Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than 7 pm on Tuesday, September 6th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Problems: 1-8 from Chapter 1 of the Lecture Notes.

1. Prove Lemma 1.4 from the Lecture Notes.
2. Prove Lemma 1.5 from the Lecture Notes. (Hint: use strong induction).
3. Prove Lemma 1.6 from the Lecture Notes.
4. Complete the proof of Lemma 1.7 from the Lecture Notes. That is, show that

$$
\operatorname{lcm}(a, b)=\prod_{i=1}^{\infty} p_{i}^{\max \left\{k_{i}, r_{i}\right\}} .
$$

(Hint: observe that we can write $\max \left\{k_{i}, r_{i}\right\}=k_{i}+k_{i}^{\prime}$ and $\max \left\{k_{i}, r_{i}\right\}=r_{i}+r_{i}^{\prime}$ where $k_{i}^{\prime}, r_{i}^{\prime} \geq 0$.)
5. For each pair of integers, compute $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ using any method discussed in Chapter 1. Make sure to show your work.
a) $a=256, b=160$
b) $a=7544, b=115$
c) $a=8633, b=8051$
6. This problem will complete the proof of Lemma 1.8 from the Lecture Notes. For integers x, y, show that $\min \{x, y\}+\max \{x, y\}=x+y$.
7. Let a, b, c be positive integers. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, show that $a \mid c$.
8. Prove that there are infinitely prime numbers p with $p \equiv 1(\bmod 4)$.

