Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than $7 \mathbf{p m}$ on Wednesday, October 12th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Chapter 3 Problems:

11. This problem will help finish the proof of Theorem 3.19: show that for any prime p and integer $\alpha \geq 1$, if $x^{2} \equiv 1\left(\bmod p^{\alpha}\right)$ then $x \equiv \pm 1\left(\bmod p^{\alpha}\right)$.
12. This problem will also help to finish the proof of Theorem 3.19: show that for any prime p and integer $\alpha \geq 1, p+1$ has order $p^{\alpha-1}$ in $(\mathbb{Z} / p \mathbb{Z})^{\times}$. (Hint: use the binomial theorem).
13. Use the Miller-Rabin test to determine which of the following integers are prime with at least 99% accuracy. For those that are composite, provide a Miller-Rabin witness.
a) $n=294409$
b) $n=294439$
c) $n=118901509$
d) $n=118915387$
14. Use the Lucas-Lehmer test to show that the Mersenne numbers M_{n} are prime when $n=17$ and $n=19$.

Chapter 4 Problems:

3. Show that the only integral solution to $X^{2}+Y^{2}=(4 a+3) Z^{2}$ is $(0,0,0)$ for any $a \in \mathbb{Z}$.
4. Show that the Mordell equation $Y^{2}=X^{3}-5$ has no integral solutions. (Hint: rewrite this equation as $Y^{2}+4=X^{3}-1$ and look modulo 4).

Bonus Problem: Is there a characterization of the solution set of a linear Diophantine equation in n variables, similar to the characterization in two variables from Theorem 4.1? Please provide and statement and either a proof or a reference.

