
exam prep 3 21-241, spring 2024, bellah

Name:

Andrew ID:

General Instructions:

� This exam prep contains two sections: Section A includes computational problems, and Section B
includes conceptual and proof-based problems. Please read the instructions at the beginning of each
section carefully.

� You are allowed a full page of notes (front and back).

� No calculators or any other electronics are permitted.

� Write your answers clearly and make sure your handwriting is legible. If we cannot read your work,
we will not grade the problem.

� All work must be completed in the space provided. If you need scratch paper, there is some at the
front of the class. Please note that scratch work will not be graded.

� Please ask questions if anything is unclear.

� If you finish early, check all of your work, then bring this packet up to the front of the class.

� Good luck!
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Section A.

Instructions:

1. Each problem in this section is worth one point and no partial credit will be given.

2. You do not need to show your work or provide justification on any problem in Section A.

3. Make sure to clearly box or circle your answer.

A1. Determine which of the sets below are vector subspaces of R2. Clearly circle your selection for each
part. Note that you do not need to show any work.

a) The set of vectors satisfying the matrix-vector equation(
1 2
1 1

)
x⃗ =

(
1
0

)
.

is a vector subspace is not a vector subspace

b) The set of vectors

(
x
y

)
so that x+ y = 0.

is a vector subspace is not a vector subspace

c) The set of vectors

(
x
y

)
so that x, y ≥ 0.

is a vector subspace is not a vector subspace



A2. Find a nontrivial solution to the vector equation

x1v⃗1 + x2v⃗2 + x3v⃗3 = 0⃗

where v⃗1, v⃗2, v⃗3 are defined below, or state that the vectors are linearly independent

v⃗1 =

1
2
0

 , v⃗2 =

0
1
1

 , v⃗3 =

 1
1
−1

 .

A3. Find a basis for the subspace

V = Span
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Section B.

Instructions:

1. Each problem in this section is worth 5 points.

2. You must provide justification for all of your answers in Section B.

3. Points will be awarded based on the rubric below. Note that half points may be awarded, and further
rubric items may be added to cover potential cases not outlined below.

Points Rubric

5 Solution is presented with clear justification that is logically complete and correct.
May include minor typos and computational errors if they do not majorly impact the
argument. No important steps are missing or assumed. All assumptions and special
cases have been covered. All suggestions for improvement come under the category
of “improvements for clarity” rather than “correcting logical errors”. Omission of
details will be judged depending on context of the material, with simpler steps being
acceptable for omission when covering more advanced topics.

4 Solution is close to full and complete, but contains either a computational error
or an error in reasoning that majorly impacts the argument. This score is also
appropriate for solutions that are mathematically sound but confusingly written.

3 Solution is incorrect, but understanding of the problem was demonstrated and stu-
dent provided a clear outline of a potential approach with information about where
they got stuck -or- solution is correct but justification is insufficient or so confus-
ingly written that it cannot be followed with a reasonable amount of effort.

2 Solution is incorrect, but student demonstrated understanding of the problem -or-
solution is correct and student did not provide justification for their answer.

1 Solution is incorrect and student did not demonstrate understanding of the problem,
but did demonstrate some knowledge of relevant material.

0 Solution is incorrect or incomplete, and there was no demonstration of knowledge
of relevant material.



B1. True or False: if v⃗1, v⃗2, v⃗3, v⃗4 are linearly dependent vectors, then v⃗1, v⃗2, v⃗3 are also linearly dependent.
If true, provide a proof. If false, provide a counterexample and justify why this is a
counterexample.

B2. Show that if {v⃗1, v⃗2, v⃗3} is a linearly independent set of vectors in Rn, then so is {v⃗1 + v⃗2 + v⃗3, v⃗2, v⃗3}.



B3. Let v⃗1, v⃗2, . . . , v⃗m be vectors in Rn. Show that if m > n the set {v⃗1, v⃗2, . . . , v⃗m} is not a basis for Rn.
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