
Chapter 6

1. We deal with each type of elementary matrix separately:

• First, suppose that E is the matrix corresponding to the row operation “add c times row i
to row j”. Then E is obtained from I by the same operation, so E has the form

E =

i j



1 . . . 0 . . . 0
...

. . . . . . . . . . . . . . .
0 . . . 1 . . . . . . . . . i
0 . . . 0 1 0 . . .
0 . . . c 0 1 . . . j
0 . . . 0 0 . . . 1

Note also that, by proposition 6.8, det(E) = det(I) = 1.

Transposing, we obtain:

ET =

i j



1 . . . 0 . . . 0
...

. . . . . . . . . . . . . . .
0 . . . 1 . . . c . . . i
0 . . . 0 1 0 . . .
0 . . . 0 0 1 . . . j
0 . . . 0 0 . . . 1

But then ET is the elementary matrix corresponding to the operation “add c times row
j to row i”, hence by proposition 6.8 applied again, det(ET ) = det(I) = 1. In particular,
det(E) = det(ET ).

• Suppose that E is the matrix corresponding to the row operation “interchange rows i and
j”. Then E is obtained from I by performing that same operation, so E has the form

E =

i j



1 . . . 0 . . . 0
...

. . . . . . . . . . . . . . .
0 . . . 0 . . . 1 . . . i
0 . . . 0 1 0 . . .
0 . . . 1 0 0 . . . j
0 0 0 0 . . . 1

But then ET = E, so in particular det(ET ) = det(E).

• Finally, suppose that E is the elementary matrix corresponding to the operation “multiply
row i by c”. Then E is obtained from I by performing that same operation, so E has the
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form

E =

i j



1 . . . 0 . . . 0
...

. . . . . . . . . . . . . . .
0 . . . c . . . 0 . . . i
0 . . . 0 1 0 . . .
0 . . . 0 0 1 . . . j
0 0 0 0 . . . 1

Again, this gives ET = E hence in particular det(ET ) = det(E).

2.

(a) We already saw that, if E corresponds to the row operation “add c times row i to row
j”, then det(E) = 1. If instead E corresponds to the row operation “interchange rows i
and j”, then by Proposition 6.8 det(E) = −det(I) = −1. By the same proposition, if E
corresponds to the row operation “multiply row i by c”, then det(E) = c.

(b) EB is the matrix obtained from B by performing the row operation corresponding to E, so
this follows by proposition 6.8 together with the values obtained in (a).

(c) If A is invertible, then A can be row reduced to I, sothere exists k ∈ N and elementary
matrices E1, . . . , Ek such that E1 . . . EkA = I, so A = E−1

k · · ·E−1
1 . Applying (b) k many

times,
1 = det(I) = det(E1 . . . EkA) = det(E1) · · · det(Ek) det(A),

and therefore

det(A) = (det(E1))
−1 · · · (det(Ek))

−1 = (det(Ek))
−1 · · · (det(E1))

−1

because multiplication of numbers is commutative.

We now make the following auxiliary observation: if E is an elementary matrix, then

det(E−1) = (det(E))−1.

To see this, note that E−1 is again an elementary matrix of the same type. Then argue by
cases using the values computed in (a).

Now applying (b) k many times:

det(A) det(B) = (det(Ek))
−1 · · · (det(E1))

−1 det(A)

= det(E−1
k ) · · · det(E−1

1 ) det(B)

= det(E−1
k · · ·E−1

1 B)

= det(AB).

(d) If A is not invertible, then det(A) = 0, so it suffices to argue that det(AB) = 0. To do
that, we show that AB must not be invertible. But this can be seen as follows: if AB
were invertible, then there would exist some matrix C with (AB)C = I, hence A(BC) = I,
which yields that A itself is invertible, contradiction.
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3. AA−1 = I, hence I = det(AA−1) = det(A) det(A−1) and so det(A−1) = 1
det(A) .

4. False, let I be the 2× 2 identity matrix, so det(I) = 1 and det(−I) = 1.

6. True. Suppose A and B are n× n matrices and AB is invertible, so there exists C such that
(AB)C = I. Note that then A(BC) = I, so the column space of A is contained in the column
space of I, which is all of Rn. So, the column space of A is Rn. But A is square, and so A must
be invertible. The proof for B is analogous, or can be obtained by writing B = A−1(AB), which
is a product of invertible matrices hence invertible.
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2. Since (A − λI)T = AT − λI, it follows that χAT
= det(AT − λI) = det((A − λI)T ) =

det(A− λI) = χA (recall that det(B) = det(BT ) for all square matrices B).

3. Let λ be an an eigenvalue of A, so there exists some nonzero x with Ax = λx. Then
λx = Ax = A2x = A(Ax) = A(λx) = λAx = λ2x. Since x ≠ 0⃗, we infer that λ = λ2, so
λ ∈ {0, 1}.

4. False, let

A =

(
0 0
1 0

)
and

B =

(
0 1
0 0

)
.

Both A and B have only 0 as an eigenvalue (because they are nilpotent). Note that
e2 = (0, 1) is an eigenvector of A (by Ae2 = 0⃗) but not an eigenvector of B (because
Ae2 = e1).

5. False, the matrix 2I has only the eigenvalue 2, whereas its RREF is I, which has only the
eigenvalue 1.

6. False. The matrix

A =

(
0 −1
1 0

)
.

is invertible (its a counterclockwise rotation by π/2), hence R = I has eigenvalue 1 (and
every vector is an eigenvector). But A has no real eigenvalues, so no eigenvectors in R2.
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