Instructions: Complete all problems from the list below. This assignment will be due on Gradescope no later than 7pm on Wednesday, November 30th. Late work will not be accepted. There will be no exceptions for technology issues, so I suggest you upload your homework at least one hour before the deadline. Please make sure you've done all of the following before submitting your work:

* Do not write your name anywhere on your submission. Gradescope will keep track of your submission, and will allow me to use a blind grading process.
* Type your homework using LaTeX.
* Write up proofs formally and completely.
* If you use any resources (stackexchange, tutors, friends), please include a list of references in your writeup.

Chapter 5 Problems:

9. Let $K=\mathbb{Q}(\sqrt{D})$ for a square-free integer D. Show that

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{D}], & \text { if } D \not \equiv 1(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right], & \text { if } D \equiv 1(\bmod 4) .\end{cases}
$$

(Hint: observe that in the quadratic case, α is an algebraic integer if and only if $N_{K}(\alpha)$ and $\operatorname{Tr}_{K}(\alpha)$ are both integers).
10. Show that $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ gives two distinct factorizations of 6 into irreducibles in the ring $\mathbb{Z}[\sqrt{-5}]$.
11. Show that the ideal (X) is prime but not maximal in $\mathbb{Z}[X]$.
12. This problem will finish the proof of Lemma 5.49.
a) For a commutative ring R, show that an ideal $\mathfrak{a} \subseteq R$ is prime if and only if R / \mathfrak{a} is an integral domain.
b) Show that any finite integral domain is a field.
c) Conclude that every prime ideal in \mathcal{O}_{K} is maximal.
13. Let $R=\mathbb{Z}[\sqrt{-5}]$ and consider the ideals

$$
\begin{aligned}
\mathfrak{p} & =(2,1+\sqrt{-5}) \\
\mathfrak{q} & =(3,1+\sqrt{-5}) \\
\mathfrak{r} & =(3,1-\sqrt{-5}) .
\end{aligned}
$$

Show that these ideals are maximal (and hence prime). Furthermore, show that

$$
\begin{aligned}
\mathfrak{p}^{2}=(2), \mathfrak{q r} & =(3) \\
\mathfrak{p q}=(1+\sqrt{-5}), \mathfrak{p r} & =(1-\sqrt{-5}) .
\end{aligned}
$$

14. Using the previous problem, show that the distinct factorizations into irreducibles from Problem 10 comes from two different groupings of the factorization into prime ideals $(6)=\mathfrak{p}^{2} \mathfrak{q r}$.
