Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than $\mathbf{7 p m}$ on Monday, September 26th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Chapter 2 Problems:

20. Give an elementary proof that the divisor functions $\sigma_{k}(n)$ are multiplicative. Show that $\sigma_{k}(n)$ is not completely multiplicative.
21. Prove Lemma 2.29 from the Lecture notes. That is, for a prime p, show that

$$
\mu_{p}(x)=1-x, \mu_{p}^{2}(x)=1+x, \text { and } \mathbf{1}_{p}(x)=\frac{1}{1-x} .
$$

Chapter 3 Problems:

1. Show that

$$
\prod_{k=0}^{n-1} F_{k}=F_{n}-2
$$

for any integer $n \geq 1$. Use this to conclude that there are infinitely many prime numbers.
Bonus Problem: Given a nonconstant polynomial $f \in \mathbb{Z}[x]$, Schur's theorem tells us that the sequence $\{f(n)\}$ has infinitely many prime divisors. I conjecture that (maybe in all cases, but at least in some large family of cases), the Zsigmondy set $Z(\{f(n)\})$ is infinite. What ideas do you have to prove or disprove this conjecture?

