Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than 7 pm on Monday, September 12th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Problems: Solve the following problems from Chapter 2 of the Lecture Notes.

1. Prove Theorem 2.3.
2. Show that μ is multiplicative, but not completely multiplicative.
3. Determine if the following statement is true: if f is multiplicative, then

$$
F(n)=\prod_{d \mid n} f(d)
$$

is also multiplicative. Provide a proof or counterexample.
6. Prove Corollary 2.9.
8. Determine which of the following statements are true. Provide a proof or counterexample.
a) If $\operatorname{gcd}(m, n)=1$ then $\operatorname{gcd}(\varphi(m), \varphi(n))=1$.
b) If n is composite, then $\operatorname{gcd}(n, \varphi(n))>1$.
c) If the set of distinct primes dividing m and the set of distinct primes dividing n are equal, then $n \varphi(m)=m \varphi(n)$.
10. For a fixed positive integer k, show that if the equation $\varphi(n)=k$ has only one integer solution $n>0$, then $36 \mid n$.
11. For a fixed positive integer k, show that the equation $\varphi(n)=k$ has only finitely many integer solutions $n>0$.
13. Prove Theorem 2.11 (you may assume the set of arithmetic functions forms a group under addition). That is, for arithmetic functions f and g, show that
a) $f * g=g * f$,
b) $(f * g) * h=f *(g * h)$,
c) $f * I=f$, and
d) $f *(g+h)=f * g+f * h$.

