Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than **7pm on Wednesday**, **November 16th**. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

- * **Do not** write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
- * Type your homework using LaTeX.
- * Write up proofs formally and completely.
- * If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Chapter 5 Problems:

- 6. Let K be a number field with $[K : \mathbb{Q}] = n$. Prove the following.
 - a) For any $p, q \in \mathbb{Q}$ and $\alpha, \beta \in K$

$$N_K(p\,\alpha\beta) = p^n N_K(\alpha) N_K(\beta), \text{ and}$$

$$\operatorname{Tr}_K(p\alpha + q\beta) = p \operatorname{Tr}_K(\alpha) + q \operatorname{Tr}_K(\beta).$$

b) If $\alpha \in K$ is of degree m, then

$$N_K(\alpha) = (N_{\mathbb{Q}(\alpha)}(\alpha))^d, \text{ and}$$
$$\mathrm{Tr}_K(\alpha) = d\mathrm{Tr}_{\mathbb{Q}(\alpha)}(\alpha),$$

where d = n/m.

- c) An element $u \in \mathcal{O}_K$ is a unit (that is, u has a multiplicative inverse) if and only if $N_K(u) = \pm 1$.
- d) Show that for $\pi \in \mathcal{O}_K$, if $N_K(\pi)$ is a rational prime then π is irreducible in \mathcal{O}_K .

7. Show that $\Delta(\alpha_1, \ldots, \alpha_n) = 0$ if and only if the α_i are linearly dependent.

- 8. Find the ring of integers for **any two** of the following number fields.
 - a) $\mathbb{Q}(\sqrt{2},\sqrt{3})$
 - b) $\mathbb{Q}(\sqrt{2}, i)$
 - c) $\mathbb{Q}(\sqrt[3]{2})$
 - d) $\mathbb{Q}(\sqrt[4]{2})$