Chapter 6

1. We deal with each type of elementary matrix separately:

- First, suppose that E is the matrix corresponding to the row operation "add c times row i to row j ". Then E is obtained from I by the same operation, so E has the form

$$
E=\left(\begin{array}{cccccc}
& & i & & j \\
1 & \ldots & 0 & \ldots & 0 & \\
\vdots & \ddots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & 1 & 0 & \ldots \\
0 & \ldots & c & 0 & 1 & \ldots \\
0 & \ldots & 0 & 0 & \ldots & 1
\end{array}\right) i
$$

Note also that, by proposition $6.8, \operatorname{det}(E)=\operatorname{det}(I)=1$.
Transposing, we obtain:

$$
E^{T}=\left(\begin{array}{cccccc}
& & i & & j \\
1 & \ldots & 0 & \ldots & 0 & \\
\vdots & \ddots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & \ldots & c & \ldots \\
0 & \ldots & 0 & 1 & 0 & \ldots \\
0 & \ldots & 0 & 0 & 1 & \ldots \\
0 & \ldots & 0 & 0 & \ldots & 1
\end{array}\right) i
$$

But then E^{T} is the elementary matrix corresponding to the operation "add c times row j to row i ", hence by proposition 6.8 applied again, $\operatorname{det}\left(E^{T}\right)=\operatorname{det}(I)=1$. In particular, $\operatorname{det}(E)=\operatorname{det}\left(E^{T}\right)$.

- Suppose that E is the matrix corresponding to the row operation "interchange rows i and j ". Then E is obtained from I by performing that same operation, so E has the form

$$
E=\left(\begin{array}{cccccc}
& & i & & j \\
1 & \ldots & 0 & \ldots & 0 & \\
\vdots & \ddots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & \ldots & 1 & \ldots \\
0 & \ldots & 0 & 1 & 0 & \ldots \\
0 & \ldots & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right) i
$$

But then $E^{T}=E$, so in particular $\operatorname{det}\left(E^{T}\right)=\operatorname{det}(E)$.

- Finally, suppose that E is the elementary matrix corresponding to the operation "multiply row i by c ". Then E is obtained from I by performing that same operation, so E has the
form

$$
E=\left(\begin{array}{cccccc}
& & i & & j & \\
& \ldots & 0 & \ldots & 0 & \\
\vdots & \ddots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & c & \ldots & 0 & \ldots \\
0 & \ldots & 0 & 1 & 0 & \ldots \\
0 & \ldots & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right) i
$$

Again, this gives $E^{T}=E$ hence in particular $\operatorname{det}\left(E^{T}\right)=\operatorname{det}(E)$.
2.
(a) We already saw that, if E corresponds to the row operation "add c times row i to row $j "$, then $\operatorname{det}(E)=1$. If instead E corresponds to the row operation "interchange rows i and j ", then by Proposition $6.8 \operatorname{det}(E)=-\operatorname{det}(I)=-1$. By the same proposition, if E corresponds to the row operation "multiply row i by c ", then $\operatorname{det}(E)=c$.
(b) $E B$ is the matrix obtained from B by performing the row operation corresponding to E, so this follows by proposition 6.8 together with the values obtained in (a).
(c) If A is invertible, then A can be row reduced to I, sothere exists $k \in \mathbb{N}$ and elementary matrices E_{1}, \ldots, E_{k} such that $E_{1} \ldots E_{k} A=I$, so $A=E_{k}^{-1} \cdots E_{1}^{-1}$. Applying (b) k many times,

$$
1=\operatorname{det}(I)=\operatorname{det}\left(E_{1} \ldots E_{k} A\right)=\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right) \operatorname{det}(A)
$$

and therefore

$$
\operatorname{det}(A)=\left(\operatorname{det}\left(E_{1}\right)\right)^{-1} \cdots\left(\operatorname{det}\left(E_{k}\right)\right)^{-1}=\left(\operatorname{det}\left(E_{k}\right)\right)^{-1} \cdots\left(\operatorname{det}\left(E_{1}\right)\right)^{-1}
$$

because multiplication of numbers is commutative.
We now make the following auxiliary observation: if E is an elementary matrix, then

$$
\operatorname{det}\left(E^{-1}\right)=(\operatorname{det}(E))^{-1}
$$

To see this, note that E^{-1} is again an elementary matrix of the same type. Then argue by cases using the values computed in (a).
Now applying (b) k many times:

$$
\begin{aligned}
\operatorname{det}(A) \operatorname{det}(B) & =\left(\operatorname{det}\left(E_{k}\right)\right)^{-1} \cdots\left(\operatorname{det}\left(E_{1}\right)\right)^{-1} \operatorname{det}(A) \\
& =\operatorname{det}\left(E_{k}^{-1}\right) \cdots \operatorname{det}\left(E_{1}^{-1}\right) \operatorname{det}(B) \\
& =\operatorname{det}\left(E_{k}^{-1} \cdots E_{1}^{-1} B\right) \\
& =\operatorname{det}(A B)
\end{aligned}
$$

(d) If A is not invertible, then $\operatorname{det}(A)=0$, so it suffices to argue that $\operatorname{det}(A B)=0$. To do that, we show that $A B$ must not be invertible. But this can be seen as follows: if $A B$ were invertible, then there would exist some matrix C with $(A B) C=I$, hence $A(B C)=I$, which yields that A itself is invertible, contradiction.
3. $A A^{-1}=I$, hence $I=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$ and so $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
4. False, let I be the 2×2 identity matrix, so $\operatorname{det}(I)=1$ and $\operatorname{det}(-I)=1$.
6. True. Suppose A and B are $n \times n$ matrices and $A B$ is invertible, so there exists C such that $(A B) C=I$. Note that then $A(B C)=I$, so the column space of A is contained in the column space of I, which is all of \mathbb{R}^{n}. So, the column space of A is \mathbb{R}^{n}. But A is square, and so A must be invertible. The proof for B is analogous, or can be obtained by writing $B=A^{-1}(A B)$, which is a product of invertible matrices hence invertible.

1 Chapter 7

2. Since $(A-\lambda I)^{T}=A^{T}-\lambda I$, it follows that $\chi_{A_{T}}=\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=$ $\operatorname{det}(A-\lambda I)=\chi_{A}$ (recall that $\operatorname{det}(B)=\operatorname{det}\left(B^{T}\right)$ for all square matrices $\left.B\right)$.
3. Let λ be an an eigenvalue of A, so there exists some nonzero x with $A x=\lambda x$. Then $\lambda x=A x=A^{2} x=A(A x)=A(\lambda x)=\lambda A x=\lambda^{2} x$. Since $x \neq \overrightarrow{0}$, we infer that $\lambda=\lambda^{2}$, so $\lambda \in\{0,1\}$.
4. False, let

$$
A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Both A and B have only 0 as an eigenvalue (because they are nilpotent). Note that $e_{2}=(0,1)$ is an eigenvector of A (by $A e_{2}=\overrightarrow{0}$) but not an eigenvector of B (because $\left.A e_{2}=e_{1}\right)$.
5. False, the matrix $2 I$ has only the eigenvalue 2 , whereas its RREF is I, which has only the eigenvalue 1.
6. False. The matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

is invertible (its a counterclockwise rotation by $\pi / 2$), hence $R=I$ has eigenvalue 1 (and every vector is an eigenvector). But A has no real eigenvalues, so no eigenvectors in \mathbb{R}^{2}.

