Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than 7pm on Wednesday, November 16th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Chapter 5 Problems:

6. Let K be a number field with $[K: \mathbb{Q}]=n$. Prove the following.
a) For any $p, q \in \mathbb{Q}$ and $\alpha, \beta \in K$

$$
\begin{aligned}
& N_{K}(p \alpha \beta)=p^{n} N_{K}(\alpha) N_{K}(\beta), \text { and } \\
& \operatorname{Tr}_{K}(p \alpha+q \beta)=p \operatorname{Tr}_{K}(\alpha)+q \operatorname{Tr}_{K}(\beta) .
\end{aligned}
$$

b) If $\alpha \in K$ is of degree m, then

$$
\begin{aligned}
& N_{K}(\alpha)=\left(N_{\mathbb{Q}(\alpha)}(\alpha)\right)^{d}, \text { and } \\
& \operatorname{Tr}_{K}(\alpha)=d \operatorname{Tr}_{\mathbb{Q}(\alpha)}(\alpha),
\end{aligned}
$$

where $d=n / m$.
c) An element $u \in \mathcal{O}_{K}$ is a unit (that is, u has a multiplicative inverse) if and only if $N_{K}(u)= \pm 1$.
d) Show that for $\pi \in \mathcal{O}_{K}$, if $N_{K}(\pi)$ is a rational prime then π is irreducible in \mathcal{O}_{K}.
7. Show that $\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$ if and only if the α_{i} are linearly dependent.
8. Find the ring of integers for any two of the following number fields.
a) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
b) $\mathbb{Q}(\sqrt{2}, i)$
c) $\mathbb{Q}(\sqrt[3]{2})$
d) $\mathbb{Q}(\sqrt[4]{2})$

