Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than 7 pm on Monday, September 19th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Problems: Solve the following problems from Chapter 2 of the Lecture Notes.
3. Recall that $\lfloor x\rfloor$ denotes the largest integer m with $m \leq x$. Let

$$
f(n)=\lfloor\sqrt{n}\rfloor-\lfloor\sqrt{n-1}\rfloor .
$$

Show that f is multiplicative but not completely multiplicative.
14. This problem will complete the proof of Lemma 2.16. Show that

$$
\left(p^{d}-1\right) \mid\left(p^{n}-1\right)
$$

if and only if $d \mid n$.
15. Compute $\Phi_{12}(x)$ and use this to find an expression for the four 12 th roots of unity in terms of radicals.
16. Suppose that n and k are positive integers with prime factorizations

$$
n=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}} \text { and } k=p_{1}^{b_{1}} \cdots p_{t}^{b_{t}}
$$

with $a_{i}, b_{i} \geq 1$. Show that $\Phi_{n}\left(x^{k}\right)=\Phi_{n k}(x)$.
17. Prove the converse of Theorem 2.20. That is, show that for a multiplicative function f, if

$$
f^{-1}(n)=\mu(n) f(n)
$$

for all $n \geq 1$ then f is completely multiplicative. (Hint: use part (2) of Theorem 2.3).
18. For a multiplicative function f, prove the following:
a) $f^{-1}(n)=\mu(n) f(n)$ for every square-free integer $n \geq 1$;
b) $f^{-1}\left(p^{2}\right)=f(p)^{2}-f\left(p^{2}\right)$ for every prime p.
19. Suppose that f is multiplicative. Prove that f is completely multiplicative if and only if $f^{-1}\left(p^{a}\right)=0$ for all primes p and integer $n \geq 2$.

