case, and note that the general case follows
similarly (if you’d like these details, checkout the multilinearity property in these
notes). I don’t have a good geometric intuition for this argument unfortunately
(there should be one), so I’m going to leave reading this proof as a suggested exer-
cise.

We’ll show that

det

(
x1 + y1 x2 + y2

a b

)
= det

(
x1 x2

a b

)
+ det

(
y1 y2
a b

)
.

First, suppose that (
x1

x2

)
∈ Span

((
y1
y2

)
,

(
a
b

))
.

Then, there are constants c1, c2 so that(
x1

x2

)
= c1

(
y1
y2

)
+ c2

(
a
b

)
which gives

x1 = c1y1 + c2a

x2 = c1y2 + c2b.

So, we have

det

(
x1 + y1 x2 + y2

a b

)
= det

(
c1y1 + c2a+ y1 c1y2 + c2b+ y2

a b

)
= det

(
(c1 + 1)y1 + c2a (c1 + 1)y2 + c2b

a b

)
= det

(
(c1 + 1)y1 (c1 + 1)y2

a b

)
,Replacing R1 with R1 − c2R2

= (c1 + 1) det

(
y1 y2
a b

)
,Replacing R1 with R1/(c1 + 1)

= c1 det

(
y1 y2
a b

)
+ det

(
y1 y2
a b

)
= det

(
c1y1 c1y2
a b

)
+ det

(
y1 y2
a b

)
, Replacing R1 with c1R1 in the first matrix.

Now, since
c1y1 = x1 − c2a

c1y2 = x2 − c2b

https://textbooks.math.gatech.edu/ila/determinants-definitions-properties.html
https://textbooks.math.gatech.edu/ila/determinants-definitions-properties.html
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then we can compute the determinant of the first matrix in our final equality above
as follows

det

(
c1y1 c1y2
a b

)
= det

(
x1 − c2a x2 − c2b

a b

)
= det

(
x1 x2

a b

)
, Replacing R1 with R1 + c2R2.

Combining everything above, we get

det

(
x1 + y1 x2 + y2

a b

)
= det

(
c1y1 c1y2
a b

)
+ det

(
y1 y2
a b

)
= det

(
x1 x2

a b

)
+ det

(
y1 y2
a b

)
.

Finally, suppose that (
x1

x2

)
̸∈ Span

((
y1
y2

)
,

(
a
b

))
.

Then, there is a vector in R2 that’s not contained in this span, and so we must have

Span

((
y1
y2

)
,

(
a
b

))
̸= R2.

This tells us that the set {(
y1
y2

)
,

(
a
b

)}
is linearly dependent (because any set of two linearly independent vectors forms a
basis for R2!) and so we get that the matrix(

y1 y2
a b

)
is not invertible. So, by Property 4.10 we have

det

(
y1 y2
a b

)
= 0.

Furthermore, since the set {(
y1
y2

)
,

(
a
b

)}
is linearly dependent, one of these vectors is a multiple of the other, say that(

y1
y2

)
= c

(
a
b

)
.

So, y1 = ca and y2 = cb, and so we can get

det

(
x1 + y1 x2 + y2

a b

)
= det

(
x1 x2

a b

)
by replacing R1 with R1 − cR2, proving our equality in this case. □
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4.16.1. Existence and Uniqueness. We are now ready to show that the deter-
minant is a well-defined function. That is, we need to show for any n there exists
a unique function satisfying the properties of Definition 4.6. We’ll show this by
deriving an explicit formula for the determinant of an n × n matrix. First, let’s
look at the case when n = 1 and n = 2.

Lemma 4.15. The determinant of a 1× 1 matrix is well-defined and equal to

det
(
a
)
= a.

The determinant of a 2× 2 matrix is well-defined and equal to

det

(
a b
c d

)
= ad− bc.

Proof. First, let’s look at the 1× 1 case. We have

det
(
a
)
= a det

(
I1
)

using Property (2) of Definition 4.6, and since det(I1) = 1 by Property (4) then we
must have

det
(
a
)
= a.

For the 2× 2 case, we have

det

(
a b
c d

)
= det

(
a 0
c d

)
+ det

(
0 b
c d

)
,by row additivity (Prop 4.14)

= a det

(
1 0
c d

)
− bdet

(
1 0
d c

)
, by Properties (1), (4) and Proposition 4.12

= a det
(
d
)
− bdet

(
c
)
, by the reduction property (Prop 4.13)

= ad− bc.

Fortunately, this is the formula we derived using geometric reasoning, so all is on
track so far! □

Next, let’s look at an example of how we might use this strategy to compute the
determinant of 3× 3 matrices and 4× 4 matrices.

Example 4.16. Let’s look at the examples in P4 of Activity 3.28. Let

X =

a b c
1 2 3
4 5 6

 .

By row additivity of the determinant from (Proposition ??) we can write

det(X) = det

a 0 0
1 2 3
4 5 6

+ det

0 b 0
1 2 3
4 5 6

+ det

0 0 c
1 2 3
4 5 6

 .

Furthermore, since det(A) = det(A⊤) for any matrix A, then we can perform the
operations outlined in Definition 4.6 on the columns of A and keep track of how
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the determinant changes. For example,

det

0 b 0
1 2 3
4 5 6

 = det

0 1 4
b 2 5
0 3 6

 , since det(A⊤) = det(A)

= −det

b 2 5
0 1 4
0 3 6

 , swapping rows 1 and 2

= −det

b 0 0
2 1 3
5 4 6

 , again taking the transpose,

but this is the same as just swapping the first and second columns. Let’s do this
with the third matrix in the summand above. Note that we could just swap the
first and third column, but (for reasons we’ll see later) I’m going to first swap the
second and third column, and then after that swap the first and second column, as
below

det

0 0 c
1 2 3
4 5 6

 = − det

0 c 0
1 3 2
4 6 5

 = +det

c 0 0
3 1 2
6 4 5

 .

So, we have

det(X) = det

a 0 0
1 2 3
4 5 6

+ det

0 b 0
1 2 3
4 5 6

+ det

0 0 c
1 2 3
4 5 6

 ,

= det

a 0 0
1 2 3
4 5 6

− det

b 0 0
2 1 3
5 4 6

+ det

c 0 0
3 1 2
6 4 5

 , from above

= a det

1 0 0
1 2 3
4 5 6

− bdet

1 0 0
2 1 3
5 4 6

+ cdet

1 0 0
3 1 2
6 4 5

 , from above

= a det

(
2 3
5 6

)
− bdet

(
1 3
4 6

)
+ cdet

(
1 2
4 5

)
, by the reduction property (Property 4.13)

= −3a+ 6b− 3c,

where we used our definition of the 2 × 2 determinant in the last step. Let’s use
this same method for our 4× 4 example. Let

Y =


a b c d
1 1 3 5
2 4 5 6
1 −1 −1 2

 .



64 4. Eigenvalues and Eigenvectors

Then,

det(Y ) = det


a 0 0 0
1 1 3 5
2 4 5 6
1 −1 −1 2

+ det


0 b 0 0
1 1 3 5
2 4 5 6
1 −1 −1 2

+ det


0 0 c 0
1 1 3 5
2 4 5 6
1 −1 −1 2

+ det


0 0 0 d
1 1 3 5
2 4 5 6
1 −1 −1 2



= det


a 0 0 0
1 1 3 5
2 4 5 6
1 −1 −1 2

− det


b 0 0 0
1 1 3 5
4 2 5 6
−1 1 −1 2

+ det


c 0 0 0
3 1 1 5
5 2 4 6
−1 1 −1 2

− det


d 0 0 0
5 1 1 3
6 2 4 5
2 1 −1 −1



= a det


1 0 0 0
1 1 3 5
2 4 5 6
1 −1 −1 2

− bdet


1 0 0 0
1 1 3 5
4 2 5 6
−1 1 −1 2

+ cdet


1 0 0 0
3 1 1 5
5 2 4 6
−1 1 −1 2

− ddet


1 0 0 0
5 1 1 3
6 2 4 5
2 1 −1 −1


= a det

 1 3 5
4 5 6
−1 −1 2

− bdet

1 3 5
2 5 6
1 −1 2

+ cdet

1 1 5
2 4 6
1 −1 2

− ddet

1 1 3
2 4 5
1 −1 −1

 .

Now we’ve reduced our problem of finding a 4 × 4 determinant to a problem of
finding a 3 × 3 determinant. We know how to do this (just as we did in the last
example) by “expanding” along the first row. Once we do this to each matrix, we
should get

det(Y ) = −21a+ 13b− 14c+ 10d.

This gives an iterative process to compute the determinant, which we’ll call the
cofactor exapansion. We need a definition.

Definition 4.17. For an n× n matrix A =
(
aij
)
, the ij-minor of A is defined to

be the (n− 1)× (n− 1) matrix Aij with the ith row and jth column deleted.

Theorem 4.18 (Cofactor Expansion). The determimant of an n× n matrix A =(
aij
)
is well-defined and equal to

det(A) = a11 det(A11)− a12 det(A12) + · · ·+ (−1)n+1a1n det(A1n).

Proof. We’ll skip the details of this proof, since it’s messy to write in general. But
the basic idea is a generalization of what we saw in Lemma 4.15 and the example
above. Since we can recursively apply this strategy to reach a 2×2 matrix, which we
know is well-defined, then the determinant of any n× n matrix is well-defined. □

Corollary 4.19. Let A be an n×n matrix. Then, the volume of the parallelepiped
formed by the columns (or rows) of A is equal to |det(A)|.

Proof. Define a function

vol : Matn(R) → R
by letting vol(A) be the volume of the fundamental parallelepiped formed by the
rows of A. By Lemma 4.4, vol satisfies all of the properties of Definition 4.6, except
for Property (3), and so by Theorem 4.18 we get vol(A) = |det(A)| (noting that we
need an absolute value to account for the negatives introduced in our determinant).
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Since det(A⊤) = det(A) then we know that vol(A) is equal to the volume of the
parallelepiped formed by the columns of A. □

Example 4.20. Let

A =

1 3 5
2 0 1
1 −1 2

 .

To find the determinant of A, we can use cofactor expansion written as above. Or,
we can be slightly more crafty and first swap the first and second rows (since the
zero in the second row is going to simplify our computation). We have

det(A) = −det

2 0 1
1 3 5
1 −1 2

 .

Now, we can use the cofactor expansion formula, as below

det

2 0 1
1 3 5
1 −1 2

 = 2 · det

 2 0 1
1 3 5
1 −1 2

− 0 · det

2 0 1
1 3 5
1 −1 2

+ 1 · det

2 0 1
1 3 5
1 −1 2


= 2 · det

(
3 5
−1 2

)
− 0 · det

(
1 5
1 2

)
+ 1 · det

(
1 3
1 −1

)
= 2 · (6 + 5)− 0 · (2− 5) + 1 · (−1− 3)

= 22− 4 = 18,

and so det(A) = −18 .

4.17. The Characteristic Equation

The following definitions will turn out to have some major applications in under-
standing the structure of square matrices.

Definition 4.21. Let A be an n × n matrix. A non-zero vector x⃗ is an eigen-
vector of A if there is a scalar λ such that Ax⃗ = λx⃗. The scalar λ is called an
eigenvalue of A.

We’ll pause as a class to watch the first few minutes of this video to help build some
geometric intuition for these objects before diving into computation. Note that for
the speaker of this video

î =

(
1
0

)
, ĵ =

(
0
1

)
.

That is, î and ĵ denote the standard basis vectors. Let’s look at one of the examples
from Activity 3.30.

Example 4.22. Let

A =

(
3 2
3 8

)
and x⃗ =

(
−2
1

)
.

Then we have

Ax⃗ =

(
−4
2

)
= 2x⃗.

https://www.youtube.com/watch?v=PFDu9oVAE-g&ab_channel=3Blue1Brown
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So, x⃗ is an eigenvector of A, with corresponding eigenvalue λ = 2. As we saw in
the video, geometrically this tells us that the matrix transformation TA stretches
the vector x⃗ by a factor of 2.

Next, let’s work on finding a method to compute eigenvalues and their correspond-
ing eigenvectors.

Proposition 4.23. For an n×n matrix A, the set of eigenvectors of A correspond-
ing to an eigenvalue λ is equal to Nul(A− λIn).

Proof. Observe that any x⃗ ∈ Nul(A− λIn) if and only if

(A− λIn)x⃗ = 0⃗

⇔ Ax⃗− λx⃗ = 0⃗

⇔ Ax⃗ = λx⃗.

□

Definition 4.24. We call the space Nul(A− λIn) the λ-eigenspace of A, denote
Eλ. Note that we can think of the λ-eigenspace as the vectors x⃗ ∈ Rn so that the
matrix transformation TA stretches x⃗ by a factor of λ.

Example 4.25. Let A be as in Example 4.22, and recall that we showed λ = 2 is
an eigenvalue of A. To find the 2-eigenspace of A we need to find the null space of
A− 2I2. We have

A− 2I2 =

(
1 2
3 6

)
,

which is row equivalent to (
1 2
0 0

)
.

So, if

(
x
y

)
∈ E2 then we have (

1 2
0 0

)(
x
y

)
= 0⃗,

which gives x = −2y. So, the 2-eigenspace is given by

E2 = Span

((
1
−2

))
.

This gives a complete characterization of finding the eigenvectors corresponding
to a given eigenvalue. So the natural next question is: how do we determine the
eigenvalues of a matrix A? We have the following Lemma from your activity.

Lemma 4.26. A scalar λ is an eigenvalue of A if and only if there is a nonzero
solution to (A− λIn)x⃗ = 0⃗.

Proof. Suppose first that λ is an eigenvalue of A. Recall that eigenvectors are
nonzero, so there must be a corresponding nonzero vector x⃗ in Rn so that

Ax⃗ = λx⃗ ⇒ (A− λIn)x⃗ = 0⃗.
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Conversely, if there’s a nonzero solution to (A − λIn)x⃗ = 0⃗ then rearranging this
equation gives Ax⃗ = λx⃗, and so λ is an eigenvalue corresponding to the eigenvector
x⃗. □

Example 4.27. Let

A =

(
6 −2
2 1

)
as in P6 of Activity 3.30. By the lemma above, to determine whether λ = 1 is an
eigenvalue of A, we need to check whether

(4.3) (A− λIn)x⃗ = 0⃗

has a nonzero solution when λ = 1. We have

det(A− 1 · I) = det

(
5 −1
1 1

)
= 7 ̸= 0

so A−1 · In is invertible. But this means that equation (4.3) has a unique solution!
That is, there does not exist a nontrivial solution to (4.3), and so λ = 1 is not an
eigenvalue. If we instead look at equation (4.3) when λ = 5 we have

det(A− λI2) = det

(
1 −2
2 −4

)
= 0.

So, A − λI2 is not invertible, which means equation (4.3) does have a nontrivial
solution, and so λ = 2 is an eigenvalue.

In general, the homogeneous equation

(A− λIn)x⃗ = 0⃗

has a solution precisely when A−λIn has a column without a pivot. That is, A−λIn
is not invertible. By Proposition 4.11, this occurs precisely when det(A−λIn) = 0.
This motivates the following definition.

Definition 4.28. For an n× n matrix A,

χA(x) = det(A− xIn).

is called the characteristic polynomial of A.

Observe that χA(x) is a polynomial of degree n. The proof of this in general
would use an inductive argument, along with the cofactor expansion formula for
the determinant. Instead of worrying about understanding this formally, note that:

(1) If we look at the cofactor formula for the determinant, we see that the only
operations happening are addition and multiplication, and so we end up with
some algebraic expression made up of sums and products of real numbers and
our unknown x, which precisely defines a polynomial.

(2) If an n×n matrix A has diagonal entries d1, d2, . . . , dn, then the highest degree
term coming out of the cofactor exapansion will be (d1−x)(d2−x) · · · (dn−x)
(convince yourself of this in the 3 × 3 case). So, the degree of χA(x) will be
at most n, and in fact equal to n when none of the diagonal entries are equal
to 0.

From our discussion above, we have the following.
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Proposition 4.29. The set of eigenvalues of an n × n matrix A is equal to the
roots of the characteristic polynomial χA of A. In particular, there are at most n
eigenvalues of A.

Note that the fact that A has n eigenvalues follows from the Fundamental Theorem
of Algebra, which states that any degree n polynomial has at most n roots.

Example 4.30. Let’s look at the matrices B and C from Activity 4.31. First, let’s
find χB(x). We have

χB(x) = det

3− x −2 5
1 −x 7
0 0 1− x


= det

 0 0 1− x
3− x −2 5
1 −x 7

 , swapping R2 ↔ R3, then R1 ↔ R2

= (1− x) det

(
3− x −2
1 −x

)
= (1− x) (x(x− 3) + 2)

= −x3 + 4x2 − 5x+ 2.

So, χB(x) = −x3 + 4x2 − 5x+ 2. To find the eigenvalues of A, we need to solve

−x3 + 4x2 − 5x+ 2 = 0.

Observe that we can factor the left hand side to get

−(x− 2)(x− 1)2 = 0

and so the eigenvalues are λ = 2 and λ = 1.

Next, recall that

C =

(
1 −1
1 1

)
.

So,

χC(x) =

(
1− x −1
1 1− x

)
= (1− x)2 + 1.

So, χC(x) = (1− x)2 + 1 (let’s leave it in this form), which means the eigenvalues
of C will be solutions to the equation

(1− x)2 + 1 = 0

⇒ (1− x)2 = −1.

There are no real solutions to this equation, but there are complex ones. In partic-
ular, we have the complex eigenvalues

λ = i− 1,−i− 1.

Note that in general, eigenvalues can be complex. This story is a bit tricky, because
the corresponding eigenvectors will also be complex, and we’ve only been working
with real vector spaces in this class. We’re going to sweep this story under the
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rug for now, and only focus on examples where are eigenvalues are real. Time
permitting, we’ll return to this story (in particular, we’ll spend time thinking about
what this means geometrically).

The following example illustrates how eigenvalues can help us understand how a
given matrix transforms a vector.

Example 4.31. Consider the matrix

A =

1 0 1
0 1 1
0 0 2

 .

Let’s use some eigentheory to understand the matrix transformation TA. First, we
compute

χA(x) = det

1− x 0 1
0 1− x 1
0 0 2− x

 = (1− x)2(2− x)

and so χA(x) = (1 − x)2(2 − x). This tells us that A has eigenvalues λ = 1 and
λ = 2. (Note: on your homework you’ll show that the eigenvectors of a triangular
matrix are always equal to the diagonal entries). One we’ve found our eigenvalues,
we can now compute the set of eigenvectors as the null space of A − λI3. With a
bit of work, we compute E1 = Nul(A− I3) = Span (v⃗1.v⃗2) , where

v⃗1 =

1
0
0

 , v⃗2 =

0
1
0


and E2 = Nul(A− 2 · I3) = Span (v⃗3), where

v⃗3 =

1
1
1


Observe that v⃗1, v⃗2, v⃗3 is a linearly independent set, and so for any v⃗ ∈ R3 we can
write

v⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3.

Using linearity of the matrix transformation TA gives

TA(x⃗) = x1TA(v⃗1) + x2TA(v⃗2) + x3TA(v⃗3)

= (1)(x1v⃗1 + x2v⃗2) + 2(x3v⃗3).

where the second equality follows by recalling that v⃗1, v⃗2 ∈ E1 and v⃗3 ∈ E2. This
tells us that, if instead of plotting our vectors on the xyz-plane as usual, we plot
points on the “v⃗1, v⃗2, v⃗3”-plane, we could more easily understand this matrix trans-
formation (it’s the transformation that does nothing to the first two coordinates,
and scales the third coordinate by 2). This is the perspective we’d like to build to
in general. Let’s add a bit more rigor to build on this idea.

4.18. Diagonalization

In the previous example, we saw that it was convenient to view vectors in terms of
a particular basis. Let’s develop this idea further.
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4.18.1. Coordinate Systems.

Definition 4.32. Let B = {v⃗1, v⃗2, . . . , v⃗n} be a basis for a vector space V . Recall
that every vector v⃗ in V can be written in the form

v⃗ = x1v⃗1 + · · ·+ xnv⃗n.

The coordinates of x⃗ with respect to the basis B is given by

[x⃗]B :=

x1

...
xn

 .

Remark 4.33. Observe that if B = {e⃗1, . . . , e⃗n} is the standard basis for Rn, then
x1

...
xn



B

=

x1

...
xn

 .

That is, when we talk about the coordinates of a vector (without referencing any
specific basis), we really mean the coordinates of that vector with respect to the
standard basis.

Example 4.34. Let

B =

{(
−1
4

)
,

(
2
0

)
.

}
Observe that B is a basis for R2. Let’s find the coordinates of the vector x⃗ =

(
0
6

)
with respect to B. Since B is a basis, we can write

x⃗ = x1

(
−1
4

)
+ x2

(
2
0

)
=

(
−1 2
4 0

)(
x1

x2

)
.

Now, let

C =

(
−1 2
4 0

)
.

Note that C is invertible with

C−1 =
1

8

(
0 2
4 1

)
.

So, we have

x⃗ = C

(
x1

x2

)
⇒
(
x1

x2

)
= C−1x⃗

which gives [(
0
6

)]
B
=

(
x1

x2

)
=

(
3/2
3/4

)
.

The following lemma generalizes this strategy.

Lemma 4.35 (Changing Basis). Let B = {v⃗1, . . . , v⃗n} be a basis for Rn. Then, for
any vector x⃗ ∈ Rn we have

[x⃗]B = C−1x⃗,

where C =
(
v⃗1 · · · v⃗n

)
.
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Proof. Since B is a basis for Rn, we can write any vector x⃗ in the form

x⃗ = x1v⃗1 + · · ·+ xnv⃗n = C

x1

...
xn

 .

where C is the matrix with column vectors v⃗1, . . . , v⃗n. Since B forms a basis for Rn

the column vectors of C are linearly independent, which implies that C is invertible.
So we can write x1

...
xn

 = C−1x⃗.

The vector on the left is precisely the definition of the coordinates of x⃗ with respect
to the basis B, and so [x⃗]B = C−1x⃗ as desired. □

Remark 4.36. As we saw in lecture, I find this notation difficult to work with.
For the rest of the lecture notes, I’ll abandon this notation, and instead just write
our vectors as linear combinations of the desired basis. Conceptually, we should
remember that different bases define different coordinate systems on Rn. Our goal
in this chapter is to figure out what coordinate systems help us best understand a
given linear transformation.

4.18.2. Matrix Similarity.

Example 4.37. Let A and B = {v⃗1, v⃗2, v⃗3} be as in Example 4.31. Recall that

TA (x1v⃗1 + x2v⃗2 + x3v⃗3) = x1v⃗1 + x2v⃗2 + 2x3v⃗3.

Let C =
(
v⃗1 v⃗2 v⃗3

)
. Then the above equality is identical to

TA

C

x1

x2

x3

 = C

 x1

x2

2x3


⇔ AC

x1

x2

x3

 = C

 x1

x2

2x3


⇔ C−1AC

x1

x2

x3

 =

 x1

x2

2x3


⇔ TC−1AC

x1

x2

x3

 =

 x1

x2

2x3

 .

That is,

TA(x1v⃗1 + x2v⃗2 + x3v⃗3) = x1v⃗1 + x2v⃗2 + x3v⃗3

if and only if

TB(x1e⃗1 + x2e⃗2 + x3e⃗3) = x1e⃗1 + x2e⃗2 + 2x3e⃗3,

where B = C−1AC. That is, the matrices A and B behave similarly with respect
to different bases for R3. This gives rise to the following definition.
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Definition 4.38. Two n× n matrices X and Y are called similar if there exists
an invertible matrix C so that

X = C−1Y C.

In this case, we write X ∼ Y . Note that if X is similar to Y , then Y is similar to
X, since we can write

Y = (C−1)−1X(C−1).

The following Proposition generalizes what we observed in the previous example.

Proposition 4.39. Let A and B be similar matrices, so that B = C−1AC for an
invertible matrix C. Let B be the basis for Rn defined by the columns of C. Then,
for any x⃗ in Rn we have

TA(x1v⃗1 + · · ·+ xnv⃗n) = a1v⃗1 + · · ·+ anv⃗n

if and only if

TB(x1e⃗1 + · · ·+ xne⃗n) = a1e⃗1 + · · ·+ ane⃗n

where {e⃗1, . . . , e⃗n} is the standard basis for Rn. That is,

TA ([x⃗]B) = [TA(x⃗)]B .

We should read this equality as saying that the matrix tranformations TA and TB

act the same with respect to different coordinate systems.

Proof. This proof follows similarly to our computation in the previous example.
We have

TA(x1v⃗1 + · · ·+ xnv⃗n) = a1v⃗1 + · · ·+ anv⃗n.

⇔ TA

C

x1

...
xn


 = C

a1
...
an



⇔ AC

x1

...
xn

 = C

a1
...
an



⇔ C−1AC

x1

...
xn

 =

a1
...
an



⇔ TB


x1

...
xn


 = C

a1
...
an


⇔ TB(x1e⃗1 + · · ·+ xne⃗n) = a1e⃗1 + · · ·+ ane⃗n.

□
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In Example 4.31, we observed that the matrix A was similar to1 0 0
0 1 0
0 0 2

 .

Matrices of this form define particularly nice matrix transformations, since the
transformation just scales each coordinate of our vector. We have the following
definition.

Definition 4.40. An n×n matrix D is called diagonal if the only nonzero entries
lie on the diagonal of D. That is,

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 .

In this case, we write D = diag(d1, d2, . . . , dn).

4.18.3. Diagonalization. Note that a matrix transformation defined by a di-
agonal matrix is particularly simple to understand: if

D = diag(d1, d2, . . . , dn)

then

D


x1

x2

...
xn

 =


d1x1

d2x2

...
dnxn

 .

This leads the question: what matrices A are similar to a diagonal matrix? We
have the following definition.

Definition 4.41. An n× n matrix A is called diagonalizable if it is similar to
a diagonal matrix.

By Proposition 4.39, if a matrix is diagonalizable, then we can find a coordinate
system to conveniently view our matrix transformation, just like we saw in Example
4.31. The remaining results in this section give a characterization of such matrices.
The following result generalizes what we observed in Example 4.31.

Theorem 4.42 (The Diagonalization Theorem). An n × n matrix A is diagonal-
izable if and only if A has n linearly independent eigenvectors. Furthermore, if A
is diagonalizable with linearly independent eigenvectors v⃗1, . . . , v⃗n corresponding to
the eigenvalues λ1, . . . , λn then D = C−1AC where

D = diag(λ1, . . . , λn) and C =
(
v⃗1 · · · v⃗n

)
.

Proof. First, suppose that A has n linearly independent eigenvectors v⃗1, . . . , v⃗n
corresponding to eigenvalues λ1, . . . , λn and let C be the matrix

C =
(
v⃗1 · · · v⃗n

)
.

Since the columns of C are linearly independent, we know that C is invertible. To
compute the matrix C−1AC, we’ll multiply by the standard basis vectors e⃗i, which
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exactly pick out the ith column, as you observed in Activity 4.34. So, if e⃗i is the
ith standard basis vector, note that

(4.4) Ce⃗i = v⃗i ⇒ e⃗i = C−1v⃗i.

We have

C−1ACe⃗i = C−1Av⃗i, by Equation (4.4)

= C−1λiv⃗i, since v⃗i is an eigenvector of λi

= λiC
−1v⃗i

= λie⃗i, by Equation (4.4).

Since the ith column of C−1AC = λie⃗i we have that

C−1AC = diag(λ1, . . . , λn)

as desired. Conversely, suppose that A is diagonalizable, so that

C−1AC = D

for an invertible matrix C and diagonal matrix D = diag(d1, . . . , dn). Suppose that
C has column vectors equal to c⃗i. Since C is invertible, we know that {c⃗1, . . . , c⃗n}
is a linearly independent set. So, we just need to show that c⃗i is an eigenvector
with eigenvalue di. As we observed before, note that

(4.5) Ce⃗i = c⃗i ⇒ e⃗i = C−1c⃗i.

So we have

Ac⃗i = CDC−1c⃗i

= CDe⃗i, by Equation (4.5)

= Cdie⃗i, since the ith column of D is die⃗i

= diCe⃗i

= dic⃗i, by Equation (4.5)

So, c⃗i is an eigenvector of A with eigenvalue di as desired. □

Remark 4.43. The Diagonalization Theorem along with Proposition 4.39 tells us
that when A is diagonalizable, then if we define coordinates for Rn in terms of any n
linearly independent eigenvectors, then the matrix transformation TA behaves like a
diagonal matrix on this coordinate system. There is one other useful application of
diagonalization you observed in your activity today, which I’ll state as a Proposition
below.

Proposition 4.44. Let A be a diagonalizable matrix, with diagonalization D =
C−1AC. Then,

An = CDnC−1

for any integer n.
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Proof. We have

An = (CDC−1)n

= (CDC−1)(CDC−1) · · · (CDC−1)︸ ︷︷ ︸
n times

= CD(C−1C)DC−1 · · ·CDC−1︸ ︷︷ ︸
n times

= C DD · · ·D︸ ︷︷ ︸
n times

C−1

= CDnC−1.

□

Example 4.45. Consider the matrix

A1 =

(
0 1
2 1

)
from Activity 4.34. Observe that A1 has eigenvalues λ = −1 and λ = 2 and

E−1 = Span

((
1
−1

))
, E2 = Span

((
1
2

))
.

From the Diagonalization Theorem, we can write D = C−1AC where

D =

(
−1 0
0 2

)
and C =

(
1 1
−1 2

)
.

So, we have

A10 = C

(
(−1)10 0

0 210

)
C−1.

We compute

C−1 =
1

3

(
2 −1
1 1

)
and so

A10 =

(
1 1
−1 2

)(
1 0
0 1024

)(
2/3 −1/3
1/3 1/3

)
=

(
342 341
682 683

)
.

To use the Diagonalization Theorem, we need a method to determine whether A
has enough linearly independent eigenvectors. We have the following Proposition,
which gives a special case.

Proposition 4.46. Let λ1, . . . , λk be distinct eigenvalues of a matrix A, and sup-
pose that v⃗i ∈ Eλi

for each i ∈ {1, . . . , k}. Then {v⃗1, . . . , v⃗k} is a linearly indepen-
dent set.

Proof. On your next homework, you’ll show that any two eigenvectors coming
from distinct eigenvalues are linearly independent. The rest of this proof follows
by mathematical induction, similar to what you’ve shown. I’ll omit the details of
the proof here, since this isn’t a method we’ve discussed together. If you’d like to
see the details, feel free to stop by office hour. □
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Corollary 4.47. If an n× n matrix A has n distinct eigenvalues, then A is diago-
nalizable.

Proof. If A has n distinct eigenvalues, then by Proposition 4.44 A must then
have n distinct eigenvectors, and so A is diagonalizable by the Diagonalization
Theorem. □

Remark 4.48. Note that the converse of Proposition 4.44 does not hold. That
is, it’s not the case that if an n × n matrix A is diagonalizable then A must have
n distinct eigenvalues. For example, if we let A be the matrix defined in example
4.31 is diagonalizable but only has two eigenvalues. The following definition will
help us characterize n× n diagonalizable matrices with less than n eigenvalues.

Definition 4.49. For an eigenvalue λ of a matrix A, the geometric multiplicity
of λ is defined to be the dimension of the λ-eigenspace Eλ.

Example 4.50. Let A be as in Example 4.31. Recall that A has eigenvalues λ = 1
and λ = 2 and that dimE1 = 2 and dimE2 = 1. So the geometric multiplicity of
the eigenvalue λ = 1 is equal to 2, and the geometric multiplicity of the eigenvalue
λ = 2 is equal to 1.

We can then rephrase the Diagonalization Theorem as follows.

Theorem 4.51 (Diagonalization Theorem, rephrasing). An n × n matrix A is
diagonalizable if and only if the sum of the geometric multiplicities of the eigenvalues
of A is equal to n.

Note that we really done anything in this rephrasing but give new terminology, so
there’s nothing new to prove.

Example 4.52. Recall the setting of Example 4.31. If

A =

1 0 1
0 1 1
0 0 2


then we found that

χA(x) = (1− x)2(2− x),

and that E1 had dimension 2 and E2 had dimension 1. In this case, observe that
the dimension of the λ-eigenspace exactly matches the power on the term (λ − x)
in χA. This turns out to always be the case for diagonalizable matrices. We have
the following definition.

Definition 4.53. Suppose that a matrix A has eigenvalue λ. The algebraic
multiplicity of λ is the largest integerm so that (x−λ)m divides the characteristic
polynomial χA of A.

Example 4.54. In Example 4.31, the algebraic multiplicity of λ = 1 is 2, and the
algebraic multiplicity of λ = 2 is 1.

We can now add the our Diagonalization Theorem. We have the following.
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Theorem 4.55 (Diagonalization Theorem, final version). Let A be an n×n matrix.
The following are equivalent.

(1) A is diagonalizable;

(2) The sum of the geometric multiplicities of A is equal to n;

(3) The geometric multiplicity of every eigenvalue λ is equal to the algebraic mul-
tiplicity of λ.

Furthermore, if A is diagonalizable with linearly independent eigenvectors v⃗1, . . . , v⃗n
corresponding to the eigenvalues λ1, . . . , λn then D = C−1AC where

D = diag(λ1, . . . , λn) and C =
(
v⃗1 · · · v⃗n

)
.

All that’s left to show in this final version is (2) ⇔ (3). We first need a Lemma.

Lemma 4.56. The geometric multiplicity of any eigenvalue is less than or equal
to its algebraic multiplicity.

We’ll omit the proof of this Lemma (there are ways to prove this with the infor-
mation we have, but they’re all a bit complicated... I’ll keep searching for a better
alternative). Let’s see how this proves our Theorem.

Proof of Theorem 4.55. Let A be an n × n matrix with eigenvalues λ1, . . . , λk

and let λi have geometric multiplicity di and algebraic multiplicity mi. By the
previous lemma, we know that di ≤ mi.

(2) ⇒ (3): Suppose that d1+ · · ·+dn = n. Note that the characteristic polynomial
of A is of degree n, and since we can write

χA(x) = (x− λ1)
m1 · · · (x− λk)

mk

this gives m1 + · · ·+mk = n. So, if di < mi for any i we would have

d1 + · · ·+ dk < m1 + · · ·+mk < n,

contradicting our assumption. Since by our Lemma di ≤ mi, we must then have
the equality di = mi for every i.

(3) ⇒ (2): Conversely, suppose that mi = di for all i. Then we have

n = m1 + · · ·mk = d1 + · · ·+ dk,

as desired. □

Remark 4.57. Note that the addition of part (3) to our Theorem doesn’t quite
simplify our computation when our matrix is diagonalizable: no matter what we
do, we still need to compute the dimension of the λ-eigenspace for each value of
λ. But it does give the potential to simplify our justification that a matrix is not
diagonalizable: all we need to do is find one eigenvalue where the geometric and
algebraic multiplicities do not agree.
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Example 4.58. Consider the matrix

A2 =

0 1 0
0 0 1
2 −5 4


from Activity 4.34. The characteristic polynomial of A2 is given by

χA3(x) = −(x− 2)(x− 1)2

and so λ = 1 has algebraic multiplicity 2. However,

A2 − 1 · I3 =

−1 1 0
0 −1 1
2 −5 3


which is row equivalent to a matrix with 2 pivots. So, nullity(A − I3) = 1 which
tells us that the geometric multiplicity of λ = 1 is equal to 1. So, by our final
version of the Diagonalization Theorem, we know that A2 is not diagonalizable.



Chapter 6

Orthogonality

So far, we’ve focused on building an algebraic understanding of Rn as a vector space,
by equipping the set of vectors in Rn with the algebraic operations of vector addition
and scalar multiplication. While this perspective has helped us to understand many
of the algebraic properties of Euclidean space, we’ve left out two important features:
angles and distances. In this chapter, we see how the dot product gives Rn the
structure of an “inner product space”, which will fill in these missing features. We
will then see how our old algebraic understanding of Rn interacts with these new
measurements.

6.27. The Dot Product

Definition 6.1. Let

u⃗ =


u1

u2

...
un

 and v⃗ =


v1
v2
...
vn


be vectors in Rn. The dot product of u⃗ and v⃗ is the scalar

u⃗ · v⃗ := u1v1 + u2v2 + · · ·+ unvn.

On your next homework, you’ll show the dot product satisfies the following prop-
erties.

Proposition 6.2. Let u⃗, v⃗ and w⃗ be vectors in Rn and let c be a scalar. Then,

(1) Commutativity: u⃗ · v⃗ = v⃗ · u⃗
(2) Distributivity with Addition: (u⃗+ v⃗) · w⃗ = u⃗ · w⃗ + v⃗ · w⃗
(3) Distributivity with Scalar Multiplication: (cu⃗) · v⃗ = c(u⃗ · v⃗)

This innocent looking operation is all we need to give some geometric structure
to our understanding of Rn. In fact, it turns out that the dot product defines

79
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something called an inner product on Rn. We’ll omit these details here, but
inner products are the operations needed to define notions of distance and angles
on more general vector spaces.

Definition 6.3. The norm of u⃗ is defined by

∥u⃗∥ := u⃗ · u⃗.

Observe that, for any vector u⃗, we have

∥u⃗∥ =
√

u2
1 + u2

2 + · · ·+ u2
n

and so the norm measures the length of a given vector. This allows us to define the
distance between vectors.

Definition 6.4. Let u⃗ and v⃗ be vectors in Rn. Then, the distance between u⃗ and
v⃗, denoted d(u⃗, v⃗) is equal to the length of the vector u⃗− v⃗. That is,

d(u⃗, v⃗) = ∥u⃗− v⃗∥.

Definition 6.5. Let u⃗ and v⃗ be vectors in Rn. Then, the angle between vectors
u⃗ and v⃗ is defined as the angle θ in the triangle below

where this picture is taking place in the 2-dimensional plane spanned by u⃗ and v⃗
in Rn

We have the following.

Proposition 6.6. Let u⃗ and v⃗ be nonparallel vectors in Rn. Then, the angle
between u⃗ and v⃗ is the value θ ∈ (0, π] given by

cos(θ) =
u⃗ · v⃗

∥u⃗∥∥v⃗∥

Proof. By Law of Cosines we have

∥u⃗− v⃗∥2 = ∥u⃗∥2 + ∥v⃗∥2 − 2∥u⃗∥∥v⃗∥ cos θ.
Furthermore, observe that for any vector x⃗ we have

∥x⃗∥2 = x⃗ · x⃗.
So, we get

(u⃗− v⃗) · (u⃗− v⃗) = u⃗ · u⃗+ v⃗ · v⃗ − 2∥u⃗∥v⃗∥ cos θ.
Using Proposition 6.2 we have

u⃗ · u⃗− 2u⃗ · v⃗ + v⃗ · v⃗ = u⃗ · u⃗+ v⃗ · v⃗ − 2∥u⃗∥v⃗∥ cos θ
⇒ −2u⃗ · v⃗ = −2∥u⃗∥v⃗∥ cos θ
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⇒ cos θ =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
. □

Corollary 6.7. Vectors u⃗ and v⃗ are perpendicular (that is, the angle between them
is equal to 90◦) if and only if u⃗ · v⃗ = 0.

In the following section, we’ll see that this notion of orthogonality is precisely what’s
needed for our algebraic and geometric notions to blend. =

6.28. Orthogonal Bases

In the previous chapters, we saw that the fundamental object needed to understand
a vector space is a basis. We learned that real vector spaces of dimension n are
all isomorphic (“the same” algebraically) to Rn, and we saw how different bases
define coordinate systems on our vector spaces which can help us better understand
certain linear transformations (this is the eigen-story from the previous chapter).
Let’s look at how the dot product interacts with different bases for Rn.

Example 6.8. Consider the basis B1 = {v⃗1, v⃗2} where

v⃗1 =

(
1
1

)
, and v⃗2 =

(
2
0

)
and consider a vector x⃗ written in terms of this basis, say

[x⃗]B1
=

(
−1
1

)
.

Since B is not an orthogonal basis, if we wanted to compute something like ∥x⃗∥ our
best option would be to just rewrite our vector in terms of the standard basis and
use our formulas above. The following Proposition will tell us which bases make our
geometric computations similarly easy to computations with the standard basis.

Definition 6.9. A basis {v⃗1, v⃗2, . . . , v⃗n} is orthogonal if v⃗i · v⃗j = 0 for every
i ̸= j. If it’s also the case that ∥v⃗i∥ = 1 for every i we call B an orthonormal
basis for Rn.

Example 6.10. The basis

B1 =


2
2
1

 ,

 1
0
−2

 ,

−4
5
−2


from Activity 5.35 is an orthogonal basis for R3, but it is not orthonormal. The
standard basis for Rn is an orthonormal basis.

Proposition 6.11. Let B be an orthonormal basis for Rn and take any vectors
x⃗, y⃗ in Rn. Then

[x⃗]B · [y⃗]B = x⃗ · y⃗.

In particular, we have ∥x⃗∥ = ∥[x⃗]B∥.
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Proof. Suppose that B = {v⃗1, v⃗2, . . . , v⃗n} is an orthonormal basis for Rn and write

[x⃗]B =

x1

...
xn

 and [y⃗]B =

y1
...
yn

 .

That is,

x⃗ = x1v⃗1 + · · ·+ xnv⃗n

y⃗ = y1v⃗1 + · · ·+ ynv⃗n.

Then we have

x⃗ · y⃗ = (x1v⃗1 + · · ·+ xnv⃗n) · (y1v⃗1 + · · ·+ ynv⃗n)

Using the distributive property of the dot product, we’ll end up with a sum of terms
of the form

xiyj v⃗iv⃗j .

But, since we know that v⃗i · v⃗j = 0 whenever i ̸= j then we have

x⃗ · y⃗ = x1y1v⃗1 · v⃗1 + · · ·xnynv⃗n · v⃗n.

But we also know that v⃗i · v⃗i = ∥v⃗∥ = 1, since our basis is orthonormal. So, we
have

x⃗ · y⃗ = x1y1 + · · ·+ xnyn

as desired. □

Proposition 6.11 tells us that orthonormal bases are the “right” kinds of bases to
use when we want to understand Rn as an inner product space. So, the next natural
question is, how can we find an orthonormal basis? To answer this question, we
first need to make an observation.

Definition 6.12. Let u⃗ and v⃗ be vectors in Rn. Then, the orthogonal pro-
jection of u⃗ onto the vector v⃗ is the vector parallel to v⃗ obtained by dropping a
perpendicular line from u⃗ as in the picture below

We have the following.

Proposition 6.13. Let u⃗ and v⃗ be vectors in Rn. Then,

projv⃗(u⃗) =
u⃗ · v⃗
v⃗ · v⃗

v⃗
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Proof. Since projv⃗u⃗ is in the same direction as v⃗ we must have

projv⃗u⃗ = cv⃗,

for a positive scalar c and so ∥projv⃗u⃗∥ = c∥v⃗∥. We have

cos(θ) =
∥projv⃗u⃗∥

∥u⃗∥
=

c∥v⃗∥
∥u⃗∥

and from Proposition 6.6 we know that

cos(θ) =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
.

This gives
u⃗ · v⃗

∥u⃗∥∥v⃗∥
=

c∥v⃗∥
∥u⃗∥

⇒ c =
u⃗ · v⃗
∥v⃗∥2

.

Since v⃗ · v⃗ = ∥v⃗∥2, the desired equality follows. □

We need one more observation.

Proposition 6.14. For any vectors u⃗ and v⃗ in Rn we have u⃗−projv⃗u⃗ is orthogonal
to v⃗.

Proof. We have

(u⃗− projv⃗u⃗) · v⃗ = (u⃗− u⃗ · v⃗
v⃗ · v⃗

v⃗) · v⃗

= u⃗ · v⃗ − u⃗ · v⃗
v⃗ · v⃗

v⃗ · v⃗

= u⃗ · v⃗ − u⃗ · v⃗
= 0.

□

We can use the Proposition above to generate orthogonal basis. Note that the
obtain an orthonormal basis, we just divide each orthogonal basis vector by its
norm.

Algorithm(The Gram-Schmidt Process). Let V be a vector subspace of Rn with
basis {u⃗1, . . . , u⃗m}. Define the vectors

v⃗1 = u⃗1

v⃗2 = u⃗2 − projv⃗1 u⃗2

v⃗3 = u⃗3 − projv⃗1 u⃗3 − projv⃗2 u⃗3

...

v⃗m = u⃗m − projv⃗1 u⃗m − projv⃗2 u⃗m −
...− projv⃗m−1

u⃗m.

Then, {v⃗1, . . . , v⃗m} is an orthogonal basis for V .

Remark 6.15. The proof of this is a bit messy, so I’m not going to type this
up. We’ll talk about the idea for this in class, so you can go back to that lecture
recording to review this. Or, you can look at pages 532-533 of our text.
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Remark 6.16. Suppose that we have an orthogonal basis {v⃗1, v⃗2, . . . , v⃗n} for Rn,
and let A be the matrix with column vectors v⃗i. Then A⊤ is the matrix with rows
v⃗i, and so observe that

A⊤A =


v⃗1 · v⃗1 v⃗1 · v⃗2 · · · v⃗1 · v⃗n
v⃗2 · v⃗1 v⃗2 · v⃗2 · · · v⃗2 · v⃗n

...
...

. . .
...

v⃗n · v⃗1 v⃗n · v⃗2 · · · v⃗n · v⃗n

 .

But since {v⃗1, . . . , v⃗n} is an orthonormal basis, we know that

v⃗i · v⃗j =

{
0 if i ̸= j

1 if i = j.

So, from above we have A⊤A = In. This proves the following.

Proposition 6.17. Let B = {v⃗1, . . . , v⃗n} be a basis for Rn and let A be the matrix
with column vectors v⃗1, . . . , v⃗n. Then B is orthonormal if and only if A−1 = A⊤.

This gives rise to the following (annoying) definition.

Definition 6.18. We call a matrix A orthogonal if A−1 = A⊤.

Remark 6.19. This definition is annoying, because orthogonal matrices aren’t
just those matrices with orthogonal column vectors, but rather with orthonormal
column vectors. I don’t know why we don’t just call them orthonormal matri-
ces. My guess is because matrices with column vectors that are orthogonal, but
not orthonormal, don’t have many nice properties so they don’t get their own name.

Just for fun and in case you’re interested, there are the Hadamard matrices, which
are matrices with orthogonal (but not orthonormal) column vectors, and entries
equal to ±1. It can be shown that for an n × n Hadamard matrix H we have
HH⊤ = nIn so that H−1 = (1/n)H⊤.

Remark 6.20. Note that Proposition 6.17 doesn’t give a more convenient method
of checking whether a set of vectors is orthonormal – in fact, it’s often the case
that computing the inverse of a matrix is more computationally expensive than
just computing dot products – but it does tell us that if you know a matrix is
orthonormal, its inverse is easy to compute.

We have the following observation.

Corollary 6.21. Let A be an orthogonal matrix. Then det(A) = ±1.

Proof. Since AA⊤ = In then det(AA⊤) = det(In) = 1 but we know that

det(AA⊤) = det(A) det(A) = (det(A))2.

So, (det(A))2 = 1 ⇒ det(A) = ±1. □
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6.29. Orthogonally Diagonalizable Matrices

Note that nothing in this section will be needed to complete your final exam, but
I think it’s a nice story to end the semester with.

Example 6.22. Consider the matrix

A =

(
1 2
2 −2

)
.

Observe that A has eigenvalues λ1 = −3 and λ2 = 2 and we have

E−3 = Span(v⃗1) and E2 = Span(v⃗2)

where

v⃗1 =

(
1
−2

)
and v⃗2 =

(
2
1

)
.

Since ∥v⃗1∥ =
√
5 and ∥v⃗2∥ =

√
5 we can normalize these vectors to obtain a basis

B = {u⃗1, u⃗2} for R2 where

u⃗1 =

(
1/
√
5

2/
√
5

)
and u⃗2 =

(
2/
√
5

1/
√
5

)
.

Furthermore, since u⃗1 ∈ E−3 and u⃗2 ∈ E2 then the basis B is both orthonormal
(which is good for preserving distances and angles) and consists of eigenvectors
(which is good for understanding the linear transformation TA).

We have the following.

Definition 6.23. A square matrix A is orthogonally diagonalizable if there
exists an orthogonal matrix Q and a diagonal matrix A so that Q⊤AQ = D.

Note that, an n×n matrix A being orthogonally diagonalizable is equivalent to the
existence of an orthonormal basis for Rn consisting of eigenvectors of A. This is a
particularly nice situation, since orthonormal bases preserve the dot product, and
bases consisting of eigenvectors help us understand the linear transformation TA.
The following result completely characterizes when we’re in this situation. Recall
that a matrix A is symmetric when A = A⊤.

Theorem 6.24 (The Spectral Theorem). An n×n matrix A is orthogonally diag-
onalizable if and only if it is symmetric.

Proof. Suppose first that A is orthogonally diagonalizable. Then, there exists an
orthogonal matrix Q and diagonal matrix D so that

Q⊤AQ = D.

This gives

QDQ⊤ = QQ⊤AQQ⊤ = A,

recalling that for orthogonal matrices we have Q⊤ = Q−1. But then we have

A⊤ = (QDQ⊤)⊤ = (Q⊤)⊤D⊤Q⊤ = QDQ⊤ = A

noting that D⊤ = D since diagonal matrices are always symmetric.
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Our text has a proof for the converse of this result, but this requires a bit more
machinery than we had time to cover. There’s a clean proof by using an inductive
argument I quite like from Poole’s text. I’ll go ahead and post that to our Canvas
Page’s tab, since the exposition in Poole is quite nice. □
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