Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than **7pm on Monday**, **September 12th**. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

- * **Do not** write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
- * Type your homework using LaTeX.
- * Write up proofs formally and completely.
- * If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Problems: Solve the following problems from Chapter 2 of the Lecture Notes.

- 1. Prove Theorem 2.3.
- 2. Show that μ is multiplicative, but not completely multiplicative.
- 4. Determine if the following statement is true: if f is multiplicative, then

$$F(n) = \prod_{d|n} f(d)$$

is also multiplicative. Provide a proof or counterexample.

- 6. Prove Corollary 2.9.
- 8. Determine which of the following statements are true. Provide a proof or counterexample.
 - a) If gcd(m, n) = 1 then $gcd(\varphi(m), \varphi(n)) = 1$.
 - b) If n is composite, then $gcd(n, \varphi(n)) > 1$.
 - c) If the set of distinct primes dividing m and the set of distinct primes dividing n are equal, then $n\varphi(m) = m\varphi(n)$.
- 10. For a fixed positive integer k, show that if the equation $\varphi(n) = k$ has only one integer solution n > 0, then $36 \mid n$.
- 11. For a fixed positive integer k, show that the equation $\varphi(n) = k$ has only finitely many integer solutions n > 0.
- 13. Prove Theorem 2.11 (you may assume the set of arithmetic functions forms a group under addition). That is, for arithmetic functions f and g, show that
 - a) f * g = g * f,
 - b) (f * g) * h = f * (g * h),
 - c) f * I = f, and
 - d) f * (g + h) = f * g + f * h.