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Preface

Broadly, number theory studies the additive and multiplicative properties of the
integers. In this course, we will explore this subject from elementary, analytic,
and algebraic perspectives. Our goal will be to cover basic topics and main results
from a variety of areas. Topics include: the fundamental theorem of arithmetic,
arithmetic functions, prime numbers and primitive roots (including applications in
cryptography), Diophantine analysis, quadratic reciprocity, algebraic number the-
ory, and the geometry of numbers.

These lectures notes will be updated each week as we progress through the course.
I will be pulling from a variety of resources, all of which will be referenced in the
bibliography. Some resources you may use a supplements include:

• Rosen’s book on Elementary Number Theory ([Ros00])

• Pete Clark’s notes from a similar course ([Cla18])

• Apostol’s text on Analytic Number Theory ([Apo76]),

• Stewart and Tall’s text on Algebraic Number Theory ([ST16]), and

• Keith Conrad’s expository papers.

The following list will be updated as new notation appears in the notes.

List of Notation

Z - the set of integers

S× - the set of nonzero elements of a set S

v

http://alpha.math.uga.edu/~pete/4400FULL.pdf
https://dl.icdst.org/pdfs/files1/ebc2974176a03ab93756026a97b6d370.pdf
https://kashanu.ac.ir/Files/Content/ANT.pdf
https://kconrad.math.uconn.edu/blurbs/




Chapter 1

The Fundamental Theorem of
Arithmetic

1.1. Introduction

Our goal in this course is to survey some techniques used to study the additive and
multiplicative properties of the integers. If we consider the integers under either of
these operations individually, we know quite a bit about their structure. The inte-
gers under addition form a cyclic group, generated by the integer 1. The following
theorem tells us that the prime numbers are the “building blocks” of the integers
under multiplication. (Recall that a prime number p is an integer whose only pos-
itive divisors are 1 and p.) More formally, the primes generate the multiplicative
group of Q× (noting that Z does not form a group under multiplication, so we must
extend to a larger set).

Theorem 1.1 (The Fundamental Theorem of Arithmetic). Let n be any posi-
tive integer. Then, there exist prime numbers p1, p2, . . . , pt and positive integers
k1, k2, . . . , kt so that

n = pk11 p
k2
2 · · · pktt .

Furthermore, if we order our primes so that p1 < p2 < · · · < pt then this represen-
tation is unique. We call this representation the prime factorization of n.

Example 1.2. We have the following prime factorizations

(1) 108 = 22 · 33

(2) 1485 = 33 · 5 · 11
(3) 7663 = 79 · 97

In this chapter, we will prove Theorem 1.1 and look at some of its consequences. In
future chapters, we’ll explore some of the properties (and mysteries) of the prime
numbers, as well as problems that arise when we “mix” our two operations.
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2 1. The Fundamental Theorem of Arithmetic

1.2. Proof of the Fundamental Theorem

We need the following lemmas.

Lemma 1.3. For a prime p and integers a, b, if p | ab then p | a or p | b.

Proof. Note that if p does not divide a, then gcd(p, a) = 1. By the Euclidean
algorithm, there exists integers x, y with

px+ ay = 1.

Multiplying the above equation by b, we have

(1.1) pxb+ ayb = b.

Since we’ve assumed p | ab we can write ab = kp for some integer k. Substituting
this into equation (1.1) we get p(xb+ yk) = b, and so p | b. □

The proofs of the following two lemmas will be left as exercises.

Lemma 1.4. For a prime p and integers a1, a2, . . . , an, if p | a1a2 · · · an then p | ai
for some i ∈ {1, . . . , n}.

Lemma 1.5. Every positive integer is either a prime number or a product of prime
numbers.

We are now prepared to prove Theorem 1.1.

Proof of the Fundamental Theorem of Arithmetic. Let n ∈ Z>0. By Lemma
1.5, we know that n has a prime factorization. We need to show that this factor-
ization is unique. Suppose that we can write n as

n = p1 · · · pt = q1 · · · qs,
where p1 ≤ · · · ≤ pt and q1 ≤ · · · ≤ qs are prime. (Note here that we’ve allowed
primes to be repeated, so that we do not need to keep track of powers. We need
to show that t = s and pi = qi for all i = 1, . . . , t). We have p1 | q1 · · · qs, so by
Lemma 1.4 we must have p1 | qj for some j ∈ {1, . . . , s}. Since p1 and qj are prime,
this implies that p1 = qj for some j ∈ {1, . . . , s}. Relabelling our qj so that qj = p1
gives

p2 · · · pt = q2 · · · qs.
Repeating this process gives

1 = qt+1 · · · qs,
and so we must have s = t and pi = qi for all i = 1, . . . , s. □

1.3. Some Consequences of the Fundamental Theorem

The fundamental theorem is named for a good reason. If you want to study the
multiplicative properties of the integers, this theorem is often going to be needed.
In this section, we give some examples for how this theorem might be applied. Our
goal here is to get comfortable with this theorem, since it will come up frequently
throughout the course.
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1.3.1. Greatest Common Divisors and Least Common Multiples. Recall for
integers a and b, the greatest common divisor of a and b is the largest integer d
so that d | a and d | b, and is denoted d = gcd(a, b). The least common multiple
of a and b is the smallest integer m so that m = ak and n = bℓ, for some k, ℓ ∈
Z, and is denoted m = lcm(a, b). The Euclidean Algorithm gives us an efficient
method to find the greatest common divisor of two integers. The following results
give an alternate method to finding the greatest common divisor when the prime
factorization is known, and two methods to find the least common multiple of two
integers. We will first need the following lemma, whose proof is left as an exercise.

Lemma 1.6. Suppose that a positive integer n has prime factorization n = pk11 · · · pktt .

Then, the divisors of n are given by n = pℓ11 · · · pℓtt where 0 ≤ ℓi ≤ ki for all
i = 1, . . . , t.

Note that we have the following alternate representation for the prime factorization
of an integer. Let p1, p2, p3, . . . denote the set of prime numbers ordered so that

p1 < p2 < p3 < · · ·

Then, for any integer n, we can write

n =

∞∏
i=1

pkii

where ki ≥ 0. Observe that this representation is also unique. This notation will
more easily allow us to compare prime factorizations.

Lemma 1.7. Let a and b be positive integers with prime factorization

a =

∞∏
i=1

pkii and b =

∞∏
i=1

prii .

Then, gcd(a, b) =

∞∏
i=1

p
min{ki,ri}
i and lcm(a, b) =

∞∏
i=1

p
max{ki,ri}
i .

Proof. Let

d =

∞∏
i=1

p
min{ki,ri}
i .

Since min{ki, ri} ≤ ki, then d | a. Similarly, since min{ki, ri} ≤ ri, then d | b. So,
d is a common divisor of a and b. Now, let

e =

∞∏
i=1

pcii

be any common divisor of a and b. By Lemma 1.6, we must have ci ≤ ki and
ci ≤ ri. So, ci ≤ min{ki, ri} which gives that e ≤ d. We leave the proof of the
formula for the least common multiple as an exercise. □

Lemma 1.8. Let a and b be positive integers. Then,

lcm(a, b) =
ab

gcd(a, b)
.
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Proof. Suppose that a and b have prime factorization

a =

∞∏
i=1

pkii and b =

∞∏
i=1

prii .

By Lemma 1.7 we know that

gcd(a, b) =

∞∏
i=1

p
min{ki,ri}
i .

So,

ab

gcd(a, b)
=

∞∏
i=1

pcii ,

where ci = ki + ri −min{ki, ri}. The result will then follow by Exercise 6 □

Example 1.9. We now have a few methods to compute greatest common divisors
and least common multiples. For example,

(1) gcd(4, 10) = 2, lcm(4, 10) = 20

(2) gcd(74, 383) = 1, lcm(74, 383) = 28342

(3) gcd(160, 192) = 32, lcm(32, 192) = 960

1.3.2. Some Irrational Numbers. We first recall the following proof, which
you may have seen in an introduction to proofs course.

Theorem 1.10.
√
2 is irrational.

Proof. Suppose for a contradiction that
√
2 is rational. Then, there are coprime

integers m,n so that √
2 =

m

n
.

This gives

(1.2) 2n2 = m2,

and so 2 | m2. Since 2 is prime, then by Lemma 1.3 we have that 2 | m. So we
can write m = 2ℓ for some integer ℓ which gives m2 = 4ℓ. Substituting this into
equation (1.2) gives

2n2 = 4ℓ⇒ n2 = 2ℓ.

So, 2 | n2 which again implies that 2 | n. But this contradicts our assumption that
m and n are coprime. □

The Fundamental Theorem of Arithmetic will allow us to generalize this proof in
order to characterize all irrational roots.

Theorem 1.11. For a positive integer a, k
√
a is rational if and only if a = ℓk for

some integer ℓ.

Proof. The backward direction is straightforward, since if a = ℓk then k
√
a = ℓ is

rational. So suppose that k
√
a is rational. Then, there exist coprime integers m,n

so that
k
√
a =

m

n
.
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This gives

(1.3) a =
mk

nk
.

We claim that mk and nk are also coprime. To see this, suppose that m and n have
prime factorizations

m =

∞∏
i=1

prii and n =

∞∏
i=1

psii .

This gives the following prime factorizations of mk and nk

mk =

∞∏
i=1

pkrii and nk =

∞∏
i=1

pksii .

Since gcd(m,n) = 1, then by Lemma 1.7 we have min{ri, si} = 0 for all i = 1, . . . , t.
For any i this gives

min{kri, ksi} = kmin{ri, si} = 0,

and so gcd(mk, nk) = 1. By equation (1.3) we know that nk | mk and so it must be
the case that nk, which implies that n = 1, since we’ve assumed that a is positive.
So, a = mk is a perfect kth power. □

1.3.3. Primes modulo 4. In future chapters, we’ll look at a few different proofs
of the infinitude of primes. Interestingly, it is also the case that there are infinitely
many primes congruent to 1 and 3 modulo 4. Note that integers congruent to 0
and 2 modulo 4 are even, and there is only one even prime number. We use the
Fundamental Theorem of Arithmetic to prove one of these cases, and leave the
other as an exercise.

Theorem 1.12. There are infinitely many prime numbers p with p ≡ 3 (mod 4).

Proof. Suppose for a contradiction that there are only finitely many primes con-
gruent to 3 modulo 4, say q1 = 3, q2, q3, . . . , qr. Let

(1.4) Q = 4q2q3 · · · qr + 3.

Let Q has prime factorization

Q = pk11 · · · pktt .
If pi ≡ 1 (mod 3) for every i = 1, . . . , t then we would have Q ≡ 1 (mod 4), but this
contradicts equation (3.3). So, it must be the case that pi ≡ 3 (mod 4) for some
i ∈ {1, . . . , t}. But then pi = qj for some j ∈ {1, . . . , r}, which would mean that
qj | Q. This contradicts equation (3.3). □

Theorem 1.12 and Exercise 8 are special cases of the theorem below.

Theorem 1.13 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If
gcd(a,m) = 1, then there are infinitely many primes p with p ≡ a (modm).

This is a celebrated theorem in analytic number theory, which takes a bit more
machinery from analytic number theory than we’ll have time for in this course. If
you are interested, you may look into Chapter 7 of [Apo76]. Further special cases
are also covered in the expository paper of Keith Conrad referenced in [Cond].
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1.3.4. Series of Reciprocals of Primes. This section will follow [Cone]. Recall
that the harmonic series

∑∞
n=1 1/n diverges. The following theorem tells us that

the smaller sum of reciprocals of primes diverges as well.

Theorem 1.14. Let P = {p1, p2, p3, . . . } be the set of all prime numbers. Then

∞∑
n=1

1

pn

diverges.

Proof. Suppose that {p ∈ P | p ≤ n} = {p1, p2, . . . , pℓ} We have

ℓ∏
i=1

1

1− 1
p

=

ℓ∏
i=1

∞∑
k=0

1

pk
, by geometric series

=
∑

ki∈Z≥0

1

pk11 p
k2
2 · · · pkℓℓ

>

n∑
k=1

1

k
.

The final equality can be seen by noting that that for any integer 0 < k ≤ n, if a
prime p divides k, then we must have p ≤ n. So, it must be the case that every
integer smaller than n only has prime factors from the list {p1, p2, . . . , pℓ}. Taking
logs, we have

(1.5) log

(
n∑
k=1

1

k

)
<

ℓ∑
i=1

− log

(
1− 1

pi

)
.

We claim that

− log

(
1− 1

p

)
<

1

p
+

1

p2
.

To see this, use calculus to verify that the function f(x) = log(1 − x) + x + x2 is
positive for 0 < x < 1. So, by equation (1.5) we get

log

(
n∑
k=1

1

k

)
<
∑
p∈P
p≤n

1

p
+
∑
p∈P
p≤n

1

p2
.

Taking n→ ∞ gives the desired result. □

Remark 1.15. Let S be any subset of prime numbers. Note that if we can show∑
p∈S

1

p

is infinite, it must be the case that S is also infinite. This is of course true for any
set of integers, but Theorem 1.14 tells us it is at least possible for this series to not
be finite. This is in fact the method Dirichlet used to prove his theorem on primes
in arithmetic progressions (see Theorem 1.13).



Exercises 7

It is a famously open problem (called the twin primes conjecture) whether there
are infinitely many primes p so that p+ 2 is also prime. Unfortunately the sum of
reciprocals of twin primes converges, and so this approach above does not help us.
The value the series of reciprocals of twin primes converges to is called Brun’s con-
stant. According to Keith Conrad, “Estimating this number is a difficult problem,
and work on this in 1994 led to the discovery of a bug in an Intel Pentium chip.”

Exercises

1. Prove Lemma 1.4.

2. Prove Lemma 1.5. (Hint: use strong induction).

3. Prove Lemma 1.6.

4. Complete the proof of Lemma 1.7. That is, show that

lcm(a, b) =

∞∏
i=1

p
max{ki,ri}
i .

(Hint: observe that we can write max{ki, ri} = ki+k
′
i and max{ki, ri} = ri+r

′
i

where k′i, r
′
i ≥ 0.)

5. For each pair of integers, compute gcd(a, b) and lcm(a, b) using any method
discussed in Chapter 1. Make sure to show your work.
(a) a = 256, b = 160
(b) a = 7544, b = 115
(c) a = 8633, b = 8051

6. This problem will complete the proof of Lemma 1.8. For integers x, y, show
that min{x, y}+max{x, y} = x+ y.

7. Let a, b, c be positive integers. If a | bc and gcd(a, b) = 1, show that a | c.
8. Prove that there are infinitely prime numbers p with p ≡ 1 (mod 4).





Chapter 2

Arithmetic Functions

An arithmetic function is any function f : Z>0 → C, and typically gives some
description of arithmetic properties of the integers. These functions will also turn
out to be useful in our study of primes and primitive roots in the following chapter.
This chapter and some its exercises will follow Chapters 2 and 3 of [Apo76].

Some arithmetic functions of interest include:

(1) the prime counting function π(n) = #{primes p : p ≤ n};
(2) the prime omega functions

Ω(n) = #{prime divisors of n}, and

ω(n) = #{distinct prime divisors of n};
(3) the p-adic valuation function νp(n) = max{k : pk | n};
(4) the divisor functions

σk(n) =
∑
d|n

dk

(note that σ0(n) counts the number of positive divisors of n, and is typically
denoted by d(n), and σ1(n) gives the sum of the positive divisors of n, and is
typically denoted by σ(n)); and

(5) the Euler totient function φ(n) = #{positive integers k < n : gcd(k, n) = 1}.

In this chapter, we’ll look at some of these and further arithmetic functions in more
detail. Many of the functions we study will share some of the following properties.

Definition 2.1. An arithmetic function f : Z>0 → C is called multiplicative if

(2.1) f(ab) = f(a)f(b)

whenever gcd(a, b) = 1, and completely multiplicative if (2.1) holds for any pair of
integers a, b. We call f additive if

9



10 2. Arithmetic Functions

(2.2) f(ab) = f(a) + f(b)

whenever gcd(a, b) = 1, and completely additive when (2.2) holds for any pair of
integers a, b.

Example 2.2. For α ∈ C, the power function Nα(n) = nα is completely mul-
tiplicative. The functions Ω(n) and νp(n) are completely additive, and ω(n) is
additive but not completely additive.

We leave the proof of the following theorem as an exercise.

Theorem 2.3. Let f be an arithmetic function with f(1) = 1. Then,

(1) f is multiplicative if and only if

f(pk11 · · · pktt ) = f(pk11 ) · · · f(pktt )

where p1, . . . , pt are distinct primes, and k1, . . . , kt are nonnegative integers;

(2) f is completely multiplicative if and only if f is multiplicative and

f(pk) = f(p)k

for any prime p and nonnegative integer k.

This tells us that when an arithmetic function is multiplicative, it is enough to
study the function on prime powers.

2.1. The Euler Totient Function and the Möbius Function

In this section, we show that φ(n) is multiplicative. Note that φ(n) is not completely
multiplicative, since for example

φ(2 · 2) ̸= φ(2)φ(2).

Observe that the Euler totient function counts the number of elements in the mul-
tiplicative group of Z/nZ; that is

#(Z/nZ)× = φ(n).

It is then possible to prove the totient function is multiplicative as a consequence
of Sun-tzu’s theorem (usually refered to as the “Chinese Remainder Theorem”).
We prove this instead by demonstrating an identity between φ(n) and the Möbius
function (defined below). This identity will allow us to give a complete formula for
φ(n) in terms of the prime factors of n.

Definition 2.4. For an integer n ≥ 2, the Möbius function is defined by

µ(n) =

{
(−1)ω(n) if n is square-free,

0 otherwise.
,

and we set µ(1) = 1.

Note that µ(n) = 0 only when n is not square-free (that is, n has a square divisor).
We have the following identity between the totient and Möbius functions.
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Theorem 2.5. For any positive integer n we have

φ(n) =
∑
d|n

µ(d)
n

d
.

We will first need some lemmas.

Lemma 2.6. For an integer n ≥ 2 we have∑
d|n

µ(d) = 0.

Proof. Suppose m has prime factorization

m = pk11 · · · pktt .

By Lemma 1.6 we have∑
d|m

µ(d) =

t∑
i=1

ki∑
ℓi=0

µ(pℓ11 · · · pℓtt )

=

t∑
i=1

1∑
ℓi=0

µ(pℓ11 · · · pℓtt )

= µ(0) +

(
t

1

)
(−1)1 +

(
t

2

)
(−1)2 + · · ·+

(
t

t

)
(−1)t

= (1− 1)t = 0.

□

Lemma 2.7. For an integer n ≥ 1 we have∑
d|n

φ(d) = n.

Proof. Let S = {1, 2, . . . , n} and partition S into the disjoint sets given by

A(d) = {k ∈ S : gcd(k, n) = d}.

Note that gcd(k, n) = d if and only if gcd
(
k
d ,

n
d

)
= 1 and so

#A(d) = φ(n/d).

So we have ∑
d|n

φ(d) =
∑
d|n

φ(n/d)

=
∑
d|n

#A(d)

= n,

where the final equality holds because the sets A(d) partition S. □

We are now prepared to prove our identity.
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Proof of Theorem 2.5. Observe that, for a given integer ℓ we have⌊
1

ℓ

⌋
=

{
1 if ℓ = 1

0 if ℓ ̸= 1.

So by Lemma 2.6, since µ(1) = 1 then for any integer m ≥ 1 we can write

(2.3)
∑
d|m

µ(d) =

⌊
1

m

⌋
.

We have

φ(n) =
∑

k∈{1,...,n}
gcd(k,n)=1

1

=

n∑
k=1

⌊
1

gcd(k, n)

⌋

=

n∑
k=1

∑
d|gcd(n,k)

µ(d), by equation (2.3)

=

n∑
k=1

∑
d|n
d|k

µ(d)

=
∑
d|n

∑
k∈{1,...,n}

k is a multiple of d

µ(d)

=
∑
d|n

µ(d)
∑

k∈{1,...,n}
k is a multiple of d

1

=
∑
d|n

µ(d)
n

d
,

where the final inequality follows by counting the number of multiples of a divisor
of n between 1 and n. □

As a consequence, we now have the following formula for φ(n) in terms of the prime
factors of n.

Theorem 2.8 (The Product Formula for φ(n)). For n ≥ 2 we have

φ(n) = n
∏
p|n

p prime

(
1− 1

p

)
.

Observe that if n has prime factorization n = pk11 · · · pktt this gives

φ(n) =

t∏
i=1

pki−1i (pi − 1).
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Proof. Suppose n has distinct prime factors p1, . . . , pt. For convenience, we use
the notation [t] := {1, . . . , t}. We have

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pt

)
= 1−

∑
i∈[t]

1

pi
+

∑
i1,i2∈[t]
i1 ̸=i2

1

pi1pi2
−

∑
i1,i2,i3∈[t]
i1 ̸=i2 ̸=i3

1

pi1pi2pi3
+ · · ·+ (−1)t

1

p1p2 · · · pt

=
∑
d|n

d square-free

(−1)ω(d)

d

=
∑
d|n

µ(d)

d
.

So, the result follows by Theorem 2.5 □

We now have the following Corollary, whose proof is left as an exercise.

Corollary 2.9. For a prime p and positive integers m,n we have

(1) φ(pa) = pa − pa−1 for integers a ≥ 1;

(2) φ(mn) = φ(m)φ(n)
g

φ(g)
, where g = gcd(m,n);

(3) φ is multiplicative;

(4) a | b implies that φ(a) | φ(b);
(5) φ(n) is even for all integers n ≥ 3. Furthermore, if n has r distinct odd prime

factors, then 2r | φ(n).

2.2. Dirichlet Products and Möbius Inversion

In Theorem 2.5 of the previous section, we proved the identity

φ(n) =
∑
d|n

µ(d)
n

d
.

The sum on the right-hand side of this equation is an example of a Dirichlet product,
defined below.

Definition 2.10. Let f and g be arithmetic functions. The Dirichlet product, or
convolution, of f and g is given by

f ∗ g =
∑
d|n

f(d)g
(n
d

)
.
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We set notation for some common arithmetic functions used throughout the section:

ι(n) = n,

1(n) = 1, and

I(n) =

⌊
1

n

⌋
=

{
1 if n = 1

0 if n > 1.
.

Note that this product allows us to put a ring structure on the set of arithmetic
functions with inverses given by the following theorem.

Theorem 2.11. If f is an arithmetic function with f(1) ̸= 0 there is a unique
arithmetic function f−1 called the Dirichlet Inverse of f so that

f ∗ f−1 = f−1 ∗ f = 1.

Proof. We give the construction of f−1 as in Theorem 2.8 of [Apo76] and leave the
proof for the reader. The inverse of an arithmetic function f is defined recursively
by

f−1(1) =
1

f(1)
, and f−1(n) =

−1

f(n)

∑
d|n
d̸=n

f
(n
d

)
f−1(d).

□

We have the following.

Theorem 2.12. The set of arithmetic functions f with f(1) ̸= 0 form a commuta-
tive ring under Dirichlet products and function addition with multiplicative identity
I and inverses given as in Theorem 2.11. Note that by function addition we mean

(f + g)(n) := f(n) + g(n).

We leave this proof as an exercise.

Observe that we can now restate some of the results from the previous section.

• Restatement of Theorem 2.5: φ = µ ∗ ι.

• Restatement of Lemma 2.6: µ ∗ 1 = I.

• Restatement of Lemma 2.7: φ ∗ 1 = ι.

Our restatement of Lemma 2.6 along with Lemma 2.12 allows us to prove the very
useful Möbius Inversion formula.

Theorem 2.13 (Möbius Inversion). Let f and g be arithmetic functions. We have

f(n) =
∑
d|n

g(d)

if and only if

g(n) =
∑
d|n

f(d)µ
(n
d

)
.

That is, f = g ∗ 1 if and only if g = f ∗ µ.
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Proof. If f = g ∗ 1 then multiplying by µ gives

f ∗ µ = (g ∗ 1) ∗ µ
= g ∗ (µ ∗ 1), by Theorem 2.12

= g ∗ I, by Lemma 2.6

= g, by Theorem 2.12.

Conversely, if g = f ∗ µ then multiplying by 1 gives

g ∗ 1 = (f ∗ µ) ∗ 1
= f ∗ (µ ∗ 1), by Theorem 2.12

= f ∗ I, by Lemma 2.6

= f, by Theorem 2.12. □

We see then that Möbius inversion just follows from the fact that µ and I are
multiplicative inverses in the ring of arithmetic functions. Observe that Theorem
2.5 is now a simple application of Möbius inversion to Lemma 2.7.

2.3. Applications of Möbius Inversion

This section demonstrates some applications of Möbius Inversion found in Chapter
8 of [Cla18].

2.3.1. A formula for cyclotomic polynomials. Recall a primitive nth root of
unity is any complex number ζ of order n in C×. That is,

n = min{k | ζk = 1}.

The nth cyclotomic polynomial is defined as

Φn(x) :=
∏

primitive nth
roots of unity

(x− ζ).

Observe the following identity:

(2.4)
∏
d|n

Φd(x) = xn − 1.

This follows because both sides of equation (2.4) are monic polynomials whose
roots are given by the nth roots of unity, each with multiplicity 1. We use Möbius
inversion to obtain the following formula for Φn(x).

Theorem 2.14. For any integer n ≥ 1 we have

Φn(x) =
∏
d|n

(xd − 1)µ(n/d)

Proof. Taking logs of equation (2.4) we have∑
d|n

log Φd(x) = log(xn − 1).
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By Möbius inversion, this gives

log Φn(x) =
∑
d|n

log(xd − 1)µ
(n
d

)

= log

∏
d|n

(xd − 1)µ(n/d)

 ,

and so exponentiating gives the desired result. □

2.3.2. The number of irreducible polynomials over a finite field. We have
the following classical application of Möbius inversion.

Theorem 2.15. For a prime p, the number of irreducible polynomials of degree n
over Fp is equal to

1

n

∑
d|n

pdµ
(n
d

)
.

The result will follow quickly from the following Lemma and Möbius inversion.

Lemma 2.16. For a positive integer n and prime p, let f ∈ Fp[t] be given by

f = tp
n − t. Then f is equal to the product∏

m∈M(d)
d|n

m.

where M(d) denotes the set of all irreducible monic polynomials in Fp of degree d.

Proof. For convenience, we use the notation F(m) := Fp[t]/(m) for eachm ∈M(d).
Then in F(m) we have

tp
n

− t = f = 0

⇒ tp
n

= t

So the order of t in the F×(m) divides pn − 1. Since t generates F(m) over Fp then

we must have |F×(m)| divides p
n − 1. But since F(m) is a degree d extension of Fp

we know that |F×(m)| = pd − 1. So (pd − 1) | (pn − 1). By Exercise 14 this occurs if

and only if d | n. To obtain our result, we must show that f is square-free (so that
f does not contain repeated products of m ∈M(d)). Observe that we have

f ′ = pntp
n−1 − 1 = −1

in Fp. So, f is separable (meaning that its roots are distinct in F̄p). Since separable
polynomials are square-free in characteristic p (can you show this? suppose not and
get a common divisor of f and f ′), f must be square free as desired. □

Now we can apply Möbius inversion to get our result.

Proof of Theorem 2.15. Let Ip(d) be the arithmetic function that counts the
number of monic irreducible polynomials of degree d in Fp[t]. Observe that

deg
∏

m∈M(d)
d|n

m =
∑
d|n

dIp(d),
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and so by Lemma 2.16 we have∑
d|n

dIp(d) = deg f = qn.

Applying Möbius inversion (noting that dIp(d) is an arithmetic function) yields

nIp(n) =
∑
d|n

qdµ
(n
d

)
.

Dividing by n completes the proof. □

2.4. Multiplicative Functions and Dirichlet Products

In this section, we show that the set of multiplicative function form an abelian
group under Dirichlet products, and give a simple formula for the Dirichlet inverse
of a completely multiplicative function.

Theorem 2.17. If f and g are multiplicative functions, so is f ∗ g.

Proof. Let h = f ∗ g. Let m,n be coprime integers and recall that

h(mn) =
∑
d|mn

f(d)g
(mn
d

)
.

Since gcd(m,n) = 1 then every divisor d of mn can be written in the form d = ab
where a | m and b | n. Furthermore, we have

gcd
(m
a
,
n

b

)
≤ gcd(m,n) = 1.

Using that f and g are multiplicative gives

h(mn) =
∑
a|m

∑
b|n

f(ab)g
(mn
ab

)
=
∑
a|m

∑
b|n

f(a)f(b)g
(m
a

)
g
(n
b

)
=
∑
a|m

f(a)g
(m
a

)∑
b|n

f(b)g
(n
b

)
= (f ∗ g)(m)(f ∗ g)(n)
= h(m)h(n). □

Theorem 2.17 shows that multiplicative functions are closed under Dirichlet prod-
ucts. Since we know that the full set of arithmetic functions forms a ring under
Dirichlet products, it is enough to show that the Dirichlet inverse of a multiplicative
function is multiplicative. Rather than using the construction for Dirichlet inverses
given in Theorem 2.11 (which is tricky to deal with) we use the following Lemma.

Lemma 2.18. If g and f ∗ g are multiplicative, then f is also multiplicative.
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Proof. Suppose that f is not multiplicative, and note that it suffices to show f ∗ g
is not multiplicative. Since f is not multiplicative, there exist coprime integers m,n
with

f(mn) ̸= f(m)f(n).

Choose such m,n so that mn is minimal. If mn = 1 then we would have

f(1) = f(1 · 1) ̸= f(1)f(1) ⇒ f(1) ̸= 1.

Note that

(f ∗ g)(1) = f(1)g(1)

by definition of the Dirichlet product. Since g(1), f(1) ∈ Z≥1 and f(1) ̸= 1 then
this gives (f ∗ g)(1) ̸= 1. By part (1) of Theorem 2.3 this tells us that f ∗ g is not
multiplicative.

If mn > 1 then f(ab) = f(a)f(b) for all pairs of positive coprime integers a, b with
ab < mn. Arguing as in Theorem 2.17 we have

(f ∗ g)(mn) =
∑
d|mn

f(d)g
(mn
d

)
= f(mn)g(1) +

∑
a|m,b|n
ab̸=mn

f(ab)g
(mn
ab

)

= f(mn)g(1) +
∑
a|m
a ̸=m

f(a)g
(m
a

)∑
b|n
b̸=n

f(b)g
(n
b

)
= f(mn)g(1)− f(m)g(1)f(n)g(1) + (f ∗ g)(mn)
= g(1)(f(mn)− f(m)f(n)) + (f ∗ g)(m)(f ∗ g)(n).

Since we assumed f(mn) ̸= f(m)f(n) and we know that g(1) ̸= 0, since g is an
arithmetic function, then we have (f ∗ g)(mn) ̸= (f ∗ g)(m)(f ∗ g)(n), and so f ∗ g
is not multiplicative. □

We now have our main result.

Theorem 2.19. The set of multiplicative functions form an abelian group under
Dirichlet products.

Proof. By Theorem 2.17 we know that multiplicative functions are closed under
Dirichlet products. Now, for a multiplicative function f , since f ∗ f−1 = I is
multiplicative then by Lemma 2.18 f−1 must be multiplicative as well. □

Note that it is difficult to use the construction of Dirichlet inverses given in theorem
2.11 to identify your Dirichlet inverse. The following result gives a simple formula
for finding Dirichlet inverses of completely multiplicative functions.

Theorem 2.20. Let f be multiplicative. If f is completely multiplicative, then

f−1(n) = µ(n)f(n)

for all n ≥ 1.
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Proof. Let g(n) = µ(n)f(n). If f is completely multiplicative, then we have

(g ∗ f)(n) =
∑
d|n

µ(d)f(d)f
(n
d

)
=
∑
d|n

µ(d)f(n)

= f(n)
∑
d|n

µ(d)

= f(n)(1 ∗ µ)(n)
= f(n)I(n)

= I(n),

where the final equality follows because f(1)I(1) = 1 · I(1) and

f(n)I(n) = f(n) · 0 = 0

for all n > 1. So, g = f−1. □

In fact, the converse of Theorem 2.20 also holds. We leave this as an exercise for
the reader.As an application of Theorem 2.20 we can obtain the Dirichlet inverse
of the Euler totient function.

Theorem 2.21. We have

φ−1(n) =
∑
d|n

dµ(d).

Proof. By Theorem 2.5 we have φ = µ ∗ ι and so

φ−1 = µ−1 ∗ ι−1.

By Lemma 2.6 we have µ−1 = 1, and because ι(n) = n is completely multiplicative
we get

ι−1 = µ ι.

So this gives

φ−1 = µ ι ∗ 1 =
∑
d|n

dµ(d).

□

2.5. The Divisor Function and Perfect Numbers

Recall that the divisor functions are given by

σk(n) =
∑
d|n

dk.

We use Dirichlet products to give a short proof that σk is multiplicative, and leave
the elementary proof of this fact as an exercise.

Theorem 2.22. For any integer k ≥ 0 the divisor function σk(n) is multiplicative.
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Proof. Note that σk = 1 ∗Nk, where Nk is the power function, which we showed
was multiplicative in Example 2.2. Since 1 is also multiplicative, then our result
follows by Lemma 2.17. □

By Theorem 2.3, it is then enough to study σk on prime powers. For a prime p and
integer a ≥ 0, by Lemma 1.6 the divisors of pa are precisely

1, p, p2, . . . , pa.

Since our sums are geometric, we get

σk(p
a) =

a∑
i=0

pki =


pk(a+1) − 1

pk − 1
if k ̸= 0

a+ 1 if k = 0.

The divisor functions are of particular interest in study perfect numbers, defined
below.

Definition 2.23. A positive integer n is called perfect if σ(n) = 2n.

Example 2.24. The first five perfect numbers are 6, 28, 496, 8128.

The following Theorem gives a complete characterization of all even perfect num-
bers.

Theorem 2.25. An even integer n is perfect if and only if

n = 2k−1p

for an integer k ≥ 0 and prime p of the form p = 2k − 1.

Proof. Suppose that n is of the form n = 2k−1p. Since σ is multiplicative and
p = 2k − 1 is odd, we have

σ(n) = σ(2k−1)σ(p) = (2k − 1)(1 + p)

= (2k − 1)(2k) = 2n

So n is perfect. Next, suppose that n is any even perfect number. Write

n = 2k−1m,

for an odd integer m and k ≥ 2. Since σ is multiplicative, we get

σ(2k−1m) = σ(2k−1)σ(m) = (2k − 1)σ(m).

Since n is perfect, this gives

2n = (2k − 1)σ(m)

⇒ 2km = (2k − 1)σ(m).

So we must have (2k − 1) | m. Write m = (2k − 1)ℓ and so by above we get

2kℓ = σ(m).

Since ℓ and m are divisors of m this gives

2kℓ = σ(m) ≥ ℓ+m = 2kℓ,

and so we must have σ(m) = m + ℓ. That is, m only has two divisors. Since we
know that (2k − 1) | m and k ≥ 2 (since m is odd) then we must have m = 2k − 1
as desired. □
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Primes of the form p = 2k− 1 are called Mersenne primes, which we will discuss in
the next chapter. It is expected that there are infinitely many Mersenne primes, but
this proof remains open. As we’ll see in the next chapter, there are fast primality
testing algorithms for Mersenne primes, and so most of the largest known primes
are Mersenne.

While Theorem 2.25 gives a characterization of the even perfect numbers (or rather,
passes this characterization off to studying the Mersenne primes), it is still unknown
whether there exists an odd perfect number.

2.6. Bell Series

The following formal power series play a similar role to generating functions in
combinatorics. Given a multiplicative function f , we would like information about
f(pn) for primes p. To find this, we consider the series with these values as coeffi-
cients.

Definition 2.26. Given an arithmetic function f and prime p, the Bell series of
f modulo p is the formal power series

fp(x) =

∞∑
n=0

f(pn)xn.

The following result will be left as an exercise.

Theorem 2.27. Let f and g be multiplicative functions. Then f = g if and only
if fp(x) = gp(x) for all primes p.

The following Theorem demonstrates how one might use Bell series to obtain iden-
tities between multiplicative functions.

Theorem 2.28. Recall that ω(n) counts the number of distinct prime factors of n.
We have

2ω(n) =
∑
d|n

µ2(d)

To prove this identity, we need the following lemmas, which are left as exercises.

Lemma 2.29. For a prime p, we have

µp(x) = 1− x, µ2
p(x) = 1 + x, and 1p(x) =

1

1− x
.

Lemma 2.30. For arithmetic functions f and g, let h = f ∗ g. For every prime p
we have

hp(x) = fp(x)gp(x).
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Proof of Theorem 2.28. Note that f(n) = 2ω(n) is multiplicative, and we have

fp(x) = 1 +

∞∑
n=1

2ω(p
n)xn

= 1 +

∞∑
n=1

2xn

= 1 +
2x

1− x

=
1 + x

1− x
.

By Lemma 2.29 this gives fp(x) = µ2
p(x)ιp(x), and so by Lemma 2.30 we have

f = µ2 ∗ ι, which gives our result. □

Exercises

1. Prove Theorem 2.3

2. Show that µ is multiplicative, but not completely multiplicative.

3. Recall that ⌊x⌋ denotes the largest integer m with m ≤ x. Let

f(n) = ⌊
√
n⌋ − ⌊

√
n− 1⌋.

Show that f is multiplicative but not completely multiplicative.

4. Determine if the following statement is true: if f is multiplicative, then

F (n) =
∏
d|n

f(d)

is also multiplicative. Provide a proof or counterexample.

5. For any real number α > 1, prove that an arithmetic function f is additive if
and only if αf is multiplicative.

6. Prove Corollary 2.9.

7. Find all positive integers n satisfying the following.
(a) φ(n) = m where m = 1, 2, 3, or 4
(b) φ(n) = 6
(c) φ(n) = 12
(d) φ(n) = n/2
(e) φ(n) = φ(2n)

8. Determine which of the following statements are true. Provide a proof or
counterexample.
(a) If gcd(m,n) = 1 then gcd(φ(m), φ(n)) = 1.
(b) If n is composite, then gcd(n, φ(n)) > 1.
(c) If the set of distinct primes dividing m and the set of distinct primes

dividing n are equal, then nφ(m) = mφ(n).

9. Prove that for all n with ω(n) ≤ 8 we have φ(n) > n/6.



Exercises 23

10. For a fixed positive integer k, show that if the equation φ(n) = k has only one
integer solution n > 0, then 36 | n.

11. For a fixed positive integer k, show that the equation φ(n) = k has only finitely
many integer solutions n > 0.

12. Show that a positive integer n is composite if and only if φ(n) ≤ n−
√
n.

13. Prove Theorem 2.12 (you may assume the set of arithmetic functions forms a
group under addition). That is, for arithmetic functions f and g, show that
(a) f ∗ g = g ∗ f ,
(b) (f ∗ g) ∗ h = f ∗ (g ∗ h),
(c) f ∗ I = f , and
(d) f ∗ (g + h) = f ∗ g + f ∗ h.

14. This problem will complete the proof of Lemma 2.16. Show that

(pd − 1) | (pn − 1)

if and only if d | n.
15. Compute Φ12(x) and use this to find an expression for the four 12th roots of

unity in terms of radicals.

16. Suppose that n and k are positive integers with prime factorizations

n = pa11 · · · patt and k = pb11 · · · pbtt
with ai, bi ≥ 1. Show that Φn(x

k) = Φnk(x).

17. Prove the converse of Theorem 2.20. That is, show that for a multiplicative
function f , if

f−1(n) = µ(n)f(n)

for all n ≥ 1 then f is completely multiplicative. (Hint: use part (2) of Theorem
2.3).

18. For a multiplicative function f , prove the following:
(a) f−1(n) = µ(n)f(n) for every square-free integer n ≥ 1;
(b) f−1(p2) = f(p)2 − f(p2) for every prime p.

19. Suppose that f is multiplicative. Prove that f is completely multiplicative if
and only if f−1(pa) = 0 for all primes p and integer n ≥ 2.

20. Give an elementary proof that the divisor functions σk(n) are multiplicative.

21. Prove Theorem 2.27.

22. Prove Lemma 2.29.





Chapter 3

Prime Numbers

In Chapter 1 we saw that the primes form the “building blocks” of the integers.
In this chapter, we’ll explore some of the properties of prime numbers, including
their number and density, occurrence and patterns, primality tests, the structure
of (Z/pZ)×, and some cryptographic applications of these topics.

3.1. Proofs of the Infinitude of Primes

It has been known at least since the writing of Euclid’s Elements (around 300 BCE)
that there are infinitely many prime numbers. Since then, number theorists have
been reproving this fact. Exploring various proofs gives us new perspectives on the
primes. We present Euclid’s original proof, as well as some of the proofs outlined
in Chapter 1 of [AZ18]. Note that we have already seen one proof of the infinitude
of the primes as a corollary to Theorem 1.14

Our first proof, due to Euclid, gives the motivating structure to the proofs seen in
Section 1.3.3.

Eulid’s Proof. Suppose for a contradiction that there are only finitely many
primes, call them {p1, p2, . . . , pk}. Then consider

Q = p1p2 · · · pk + 1

and note that pi ∤ Q for any i. So, for any prime divisor p | Q we have p ̸= pi. So,
p is not in our finite set of primes. □

The following proof uses many of the ideas we saw in Theorem 1.14.

Lower bounding the prime counting function. Recall the prime counting func-
tion is defined by

π(x) = #{primes p | p ≤ x}.

25
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Note that we have

log x =

∫ x

1

1

t
dt

≤ 1 +
1

2
+ · · ·+ 1

n

≤
∑ 1

k
.

where the final sum goes over integers with prime p ≤ n (note that we saw this
inequality in the proof of Theorem 1.14). Next, observe that

∑ 1

k
=
∏
p∈P
p≤x

∑
k≥0

1

pk
=

π(x)∏
i=1

1

1− 1
pk

,

where pk denotes the kth prime. Since pk ≥ k + 1 we get

1

1− 1
pk

=
pk

pk − 1
= 1 +

1

pk − 1
≤ 1 +

1

k
=
k + 1

k
.

Putting this all together gives

log x ≤
π(x)∏
k=1

k + 1

k
=

2

1
· 3
2
· 4
3
· · · π(x) + 1

π(x)
= π(x) + 1.

So, π(x) ≥ log x − 1. This gives π(x) → ∞ as x → ∞, and so there must be
infinitely many primes. □

The following two proofs show that certain sequences contain infinitely many prime
divisors.

Proof with Fermat Numbers. The sequence of Fermat numbers is defined by
Fn = 22

n

+ 1, for n ∈ Z≥0. We claim that

gcd(Fm, Fn) = 1

for any m ̸= n, from which the infinitude of the primes follows immediately. To see
this claim, it suffices to prove the identity

n−1∏
k=0

Fk = Fn − 2,

for any integer n ≥ 1. We leave the details as an exercise. □

Proof with Mersenne Numbers. Recall that Mersenne numbers are defined by
Mn = 2n − 1. For a contradiction, suppose that p is the largest prime number.
Now, let q be a prime dividingMp. Then, 2

p ≡ 1(mod q). So, the order of 2 divides
p in (Z/qZ)×. But since p is prime, the order of 2 must be equal to p in this group.
By Lagrange’s theorem, this gives p | |(Z/qZ)×| = q − 1. Hence, p < q, which
contradicts p being the largest prime. □
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3.2. Primes in Lucas Sequences

The final two proofs in the previous section tell us that there are infinitely many
prime divisors in the Fermat and Mersenne sequences. It is an open question
whether there are infinitely many prime terms in these sequence. Results on the
number of prime terms in nontrivial integer sequences are typically out of reach.
Recall that Dirichlet’s Theorem on primes in arithmetic progressions tells us there
are infinitely many primes in the sequence

a, a+ n, a+ 2n, . . .

when gcd(a, n) = 1. While these sequences are (relatively) simple, this result
already requires a good deal of machinery from analytic number theory to prove, so
it is reasonable to lower our expectations for results on prime occurrence in more
complicated sequences. In this section, we show that the Lucas sequences not only
contain infinitely many prime divisors, but every term past a certain point contains
a new prime divisor. First, we give some definitions.

Definition 3.1. A linear recurrence sequence X = {xn} is any integer sequence
satisfying a recurrence of the form

xn+d =

d∑
i=1

aixn+d−i,

for ai ∈ Z. When this recurrence is minimal, we say that X has order d and we call
the values x0, . . . , xd−1 the initial conditions of the sequence X. The characteristic
roots of X are the roots of the polynomial

fX(t) = td − a1t
d−1 − · · · − ad.

A linear recurrence sequence you are likely familiar with is the Fibonacci sequence
{fn}, which has initial conditions f0 = 0, f1 = 1 and satisfies the order 2 recurrence

fn+2 = fn+1 + fn.

We have the following generalization of this sequence.

Definition 3.2. Given nonzero coprime integers P,Q, the Lucas sequence with
integer parameters (P,Q) is the order two sequence U(P,Q) = {un} with initial
conditions u0 = 0 and u1 = 1 and satisfying

un+2 = Pun+1 −Qun.

Our goal in this section is to study prime divisors of Lucas sequences. To state our
main result, we first need a few more definitions.

Definition 3.3. Given a prime p and sequence X = {xn}, the rank of apparition
(or index ) of p in X is the value

mp = min{m : p | xm}.
We call p a primitive divisor of the term xm if m = mp. That is, xm is the first
term in our sequence divisible by p. The Zsigmondy set of X is the set of terms
Z(X) in X with no primitive divisors; that is

Z(x) = {xm : mp < m for all primes p | xm}.
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Example 3.4. Observe that f6 = 8 is contained in the Zsigmondy set of the
Fibonacci sequence, since 2 is the only prime divisor of f6 but m2 = 3.

In [Car14], Carmichael showed that for any Lucas sequence U with distinct real
characteristic roots we have Z(U) ⊆ {1, 2, 6, 12}. This result was extended in
[BHV01] by Bilu, Hanrot and Voutier, who showed that the Zsigmondy set of any
Lucas sequence (with real or complex-valued roots) and Lehmer sequence (a gener-
alization of the Lucas sequences) is finite. The Zsigmondy set of Elliptic Divisibility
Sequences, which are certain nonlinear recurrence sequences associated to the in-
teger points on an elliptic curve, are known to be finite. Explicit information on
bounds of the Zsigmondy set of Elliptic Divisibility Sequences and other recurrence
sequences are topics of current interest (see [Sil88], [IS12], [Sil13], for example).

In this section, we’ll prove Carmichael’s theorem for the Fibonacci numbers. We
first need some preliminaries.

Lemma 3.5 (Binet’s Formula). Let α, β be the characteristic roots of the Lucas
sequence {un} with parameters (P,Q); that is, α, β are roots of T 2−PT+Q. Then,

un =
αn − βn

α− β
.

We leave this proof as an exercise.

Recall the nth cyclotomic polynomial is given by

Φn(x) =
∏

primitive nth
roots of unity ζn

(x− ζn).

We define the homogeneous nth cyclotomic polynomial to be

Φn(x, y) :=
∏

(x− ζny).

Recall equation (2.4) gave

xn − 1 =
∏
d|n

Φd(x)

and so replacing x with x/y gives

xn − yn =
∏
d|n

Φd(x, y).

From this and Binet’s formula (Lemma 3.5 above), we have

(3.1) un =
∏
d|n
d̸=1

Φd(α, β).

We will need to blackbox the following Lemma (we refer the reader to the proof of
Corollary 2.2 in [BHV01], for example).

Lemma 3.6. If α, β are characteristic roots of a Lucas sequence, then Φn(α, β) ∈ Z

From the discussion above and Lemma 3.6 we have the following.
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Lemma 3.7. For any Lucas sequence {un}, a prime p is a primitive divisor of un
if and only if p is a primitive divisor of Φn(α, β).

We just need two more lemmas, and then we’ll be prepared to prove Carmichael’s
Theorem for the Fibonacci sequence.

Lemma 3.8. For an integer n ̸= 1, 2, 6, suppose that n has distinct prime divisors
p1, . . . , pk. If

|Φn(α, β)| > p1p2 · · · pk,

then un contains a primitive divisor.

Proof. (Yubota’s paper is missing an important step to this proof. This should
follow from the fact that un is a divisibility sequence and so p | un precisely when
mp | n. Unfortunately it’s difficult to track down this argument; time permitting
we may return to this, but for now let’s blackbox it). □

Lemma 3.9. If n > 2 and a is real with |a| < 1/2, then Φn(a) > 1− |a| − |a|2.

Proof. Recall from Theorem 2.14 we have

Φn(a) =
∏
d|n

(1− an/d)µ(d).

Since |a| < 1/2 ⇒ |a|i < 1/2 for any integer i ≥ 1. So we have

−1

2
< −|a|i < 0

⇒ 1

2
< 1− |a|i < 1.

This gives (1 − |a|i)µ(d) ≥ 1 − |a|i, since µ(d) = 0, 1, or − 1. Also observe that
when 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 then

(1− x)(1− y) = 1− x− y + xy ≥ 1− x− y

Putting this all together gives

Φn(a) ≥
∞∏
i=1

(1− |a|i)

≥ (1− |a|)(1− |a|2 − |a|3 − |a|4 − · · · )

= (1− |a|)
(
1− |a|2

1− |a|

)
= 1− |a| − |a|2. □

We are now prepared to prove the following.

Theorem 3.10 (Carmichael’s Theorem for the Fibonacci Sequence). Let F = {fn}
be the Fibonacci sequence. Then, Z(F ) = {1, 2, 6, 12}.
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Proof. Observe first that the primitive nth roots of unity are precisely given by
ζ = e2πik/n where gcd(k, n) = 1. So

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− ζk),

which gives deg Φn(x) = φ(n). So we have

(3.2) Φn(α, β) = αφ(n)Φn(β/α).

Now, since the characteristic roots of the Fibonacci sequence are given by

α =
1 +

√
5

2
and β =

1−
√
5

2
,

and |β/α| = (3−
√
5)/2 < 1/2 then

Φn(β/α) ≥ 1− |β/α| − |β/α|2 = 2
√
5− 4 > 2/5.

So, from (3.2) and noting that α > 3/2 we get

Φn(α, β) > (2/5)(3/2)φ(n).

So, by Lemma 3.8 what’s left to show is that for an integer n ̸= 1, 2, 6, 12 with
prime factors p1, . . . , pt we have

(3.3) (2/5)(3/2)φ(n) > p1p2 · · · pt.

To do this, we will use the following fact, which is left as an exercise: let x, y be
real numbers with x > y > 3 and m > 2 be an integer. Then

(3.4) xm−1 > my.

Order our primes so that p1 < · · · < pt. Suppose first that p1 ≥ 11. Then

(2/5)(3/2)φ(p1) > (2/5)(3/2)10 ≈ 23 > p1

⇒ (3/2)φ(p1) >
5

2
p1.

Using (3.4) this gives

(3/2)φ(p1)φ(p2)···φ(pt) > (5/2)p1p2 · · · pt.

Since φ is multiplicative, then by above we have

(2/5)(3/2)φ(n) > (2/5)(3/2)φ(p1)···φ(pt) > p1p2 · · · pt.

So, what’s left to show is that equation (3.3) holds for integers n ̸= 1, 2, 6, 12 of the
form

n = 2a3b5c7d.

If a ≥ 4, b ≥ 3, c ≥ 2 or d ≥ 2 then we can proceed similarly to above. The
remaining cases can be checked by hand. We refer the reader to Yubota’s paper for
these details. □
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3.3. Prime Density

In the previous section, we derived the following lower bound for the prime counting
function

π(x) ≥ log x− 1.

The best known lower bounds are on the order of x/ log(x), which matches what
we know from the Prime Number Theorem, which states

π(x) ∼ x

log(x)
.

Recall this notation means

lim
x→∞

π(x)

x/ log(x)
= 1.

In this section, we use elementary methods to show that there are much less primes
than integers on a given interval. The correct formalism for this is the natural
density, defined below.

Definition 3.11. Let A be a set of positive integers, and set

A(n) = #{a ∈ A | a ≤ n}.

Then A has (natural) density δ(A) = α if

lim
n→∞

A(n)

n
= α.

Example 3.12. For any positive integers a and N , the density of the set of positive
integers satisfying x ≡ a(modN) is 1

N . In particular, the set of all positive integers

whose last decimal digit is 1 has density 1
10 .

We have the following.

Theorem 3.13. The set of prime numbers has natural density zero.

Proof. The following proof is due to Erdős. We will study the binomial coefficient(
2n
n

)
. First, note that a set with 2n elements has 22n = 4n subsets. Since the

number of n-element subsets of such a set is
(
2n
n

)
we have the inequality(

2n

n

)
< 4n.

Furthermore,
(
2n
n

)
∈ Z and contains all primes p with n+ 1 ≤ p ≤ 2n. So,(

2n

n

)
> nπ(2n)−π(n).

Combining the above gives nπ(2n)−π(n) < 4n and so taking logs we have

π(2n)− π(n) < log(4) · n

log n
.

Substituting n = 2k and summing gives

2m∑
k=2

(π(2k)− π(2k−1)) <

2m∑
k=2

2k

k − 1
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On the left hand side we have a telescoping sum and so

π(22m)− π(2) <

2m∑
k=2

2k

k − 1

<

m∑
k=2

2k +

2m∑
k=m+1

2k

m

< 2m+1 +
22m+1

m
.

So we know have an upper bound for π(4m) given by

(3.5) π(4m) < 1 + 2m+1 +
22m+1

m
.

Finally, for any real number x, there exists an integer m with 4m−1 < x ≤ 4m

which gives

m− 1 < log4(x) ≤ m.

Combining this with (3.5) we get

π(x) ≤ π(4m)

< 1 + 2m+1 +
22m+1

m

< 1 + 2log4(x)+2 +
22 log4(x)+3

log4(x)

= 1 + 4
√
x+

8x

log4(x)
.

So we have
π(x)

x
<

1

x
+

4√
x
+

8

log4(x)
→ 0, as x→ ∞.

□

3.4. Primality Tests

In the previous sections, we looked at patterns for primes in the set of integers. In
this section, we instead consider how one might determine whether a single given
integer p is prime. The naive approach would be to check all integers 2, 3, . . . , p− 1
to see whether they divide p. In Exercise 7 we’ll show that it suffices to only
check for divisors up to

√
p. But for large primes p this becomes computationally

infeasible. In this section, we present methods to check whether an integer is prime
with “high probability”. We will then see a fast deterministic test for Mersenne
primes. Much of this chapter will follow Section 3.4 of [HPS14].

3.4.1. The Fermat Test and Carmichael Numbers. Recall, for a prime p and
integer a ̸≡ 0(mod p) we have

(3.6) ap−1 ≡ 1(mod p).
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This is true either by Fermat’s little theorem, or by Lagrange, since (Z/pZ)× is a
group of order p− 1. Note that this gives an immediate test for compositeness. For
example,

26 = 64 ≡ 4(mod 6),

so we can conclude that 6 is not prime. Similarly,

212257 ≡ 8502(mod 12257),

and so 12257 is not prime either. Of course, the converse isn’t necessarily true. For
example,

21386 ≡ 1(mod 1387),

but 1387 = 19 · 73 is not prime. The following theorem will say that the situation
above happens infrequently enough to give a reasonably good test for primality,
except for some exceptional cases (unfortunately these exceptional cases end up
causing a lot of trouble).

Theorem 3.14 (Fermat’s Primality Test). Suppose that n is composite and there
exists an integer a relatively prime to n with

an−1 ̸≡ 1(modn).

Then, at least half of the integers w ∈ {0, 1, . . . , n− 1} satisfy

wn−1 ̸≡ 1(modn).

We call such an integer w a Fermat witnesses for (the compositeness of) n. We
call such a witness trivial if gcd(w, n) ̸= 1.

Proof. Let G = {a | an−1 ≡ 1(modn)} and note that G is a subgroup of (Z/nZ)×.
Since there exists b ∈ (Z/nZ)× that’s not in G, then G has index at least 2 in
(Z/nZ)×. That is,

|(Z/nZ)×/G| ≥ 2.

So, at least half of the elements in (Z/nZ)× are Fermat witnesses for n. Since
elements w ∈ {1, . . . , n} with gcd(n,w) ̸= 1 are also Fermat witnesses, our claim
follows. □

Observe that Theorem 3.14 does in fact give a probabilistic primality test. For
example, assuming the conditions of Theorem 3.14 are satisfied, if we find that 10
integers a ∈ {1, . . . , p − 1} are not Fermat witnesses to n, then the “probability”
that a is not prime is 1/210 ≈ 0.000098. Meaning (roughly) that we can say with
over 99% accuracy that n is prime. The trouble is that we have no way of testing
whether the conditions of Theorem 3.14 are satisfied without finding a Fermat
witness to n. And even worse, there exist composite numbers with no nontrivial
Fermat witnesses.

Definition 3.15. A composite integer n is called Carmichael if it does not have
any nontrivial Fermat witnesses. That is

an−1 ≡ 1(modn)

for all a ∈ {1, . . . , n− 1} with gcd(a, n) = 1.
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Example 3.16. Observe that n = 561 is composite, with n = 3 · 11 · 17. We claim
that n is Carmichael. To see this, we check that for all prime divisors p of n we
have (p− 1) | (n− 1):

3− 1 = 2 divides 560 = 2 · 280

11− 1 = 10 divides 560 = 10 · 56
17− 1 = 16 divides560 = 16 · 35.

Now, take any a ∈ {1, . . . , n − 1} with gcd(a, n) = 1. Then, gcd(a, p) = 1 for all
prime divisors of n and we have

a560 = (a2)280 ≡ 1280 ≡ 1(mod 3).

Similarly, we have

a560 ≡ 1(mod 11) and a560 ≡ 1(mod 17).

So, a560 − 1 is divisible by the distinct primes 3, 11, 17 and so a560 − 1 must be
divisible by their product.

The following gives a characterization of all such numbers.

Theorem 3.17 (Korselt’s criterion). For an integer n, an ≡ a(modn) for all
itnegers a if and only if n is square-free and (p − 1) | (n − 1) for all primes p
dividing n.

A proof of this criterion can be found in Theorem 2 of [Cona] from Conrad’s
expository notes. In [AGP94], Alford, Granville, and Pomerance showed that
there are infinitely many Carmichael numbers, but little else is known about their
occurrence. So for now, the Fermat test tells us with high probability if an integer
is either prime or Carmichael, but has no way to distinguish between these cases.
In the next section, we get a true probabilistic primality test.

3.4.2. The Miller-Rabin Test. The Miller-Rabin primality test will extend the
idea of the Fermat test by looking more carefully at the divisors of p− 1. This test
was originally developed by Gary Miller here at CMU in the 1970s and was later
updated by Michael Rabin in the 1980s. The key observation is as follows.

Theorem 3.18. Let p be prime and write

p− 1 = 2kq,

for an integer k ≥ 1 and odd integer q. Then for any a ∈ {1, . . . , p− 1} one of the
following must hold

(1) aq ≡ 1(mod p), or

(2) a2
ℓ

q ≡ −1(mod p) for some ℓ ∈ {1, . . . , k − 1}.

Proof. Recall that ap−1 ≡ 1(mod p). So we get

(aq)2
k

≡ 1(mod p).

If aq ≡ 1(mod p) then we’re done. If not, observe that we have

(aq)2
ℓ

̸≡ 1(mod p) and (aq)2
ℓ+1

≡ 1(mod p)
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for some ℓ ∈ {1, . . . , k − 1}. Furthermore, since p is prime, if x2 ≡ 1(mod p)

then x ≡ ±1(mod p) for any integer x. So we must have (aq)2
ℓ ≡ −1(mod p) as

desired. □

The following result gives an unconditional probabilistic primality test.

Theorem 3.19 (Miller-Rabin test). Suppose that n is an odd composite integer
and write

n− 1 = 2kq

where q is odd. Then at least half of the integers w ∈ {1, . . . , n− 1} satisfy

wq ̸≡ 1(modn) and (wq)2
ℓ

̸≡ −1(modn)

for all ℓ ∈ {1, . . . , k − 1}. We call such an integer w a Miller-Rabin witness for n.
As before, we say that w is a trivial witness if gcd(w, n) ̸= 1.

In fact, it’s true that at least 75% of integers in {1, . . . , k − 1} are Miller-Rabin
witnesses for n. The proof of this is not much more difficult than what we discuss
below, but is more lengthy than we have time for. We refer the reader to Section
5 of [Conf] for this argument. Note that every Miller-Rabin witness is a Fermat
witness of n, so Theorem 3.14 could come as a corollary to Theorem 3.19.

Proof. We follow the proof given in [Conf]. As in the proof of Theorem 3.14,
it suffices to show that the set of elements in (Z/nZ)× that are not Miller-Rabin
witnesses for n are contained in a proper subgroup of (Z/nZ)×. For the sake of
time, we will only discuss the proof in the case that n is a prime power, and refer
the reader to Theorem 4.1 of [Conf] for the case when n is not a prime power.

First, suppose that n = pα for a prime p and α ≥ 1. We claim in this case that the
set of integers a ∈ {1, . . . , p− 1} that are not Miller-Rabin witnesses is equal to

{a ∈ (Z/pZ)× | ap−1 ≡ 1(modn)}.

To see this, note that gcd(a, n) = 1 (otherwise a would trivially be a Miller-Rabin
witness) and so by Lagrange’s theorem we know that the order of a divides φ(n).
Also, since a is not a Miller-Rabin witnesses, then one of the following congruences
hold

aq ≡ 1(modn) or aq2
ℓ

≡ −1(modn) ⇒ aq2
ℓ+1

≡ 1(modn)

for some ℓ ∈ {1, . . . , k− 1}. In either case, we get that the order of a divides n− 1.
So, the order of a in (Z/pZ)× must divide

gcd(φ(n), n− 1) = gcd(pα−1(p− 1), pα − 1) = p− 1.

So, ap−1 ≡ 1(modn). Conversely, suppose that ap−1 ≡ 1(modn). Note that
(p − 1) | (pα − 1) = 2kq and so we can write p − 1 = 2jr where j ≤ k and r | q.
Moreover, since

(ar)2
j

= ap−1 ≡ 1(modn)

then the order of ar divides 2j . If the order of ar is 1, then recalling that q | r

aq = (ar)q/r ≡ 1(modn),
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and so a is not a Miller-Rabin witness. If the order of ar is larger than 1, say 2ℓ

then

(ar)2
ℓ

≡ 1(mod pα)

and so by Exercise 11 we get

aq2
ℓ−1

= (ar2
ℓ−1

)q/r ≡ (−1)q/r ≡ −1(mod pα),

recalling that r | q are both odd. So a is not a Miller-Rabin witness in this case
either. It is straightforward to check that

{a ∈ (Z/pZ)× | ap−1 ≡ 1(modn)}

is a subgroup of (Z/pαZ)×. Furthermore, this is a proper subgroup, because p+ 1
has order pα−1 in (Z/pαZ)× (which you’ll show in Exercise 12). □

It is actually expected that the Miller-Rabin test is deterministic. In particular, we
have the following.

Theorem 3.20 ([Bac90]). If the generalized Riemann hypothesis is true, then
every odd composite integer n has a Miller-Rabin witness no larger than 2(log n)2.

Unfortunately, the Riemann hypothesis is very much an open problem, so for now
this test is only probabilistic. While there does exist a polynomial-time deter-
ministic primality test (called the AKS primality test, which we will not discuss
here), it is much slower than the Miller-Rabin test. For cryptographic applications,
Miller-Rabin is widely used.

3.4.3. The Lucas-Lehmer Test for Mersenne Primes. While it is generally
quite slow to search for large primes at random, there is a very fast determinis-
tic algorithm to test whether a Mersenne number is prime. Recall that Mersenne
numbers are of the form Mn = 2n−1. By Exercise 10 for Mp to be prime, we must
have p prime as well.

The Lucas-Lehmer test for Mersenne primes considers the order one recurrence
sequence {Sn} with initial condition S1 = 4 and recurrence

Sn = S2
n−1 − 2.

Theorem 3.21 (The Lucas-Lehmer Primality Test). Let p be prime. If Mp | Sp−1
them Mp is prime.

Proof. We follow the proof given by J. W. Bruce in [Bru93], which gives a more
elementary version of the proof from [Ros88]. For an exposition on the motivation
behind this proof, see Terry Tao’s blogpost [Tao].

For a contradiction, suppose that Mp is composite. Let q be its smallest prime
divisor, and observe that

q2 ≤Mp.

Note that F := (Z/qZ)[
√
3] is a finite field with q2 elements. Next consider

ω = 2 +
√
3 and ω = 2−

√
3.
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Since ωω̄ = 1 then ω ∈ F×. In Exercise 10 we’ll show that

Sm = ω2m−1

+ ω̄2m−1

.

Since we’ve assumed that Mp | Sp−1 and q | Mp then thinking of the following
equalities in F we have

ω2p−2

+ ω̄2p−2

= 0

⇒ ω2p−2

= −ω̄2p−2

and so multiplying both sides by ω2p−2

gives

ω2p−1

= −1 ⇒ ω2p = 1

in F. That is, ω has order dividing 2p in F×. So,
2p ≤ |F×| = q2 − 1 ≤Mp − 1 = 2p − 2,

a contradiction. □

Example 3.22. Let’s show that M13 = 213 − 1 = 8191 is prime. Note that we
need to compute S12 but at each step we can reduce mod 8191. We have

n Sn(modMp)
1 4
2 14
3 194
4 4870
5 3953
6 5970
7 1857
8 36
9 1294
10 3470
11 128
12 0

Since S12 ≡ 0(modMp) then by Theorem 3.21 we know that 8191 is prime. Recall
this tells us that n = 212(213 − 1) = 33, 550, 336 is perfect.

This algorithm is very efficient. While we do need to compute p terms of the
recurrence sequence {Sn} and check this congruence Sp ≡ 0(modMp) this much
faster than checking all possible divisors of Mp = 2p − 1. Furthermore, we can
reduce the terms of our sequence at each iteration mod Mp. Most of the largest
known primes are Mersenne. As of September this year, the largest known prime
is

282,589,933 − 1.
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Exercises

1. Show that
n−1∏
k=0

Fk = Fn − 2,

for any integer n ≥ 1. Use this to conclude that there are infinitely many prime
numbers.

2. Show that 1, 2, 6 and 12 are all in the Zsigmondy set of the Fibonacci sequence.

3. Prove Lemma 3.5. (Hint: induct on n)

4. The following problem will help finish the proof of Theorem 3.10: let x, y be
real numbers with x > y > 3 and m > 2 be an integer. Then xm−1 > my.

5. Show that the set of odd positive integers has density 1/2.

6. Show that the set of integers with an odd number of decimal digits does not
have a natural density.

7. Show that a composite integer n contains a divisor d with d ≤
√
n.

8. Prove that every Carmichael number must be odd.

9. Prove that a Carmichael number must be a product of distinct primes.

10. Prove that if n is a composite number, then 2n − 1 is not prime.

11. This problem will help finish the proof of Theorem 3.19: show that for an odd
prime p and integer α ≥ 1, if x2 ≡ 1(mod pα) then x ≡ ±1(mod pα).

12. This problem will also help to finish the proof of Theorem ??: show that for
any prime p and integer α ≥ 1, p+ 1 has order pα−1 in (Z/pαZ)×. (Hint: use
the binomial theorem).

13. This problem will help finish the proof of Theorem 3.21. With the notation set

in Theorem 3.21, show that for any integerm ≥ 1 we have Sm = ω2m−1

+ω̄2m−1

.

14. Use the Miller-Rabin test to determine which of the following integers are prime
with at least 99% accuracy. For those that are composite, provide a Miller-
Rabin witness.
(a) n = 294409
(b) n = 294439
(c) n = 118901509
(d) n = 118915387

15. Use the Lucas-Lehmer test to show that the Mersenne numbers Mn are prime
when n = 17 and n = 19.



Chapter 4

Diophantine Analysis

4.1. Introduction

Recall that our goal in this course is to survey some of the techniques used to study
the integers under the operations of addition and multiplication. Since polynomial
equations capture relations of these operations under the integers, it is naturally
of interest to study their integer solution set. In this chapter, we give some of the
fundamental definitions and discuss elementary techniques to study Diophantine
equations. We will revisit this topic using the tools of algebraic number theory in
a future chapter.

Given a polynomial F ∈ Q[X1, . . . , Xn] a Diophantine equation is any equation of
the form

F (X1, . . . , Xn) = 0.

Diophantine analysis is the area of number theory concerned with finding integer (or
rational) solutions to equations of this type. More specifically, given a Diophantine
equation, a Diophantine problem might ask us to:

(1) Determine whether an integer or rational solution exists;

(2) Count the number of solutions or describe their distribution or density;

(3) Provide explicit descriptions of the solution set;

(4) Determine the arithmetic properties of the solution set.

This area of number theory is named after the Greek mathematician Diophantus of
Alexandria, who authored the series Arithmetica around the 3rd century AD, and
is attributed to beginning the formal study of such equations.

In the 1900s, David Hilbert posed the question of whether there is a general al-
gorithm to determine the existence of integer solutions to a Diophantine equation.
Unfortunately (or fortunately, depending on your perspective), in the 1970s Yuri
Matiyasevich was able to answer this with a definitive “no”. The field of Dio-
phantine analysis uses a wide array of techniques and pulls from many areas. In

39
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this chapter, we look at some Diophantine equations that can be solved through
elementary methods, and consider some general strategies to solve Diophantine
problems.

4.2. Linear Diophantine Equations

The following theorem completely characterizes solutions to linear Diophantine
equations in two variables.

Theorem 4.1. For integers a, b, c, the equation

(4.1) aX + bY = c

has an integer solution if and only if d = gcd(a, b) divides c. Moreover, if (x0, y0)
is a solution to (4.1) then all solutions are of the form (x(n), y(n)) where

x(n) = x0 + (b/d)n and y(n) = y0 − (a/d)n.

Proof. If d ∤ c, it is clear that equation (4.1) has no integer solutions. So, suppose
that d | c. By the Euclidean algorithm, there exist x, y ∈ Z so that

ax+ by = d,

and so (x · cd , y ·
c
d ) is a solution to (4.1). Next, suppose that (x0, y0) is any solution

to (4.1). Then, for any other solution (x, y) we have

a(x− x0) + b(y − y0) = 0

⇒ a

d
(x− x0) =

b

d
(y0 − y).

Note that gcd(a/d, b/d) = 1 and so a
d divides y0 − y. That is, there’s an integer n

with

y0 − y = n · a
d
⇒ y = y0 − n · a

d
.

Plugging this into the equation above gives x = x0 + (b/d)n. □

The following theorem is left as an exercise.

Theorem 4.2. For nonzero integers a1, . . . , an, the equation

a1X1 + · · ·+ anXn = c

has integer solutions if and only if d = gcd(a1, . . . , an) divides c. Furthermore, if
there exists a solution, there are infinitely many.

Question for myself and all of you: is there a characterization to linear Diophantine
equations in n varialbes similar to Theorem 4.1? (I’ll add this as a bonus to
Homework 6)
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4.3. Congruences

The following simple observation is often useful in proving the nonexistence of
solutions. Furthermore, this will motivate the “local-global” approach we discuss
in a future section.

Proposition 4.3. If the Diophantine equation F (X1, . . . , Xn) = 0 has an integer
solution, then F (X1, . . . , Xn) ≡ 0modm has a solution in (Z/mZ)2 for any integer
modulus n.

Proof. This is straightforward, since if F (x1, . . . , xn) = 0, then reducing every-
thing modulo m gives F (x̄1, . . . , x̄n) = 0, where x̄i ≡ ximodn. □

The trick to this strategy is finding a suitable modulus. We give a few examples
here, and leave some examples as exercises.

Example 4.4. Observe that X2 + Y 2 = 4Z + 3 has no integer solutions, since
reducing this equation modulo 4 we have

X2 + Y 2 ≡ 3(mod 4).

But, the squares mod 4 are precisely 0 and 1, neither of which sum to 3.

Example 4.5. We claim that the equation Y 2 = X3 +7 has no integral solutions.

Suppose that (x, y) is an integral solution. Note that if x were even, then we’d have

y2 ≡ 7(mod 8).

But the only squares modulo 8 are 0, 1, and 4. So, we must have x even, which
means that y is odd. Next, observe that

y2 = x3 + 7 ⇒ y2 + 1 = x3 + 8 = (x+ 2)(x2 − 2x+ 4).

Furthermore, we can write x2 − 2x + 4 = (x − 1)2 + 3. Since x is odd, then x − 1
is even and so (x− 1)2 ≡ 0(mod 4). So we have

(x− 1)2 + 3 ≡ 3(mod 4).

Since x is odd, and (x − 1)2 + 3 is positive, this tells us that (x − 1)2 + 3 has a
prime factor congruent to 3 modulo 4 (since otherwise all of its prime factors would
be 1 modulo 4, contradicting what we found above by the fundamental theorem of
arithmetic). Call this prime divisor p. Since p | (x2 − 2x+4) then p | (y2 +1). But
that means

−1 = y2(mod p).

That is, −1 is a square modulo p. We claim this is a contradiction. To see this,
raise the congruence above to the (p− 1)/2 power to get

(−1)(p−1)/2 ≡ yp−1 ≡ 1(mod p),

where the final equality follows by Fermat’s little theorem (or Lagrange, depending
on your style). Since −1 ̸≡ 1(mod p) for primes p > 2 then we must have (p− 1)/2
even. That is, p ≡ 1(mod 4), but this contradicts the fact that p was a divisor
congruent to 3 modulo 4.
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Remark 4.6. Equations of the form Y 2 = X3 + n are called Mordell equations,
and make up a special family of elliptic curves. It’s known that every Mordell
equation contains only finitely many integral ponits (in fact, this is true for any
elliptic curve). There are a few general methods to solving a Mordell equation, but
no known classification of solutions in general. In fact, Mordell equations are a
topic of modern study (see [BG15], for example) Toward the end of this chapter,
we give one more method to solve Mordell equations, which will be revisited at the
end of the class.

Remark 4.7. Note that the converse of Proposition 4.3 does not hold. For exam-
ple, it is clear that the equation x2 +1 = 0 has no integer solutions (since it has no
rational solution) but modulo 5, x = 2 is a solution. In the following sections, we
will show that in certain cases, it is enough to show that an equation has solutions
modulo all possible primes. This is called a “local-global” approach.

4.4. Homogeneous Diophantine Equations

Note that so far, we’ve only been discussing integer solutions to Diophantine equa-
tions. Typically the area of Diophantine analysis restricts itself to these problems.
In this section, we give a hint toward how the question of rational points is studied.

Definition 4.8. A polynomial F is said to be homogeneous if all of its terms
are of equal degree. Otherwise, F is said to be nonhomogeneous. When F is
nonhomogeneous, the degree of F is defined to be the largest degree of its terms.

Note that if F is homogeneous of degree d, then for any λ ∈ Z we have

F (λX1, . . . , λXn) = λdF (X1, . . . , Xn).

So, for Diophantine equations defined by homogeneous polynomials, it suffices to
study only the integer solution (x1, . . . , xn) with gcd(x1, . . . , xn) = 1.

Example 4.9. Observe that

F (X,Y, Z) = XY 2 − 3XY Z + Z3

is homogeneous of degree 3, while

G(X,Y ) = XY 2 − 3XY + 1

is nonhomogeneous of degree 3. However, the Diophantine equations

F (X,Y, Z) = 0 and G(X,Y ) = 0

are quite similar, since Z3G(X/Z, Y/Z) = F (X,Y, Z). This gives a general strategy.

Definition 4.10. Given a polynomial F (X1, . . . , Xn) of degree d the homogeniza-
tion of F is the polynomial

FH(X1, . . . , Xn, Z) := ZdF (X1/Z, . . . ,Xn/Z).

Observe that the homogenization of a polynomial is homogeneous. To see this,
write

F (X1, . . . , Xn) =
∑

aiX
ki1
1 · · ·Xkin

n .

Then,

FH(X1, . . . , Xn, Z) =
∑

aiZ
d−

∑
kijXki1

1 · · ·Xkin
n .
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So each term has degree d−
∑
kij +

∑
kij = d.

We have the following key observation.

Proposition 4.11. With the notation as above, the rational solutions to

F (X1, . . . , Xn) = 0

are in one-to-one correspondence with the integer solutions to (x1, . . . , xn, z)

FH(X1, . . . , Xn, Z) = 0

with gcd(x1, . . . , xn, z) = 1 and z ̸= 0 to

Recall that the integer and rational solutions to a homogeneous Diophantine equa-
tion are equivalent. It turns out that the rational solution set of a homogeneous
Diophantine equation makes up a well-behaved subset of a “projective variety”,
which are some of the main objects studied in algebraic geometry. It is often the
case, then, that rational solutions to Diophantine equations are studied through
this lens. Typically when people say “Diophantine analysis” this means the study
of integer points on Diophantine equations, while the field of “arithmetic geome-
try” concerns rational solutions. These areas of course overlap quite a bit and it
is not quite so clear cut. In the following section, we will see a characterization of
solutions to homogeneous Diophantine equations of degree 2.

4.5. p-adic Numbers and the Local-Global Principle

In a previous section, we saw that solutions to a Diophantine equation in the inte-
gers imply solutions in Z/pZ, but unfortunately that the converse does not hold.
If we replace Z with the p-adic integers (defined below), such a result does hold.
While this doesn’t seem to help our Diophantine problem at first glance, in this
section we’ll see that studying solutions “locally” (in the p-adic integer) can some-
times help us learn information about “global” (integer) solutions.

4.5.1. A brief introduction to p-adic numbers. We first give the algebraic
definition of the p-adic integers, as in [Ser73].

Definition 4.12. For a prime p, the p-adic integers Zp as a set has as elements
infinite tuples (. . . , x2, x1) with xm ∈ (Z/pmZ) that satisfy the condition

xm+1 ≡ xm(mod pm).

We give Zp a ring structure by considering it as a subring of
∏
n≥1 Z/pnZ.

We typically write our tuples in opposite order for the following reason (which will
not make any sense if you haven’t seen category theory). If we let

ψn : Z/pnZ → Z/pn−1Z, x 7→ x(mod pn−1)

then we have a projective system

· · · → Z/pnZ ψn−−→ · · · ψ3−−→ Z/p2Z ψ2−−→ Z/pZ.
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Then, Zp is precisely the inverse limit of this system

Zp = lim
←

Z/pnZ.

Observe that we could instead represent the elements of Zp as a formal power series.
If we let

x =

∞∑
n=0

bip
i

where bi ∈ {0, . . . , p− 1} then setting

x1 = x(mod p) = b0

x2 = x(mod p2) = b1p+ b0

...

xn = x(mod pn) = bnp
n + · · ·+ b1p+ b0

we see that (. . . , x2, x1) ∈ Zp. Furthermore, any element in Zp can be represented
in this way. Oftentimes people will use this representation to write a p-adic integer
in “decimal form” as x = . . . b2b1b0.

Example 4.13. Consider the element x = (. . . , 10, 10, 10, 1, 1) ∈ Z3. Then we
could write

x = · · ·+ 0 · 34 + 0 · 33 + 1 · 32 + 0 · 31 + 1 · 30

and so in decimal form we have
x = 101.

Note as well that there is a natural inclusion Z ↪→ Zp by sending

x 7→ (. . . , x(mod p3), x(mod p2), x(mod p)).

Furthermore, the elements in Zp that are mapped to by elements of Z are precisely
those elements with terminating p-adic decimal representations.

Definition 4.14. Given a p-adic integer x = (. . . , x3, x2, x1), if we have xk = 0 for
some k ≥ 1 then we must have xℓ = 0 for all ℓ = 1, . . . , k. That is, x is of the form

x = (. . . , xk+1, xk, 0, 0, . . . , 0).

The p-adic valuation of x ∈ Zp is defined as follows

νp(x) = min{n | xn ̸= 0}.

Observe that this matches our notion of p-adic valuations in the integers, since for
any x ∈ Zp if n = νp(x) and we write

x = (. . . , xn+1, xn, 0, . . . , 0)

then it must be the case that xn = apn with a ̸≡ 0(mod p). So, we can write

x = (. . . , pn, pn, 0, . . . , 0) · (. . . , yn+2, a, 0, . . . , 0).

But (. . . , pn, pn, 0, . . . , 0) is precisely the embedding of pn into Zp. So, νp(x) is
precisely the largest power of p we can factor out of our p-adic integer.

In exercise 6 we’ll show that Zp is in fact an integral domain, and so we can define
the following.
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Definition 4.15. The p-adic numbers Qp are the field of fractions of Zp.

Remark 4.16. It can be shown that the units in Zp are precisely those elements
not divisible by p, which gives Qp = Zp[1/p]. So, elements in Qp can be represented
as infinite series

∞∑
i=−k

bip
i

and in decimal form as
. . . b2b1b0b−1b−2 . . . b−k.

Remark 4.17. Note that the p-adic numbers can also be defined analytically as
the completion of Q with respect to the p-adic aboslute value, defined as

|x|p := p−νp(x).

Extending this absolute value to Qp we can define

Zp = {x ∈ Qp | νp(x) ≤ 1}.
It can be shown that this matches our algebraic definition by using the uniqueness
of completions. For the details of this and the previous remark, see Chapter 2 of
[Ser73].

Next, we discuss how the solutions to polynomials equations defined over Zp can
be completely understood through their mod p solutions.

4.5.2. Henel’s Lemma. The results in this section give a simple way to check
for solutions to Diophantine equations over Zp. The proof of the results below are
essentially a p-adic version of Newton’s method. For time, we refer the reader to
Section 2.2 of [Ser73] for these details. We first need some definitions.

Definition 4.18. Given a ring R and f(X) = anX
n + · · ·+ a1X + a0, the formal

derivative of f is defined as

f ′(X) := nanX
n−1 + · · ·+ 2a2X + a1.

A solution x ∈ R to f(X) = 0 is called a simple zero if f ′(x) ̸= 0.

The above definition also generalizes to polynomials in n variables.

Definition 4.19. Given a ring R and polynomial

f(X1, . . . , Xn) =
∑

aiX
ki1
1 · · ·Xkin

n

for ai ∈ R, the formal partial derivative of f is defined as

fX1 :=
∑

ki1aiX
ki1−1
1 Xki2

2 · · ·Xkin
n ,

and the remaining partial derivatives are defined similarly. We call a solution
x ∈ Rn to f(X1, . . . , Xn) = 0 a simple zero if fXi

(x) ̸= 0 for some i ∈ {1, . . . , n}.

Example 4.20. Let f(X,Y ) = X2 + Y 2 + 4 in (Z/7Z)[X,Y ]. Then,

f(1, 3) = 14 ≡ 0(mod 7)

and we have fX = 2X which gives fX(1, 3) ̸≡ 0(mod 7). So, (1, 3) is a simple zero
of f . The following results will tell us that in fact (1, 3) lifts to a zero in Z7.
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Theorem 4.21 (Hensel’s lemma). For a polynomial f defined over Zp, every simple
zero of f in Z/pZ lifts to a zero in Zp. That is, if f ∈ Zp[X1, . . . , Xn] and x ∈ Znp
satisfies

f(x) ≡ 0(mod p) and fXi(x) ̸≡ 0(mod p)

for some i ∈ {1, . . . , n}, then there is a unique x̃ ∈ Znp so that f(x̃) = 0 in Zp and
x̃ ≡ x(mod p).

4.5.3. The Local-Global principle. At first glance, it does not appear that
Hensels’ lemma helps with our Diophantine problem of finding integer solutions
to polynomial equations. However, there is a sort of philosophy that in certain
situations, to study a problem over Q it is enough to study it over R and Qp for
all primes p. We call R and Qp “local fields” and Q a global field. Note that the
local fields are precisely the fields created by completing Q at its absolute values
(by Ostrowski’s theorem, which we have not discussed here, all absolute values are
equivalent to either | · |p or the usual absolute value | · |). In the next section, we
show that a local-global principle holds for quadratic forms.

4.5.4. Quadratic Forms. A quadratic form is a homogeneous polynomial of
degree 2. We state a simplified version of the Hasse-Minkowski theorem below.

Theorem 4.22 (Hasse-Minkowski). The equation F (X1, . . . , Xn) = 0 has a ratio-
nal solution if and only if it has a solution over R and Qp for all primes p.

Proof. We give a sketch for the simplest part of this proof, and refer the reader
to Adam Gamzon honor’s thesis [Gam06] for a very clear and detailed writeup of
this result. First observe that any quadratic form

F (X1, . . . , Xn) =
∑

aijXiXj

can be represented as

F (X1, . . . , Xn) =
(
X1 · · · Xn

)
A

X1

...
Xn

 .

By diagonalizing A, we can make a change of variables that preserves integral
solutions to F (X1, . . . , Xn) = 0 so that we can write

F (X1, . . . , Xn) = a1X1 + · · ·+ anXn.

(see the upcoming Exercise 8, which I’ll aim to think more carefully about soon!).
The argument for Hasse-Minkowski considers the cases of n = 2, 3, and 4 separately
by using various reductions, and then generalizes to n ≥ 5. Let’s just discuss the
case when n = 2 to get some feel for how these arguments work.

Note that if aX2 + bY 2 = 0 has a solution over a field k if and only if −b/a is a
square in k. Now, since Q is a subset of R and Qp, one direction of Hasse-Minkowski
is clear. So suppose conversely that aX2 + bY 2 = 0 has a solution in R and Qp for
all primes p. Then, we must have c = −b/a a square in R and Qp. We claim this
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implies c is a square in Q. To see this, first note that c being a square in R means
that c > 0. Now, write

c = pe11 · · · pett
for ei ∈ Z, noting that c ∈ Z ↪→ Zp. Since c is a square in Zp for all primes p we
have νpi(c) (which we recall is defined identically in Z and in Z ↪→ Zp) is even for
all i. Which gives c as a square. □

We finish this section with an application of Hasse-Minkowski. We first need a
lemma, whose proof we omit (again, we refer the reader to the honor’s thesis
[Gam06] for the details).

Lemma 4.23. If there exists a nontrivial integer solution to

X2 + Y 2 + Z2 ≡ 0(mod p)

then there exists a nontrivial integer solution to

X2 + Y 2 + Z2 ≡ k(mod p)

for any integer k. Note here that by “nontrivial” we mean a solution not equal to
(0, 0, 0).

Sweeping many details under the rug, we are now prepared to prove the following.

Theorem 4.24 (Lagrange). Every positive integer is a sum of four squares.

Proof. Let n ∈ Z>0. Write n = 4an′ with 4 ∤ n′. Suppose first that n′ ̸≡ 7(mod 8).
We first show that n′ is a sum of three squares. That is, we show there is a solution
to the equation

X2 + Y 2 + Z2 = n′.

To see this, consider the equation

X2 ≡ (−Y 2 − 1)(mod p)

for an odd prime p. Note that the sets

{x2 | x ∈ {0, . . . , p− 1}} and {−y2 − 1 | y ∈ {0, . . . , p− 1}}
both have precisely (p+1)/2 elements. Since there are only p available congruence
classes, there must be a solution (x, y, 1) to

X2 + Y 2 + Z2 ≡ 0(mod p),

and so by Lemma 4.23 we have a nontrivial solution (x, y, z) to

X2 + Y 2 + Z2 ≡ n′(mod p).

Now, by Hensel’s lemma, this lifts to a solution in Zp ⊆ Qp for all odd primes p.
The solution in Q2 is a bit more delicate (not much more complicated, but we’d
have to state some things more carefully), so let’s take as fact there’s a solution

here as well. Finally, we have a solution (
√
n′, 0, 0) to X2 +Y 2 +Z2 = n′ in R. So,

by Hasse-Minkowski there is an integer solution to

X2 + Y 2 + Z2 = n′.

Finally, if n′ ≡ 7(mod 8) then n′ − 1 can be written as a sum of three squares as
above, and so n′ is a sum of four squares. □
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4.6. Solutions by Unique Factorization

So far, our methods to study Diophantine equations have been “local”, either by
considering solutions in Z/pZ or in Zp. There is also a global approach, which will
lead naturally to our discussion in the next chapter. We consider a few examples.

Example 4.25. We claim that the only integral solution to Y 2 = X3 + X is
(0, 0, 0). To see this, suppose that (x, y, z) is a solution to this equation. Then we
can write

y2 = x(x2 + 1).

But since gcd(x, x2 + 1) = 1 we must have x and x2 + 1 equal to integer squares.
In particular, this means that x2 and x2 + 1 are integer squares. The only way for
this to happen is for x2 = 0 which gives the desired solution.

Example 4.26. Next, we claim that the only integral solutions to Y 2 = X3 + 16
are (0,±4). To see this, suppose that (x, y, z) is a solution to this equation. Then
we can write

x3 = (y + 4)(y − 4).

Suppose first that y is odd. Note that if d | (y + 4) and d | (y − 4) then we have

d | 2y and d | 8.
Since y + 4 is odd we must have gcd(y + 4, y − 4) = 1. So, it must be that both
y+4 and y−4 are cubes. But, all cubes modulo 8 are odd, a contradiction because
y+4 and y− 4 have a difference of 8. Hence, y must be even. Next, since y is even
x must also be even. So,

8 | (x3 + 16) = y2

and so 4 | y (otherwise, ν2(y) = 1 and so ν2(y
2) = 2 meaning 8 ∤ y2). Let y = 4y′.

Then we get
16(y′)2 = x3 + 16,

and so 16 | x3 ⇒ 4 | x. Write x = 4x′. From above, we see this makes y′ odd and
so we can write y′ = 2m+ 1. Putting this all together gives

16(2m+ 1)2 = (4x′)3 + 16

⇒ 4m2 + 4m+ 1 = 4(x′)3 + 1

⇒ m(m+ 1) = (x′)3.

But since gcd(m,m + 1) = 1 when m ≥ 1 it must be the case that m and m + 1
are both cubes. As before, there aren’t many options for consecutive cubes, so we
must have one of m or m+ 1 equal to zero. That is, x′ = 0 which gives x = 0 and
so y = ±4.

You can solve a number of Diophantine equations in this way, but there is a very
unfortunate roadblock to this approach. For example, say that we tried to find
integer solutions to Y 2 = X3 − 5. If we use the strategy of the previous examples,
we’ll need to factor over the larger ring Z[

√
−5]. That is, if we have a solution

(x, y, z) we could write

x3 = (y +
√
−5)(y −

√
−5).

Perhaps we would like to argue that y±
√
−5 are relatively prime in this ring, and

so each element must be a cube. Unfortunately, this would require that Z[
√
−5]
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has something like a fundamental theorem of arithmetic. That is, we would need
this ring to be a UFD! But of course

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

verifies this ring does not have unique factorization.

Possibly the most famous Diophantine equation comes from Fermat, who claimed
in the 17th century (without proof, because the margin of the book he was reading
was “too narrow” to contain it) that the equation

Xn + Y n = Zn

has no nontrivial integer solutions when n > 2. The mathematician Gabriel Lamé
thought he had produced a proof of this theorem in the 19th century using a similar
method to what we’ve seen above. Unfortunately Lamés proof incorrectly assumed
unique factorization in the cyclotomic fields Z[ζ], where ζ an nth root of unity. It
was later pointed out by Liouville that in fact these rings are not always UFDs (a
fact proven around that time by Kummer). This is where the story of algebraic
number theory begins. In the next chapter, we will study rings that are in some
natural way analogous to the integers, and show that there is a way to extend the
arithmetic properties of the integers to these objects that can help us resolve some
Diophantine problems. While we will not be able to solve Fermat’s last theorem
in full with these methods (this was only recently proven in the 1990s by Andrew
Wiles, building off the work of many others), we will prove this theorem for a large
family of Fermat equations. We will also revisit some Mordell equations and further
Diophantine problems with this machinery.

Exercises

1. Show that for a polynomial F the homogenization FH is in fact a homogeneous
polynomial.

2. Prove Theorem 4.2.

3. Show that the only integral solution to X2 + Y 2 = (4a + 3)Z2 is (0, 0, 0) for
any a ∈ Z.

4. Show that the Mordell equation Y 2 = X3 − 5 has no integral solutions. (Hint:
rewrite this equation as Y 2 + 4 = X3 − 1 and look modulo 4).

5. Using Definition 4.12, prove that Zp and Z[[X]]/(X−p) are isomorphic as rings.

6. Show that Zp is an integral domain.

7. Show that the units in Zp are precisely the elements not divisible by p.

8. (I’m going to think more about how to scaffold this diagonalization argument,
I need to define some things carefully and be thoughtful about my phrasing)





Chapter 5

Algebraic Number Theory

In this Chapter, we cover some of the basic concepts of algebraic number theory.
Once we develop some of the basic tools from this area, we will see a succinct proof
of quadratic reciprocity, and show how some of the machinery from this chapter can
be used to study further Diophantine problems. This chapter and its exercises will
largely pull from Stewart and Tall’s introductory text on algebraic number theory
(see [ST16]).

5.1. Background and Basics

Recall in the previous chapter, if we would like to use our global tool of factoring a
Diophantine equation, it is often useful to be able to factor over something larger
than Z. The main objects of algebraic number theory are precisely those elements;
that is, elements which arise as roots of polynomials over Z.

As a disclaimer, many people think of algebraic number theory as the area of math-
ematics that uses algebra to study number theory. This is somewhat true, but I
think it is more fruitful to think of this area as algebraic number theory, rather
than algebraic number theory; that is, as the area of mathematics that studies the
algebraic numbers, and leads to some number theoretic consequences.

We have the following definitions.

Definition 5.1. Let α be a complex number.

(1) If α is the root of a monic polynomial (that is, the leading coefficient of f is
1) with rational coefficients, then α is called an algebraic number.

(2) If f has integer coefficients then α is called an algebraic integer.

(3) If f is a polynomial of smallest degree with α as a root, we call f the minimal
polynomial of α, and often use the notation f(X) =: mα(X). Note that
Exercise 1 tells us this is well defined.

51
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(4) The degree of an algebraic number is the degree of its minimal polynomial.

Example 5.2. We have that α =
√
−5 is an algebraic integer with

mα(X) = X2 + 5.

Note that β =
√
−5/2 is an algebraic number (but not an algebraic integer) with

mβ(X) = X2 +
5

4
.

The (primitive) nth roots of unity ζ are also algebraic integers, since they are roots
of the monic polynomial

f(X) = Xn − 1.

However, since (X − 1) | f(X), this polynomial is not of minimal degree when
ζ ̸= 1. In a future section, we’ll see that the cyclotomic polynomial Φn(X) studied
in previous chapters is the minimal polynomial of any nth root of unity ζ.

Determining when a polynomial containing α as a root is the minimal polynomial
can be quite difficult. The following Lemma gives one strategy.

Lemma 5.3. For an algebraic number α and polynomial f ∈ Z[X] with f(α) = 0,
f is the minimal polynomial of α if and only if f is irreducible over Q.

Proof. If f is reducible, there exist g, h ∈ Q[X] with f = gh and deg g,deg h <
deg f . So, we have g(α) = 0 or h(α) = 0, and so f is not a polynomial of smallest
degree having α as a root. Conversely, suppose that f is irreducible with f(α) = 0.
Using the division algorithm in Q[X] we can divide mα into f to get

f(X) = mα(X)q(X) + r(X)

with 0 ≤ deg r < degmα. Plugging in α gives r(α) = 0, and since mα must be
the polynomial of minimal degree with α has a root, we must have deg r = 0.
Furthermore, if r(X) = c for a constant c then we’d have c = r(α) = 0 so r is
identically zero. So, mα divides f , but since f is irreducible and monic, we must
have f = mα. □

Example 5.4. Let’s find the minimal polynomial of α =
√
2 +

√
5 over Q. By

Lemma 5.3 it suffices to find an irreducible polynomial with α as a root. We have

α2 = 7 + 2
√
10

α4 = 89 + 28
√
10

and so α4 − 14α2 = −9, which gives α as a root of

f(X) = X4 − 14X2 + 9.

This tells us that α is an algebraic integer. Next, we claim this polynomial is
irreducible, so that α has degree 4. Suppose first that we could write

f(X) = (X − a)g(X)

for a cubic polynomial g. Reducing everything mod 7 gives

X4 + 2 ≡ (X − a)g(X)(mod 7)

⇒ a4 ≡ −2(mod 7).
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But, the only squares mod 7 are 0, 1, 2 and 4, so no such value a can exist. That
is, f does not have a linear factor. We leave it as an exercise to show that f also
does not have a quadratic factor, and so f is irreducible.

Remark 5.5. In general it is quite challenging to determine whether a given poly-
nomial is irreducible. Further techniques (such as the Eisenstein criterion and
Gauss’ lemma) are standard material in an field theory course. Many computer
software programs can also check irreducibly of polynomials of small degree. For
the sake of time, we omit any more of this discussion here.

Remark 5.6. A complex integer that is not algebraic is called transcendental. In
Exercise 4 you’ll show that transcendental numbers exist by proving that the set
of algebraic numbers A is countably infinite. Giving an explicit construction of a
transcendental number is quite challenging. The first such construction is attributed
to Liouville in the 1800s. Using techniques in Diophantine approximation, Liouville
showed that the constant (now referred to as the Liouville constant)

∞∑
n=1

10−n!

is transcendental. Later on, Lindemann showed π is transcendental. Diophantine
approximation is a beautiful area of number theory with many contemporary ap-
plications. If you’re interested in the area, I suggest taking a look at Schmidt’s
book [Sch96].

Next, we consider what fields we end up with when “adjoining” algebraic numbers
to Q. We first recall some of the basics from field theory.

5.1.1. Field Theory Basics. Given a fields L and F , if F ⊆ L we call L a field
extension of F . Note that L is naturally an F -vector space, with vector addition
just usual addition in L, and for λ ∈ F and v ∈ L scalar multiplication λv is just
multiplication in L.

Definition 5.7. The dimension of L as an F -vector space is called the degree of L
over F , and is denoted [L : K].

We have the following.

Theorem 5.8 (Tower Law). Given field extensions K ⊆ L ⊆M we have

[M : K] = [M : L][L : K]

Proof. If {mi}i∈I is a basis for M over L and {ℓj}j∈J is a basis for L over K, it
can be shown that {miℓj}i∈I,j∈J is a basis for M over K. □

One way to construct field extensions is to adjoin on some elements of a larger field.
Given α1, . . . , αn ∈ L, we let

K(α1, . . . , αn)

denote be the smallest subfield of L containing K and α1, . . . , αn. It is not difficult
to check that the elements of K(α1, . . . , αn) are precisely those of the form

p(α1, . . . , αn)

q(α1, . . . , αn)
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with p, q ∈ K[X1, . . . , Xn]. Similarly, given ring R and S with R ⊆ S and
α1, . . . , αn ∈ S, we let

R[α1, . . . , αn]

denote the smallest ring containing α1, . . . , αn and observe this ring precisely con-
tains the elements

p(α1, . . . , αn)

with p ∈ R[X1, . . . , Xn]. So, we can see that

K(α1, . . . , αn) = Frac(K[α1, . . . , αn]).

5.1.2. Number Fields. A number field is any finite extension of Q. The fol-
lowing theorem, along with the tower law (Theorem 5.8) tells us that number fields
are precisely those fields formed by adjoining finitely many algebraic numbers. We
first need to generalize our definition of an algebraic number slightly.

Definition 5.9. Given fields K ⊆ L, we say α ∈ L is algebraic over K if α is the
root of a monic polynomial over K.

We have the following.

Theorem 5.10. If K ⊆ L are fields, then α ∈ L is algebraic over K if and only if
[K(α) : K] is finite. In this case, degα = [K(α) : K] and K(α) = K[α].

Proof. Suppose first that α ∈ L is algebraic over K of degree n. We claim that
{1, α, . . . , αn−1} forms a K-basis for K(α). For linear independence, note that if

n−1∑
i=0

aiα
i = 0

then α is a root of p(X) =
∑
aiX

i with deg p = n − 1 < degmα. So it must be
the case that p is identically zero. Let V denote the K-span of {1, α, . . . , αn−1}.
Observe that if

mα(X) = c0 + c1X + · · ·+ cnX
n

for ci ∈ K then,
αn = −(c0α+ · · ·+ cn−1α

n−1),

and so inductively any power of α is in V , and so for p ∈ K[X] and p(α) ∈ K(α) we
have p(α) ∈ V . This gives V = K[α]. Next, observe that since mα is irreducible,
then it must be that mα and p are relatively prime in K[X]. So, there existsw
f, g ∈ K[X] so that

f(X)mα(X) + g(X)p(X) = 1.

Evaluating at α gives g(α)p(α) = 1 and so 1/p(α) ∈ K[α]. Hence, K[α] = K(α) as
desired.

Conversely, suppose that [K(α) : K] = n is finite. Then, 1, α, . . . , αn are linearly
dependent, so ∃ci ∈ K not all zero so that

n∑
i=1

ciα
i = 0

making α algebraic over K. □



5.1. Background and Basics 55

We denote the set of all algebraic numbers as Q̄ and the set of algebraic integers
as Z̄. We have the following.

Theorem 5.11. The set of algebraic numbers Q̄ forms a field.

Proof. Observe that for any α, β ∈ Q̄ with β ̸= 0, we have that α±β, αβ and α/β
are in Q(α, β). So by Theorem 5.10 it suffices to show that [Q(α, β) : Q] is finite.
This follows directly from the tower law, since

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q]

and since β is algebraic over Q it must be algebraic over Q(α). □

5.1.3. Rings of Integers. The ring of integers of a number field K is defined
to be the set of all algebraic integers in K; that is

OK := K ∩ Z̄.

It will turn out that OK is analogous in some ways to Z. Our main goal of this
chapter will be to develop this analogy. First, we need to convince ourselves that
OK is in fact a ring. It will suffice to show the following.

Theorem 5.12. The set of algebraic integers Z̄ forms a ring.

It will be useful throughout this chapter to be able to talk about rings of integers
as Z-modules. Let’s first develop this area a bit.

Modules, intuitively, are just vector spaces over rings. Formally, we have the fol-
lowing.

Definition 5.13. Given a commutative ring R, an R-module M is an abelian
group with scalar multiplication rm for r ∈ R and m ∈M satisfying the following
properties

(1) (r + s)m = rm+ sm,

(2) r(m+ n) = rm+ rn,

(3) r(sm) = (rs)m,

(4) 1m = m

for all r, s ∈ R and m,n ∈ M . Observe that when R Is a field, M is an R-vector
space.

A module M is called free if it contains a basis B in the usual sense. That is, the
elements of M are precisely those of the form∑

ribi

for ri ∈ R and bi ∈ B (i.e. the R-span of B equals M) and that∑
cibi = 0

if and only if ci = 0 for all i (that is, B is R-linearly independent). The rank of M
is the size of the basis B.
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We have the following observation.

Lemma 5.14. If R is an integral domain and M is a finitely generated free R-
module of rank r, then M is torsion-free. That is, for every nonzero m ∈ M and
r ∈ R we have mr ̸= 0.

Proof. Suppose that M has basis {b1, . . . , bn}. Then for any m ∈M we can write

m = c1b1 + · · ·+ cnbn

for ci ∈ R. Now, take any nonzero element r ∈ R. Then we have

rm = (rc1)b1 + · · ·+ (rcn)bn.

Since m ̸= 0 and {bi} is R-linearly independent, then ci ̸= 0 for some i ∈ {1, . . . , n}.
Since R is a domain, then rci ̸= 0 which gives rm ̸= 0 again by linear independence
of {bi}. □

The following structure theorem is typically covered in an abstract algebra course,
so we omit the proof here.

Theorem 5.15 (Structure Theorem for Finitely Generated Modules over PIDs).
Let R be a PID and M a finitely generated R-module. Then,

M ∼= Rr ⊕R/(δ1)⊕ · · · ⊕R/(δm)

where δi ∈M satisfy δ1 | δ2 | · · · | δm. In particular, if M is free then we have

M ∼= Rr.

In this course, our modules will almost always be defined over Z. Note that in
this case, the structure theorem above is just the fundamental theorem on finitely
generated abelian groups.

We need one more result on modules, which we state without proof.

Lemma 5.16. Let N ⊆ M be modules over a PID. If M is a finitely generated
free R module of rank m, then N is also a finitely generated free R module of rank
n ≤ m.

The following Z-module will help us prove that Z̄ is in fact a ring.

Lemma 5.17. A complex number α is an algebraic integer if and only if Z[α] is
a finitely generated Z-module. Furthermore, if degα = n then Z[α] has Z-basis
{1, α, . . . , αn−1}.

We omit this proof, and note that it follows identically to the proof of Theorem
5.10. We are now prepared to prove Theorem 5.12.

Proof of 5.12. Take any α, β ∈ Z̄ and suppose that degα = n and deg β = m. We
need to show that α±β and αβ are in Z̄. By Lemma 5.17 we know that Z[α] and Z[β]
are finitely generated Z-modules with bases {1, α, . . . , αn−1} and {1, β, . . . , βm−1}
respectively. It is not difficult to see that Z[α, β] has basis contained in

{αiβj}
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where we take i ∈ {0, . . . , n − 1} and j ∈ {0, . . . ,m − 1}. So Z[α, β] is a finitely
generated Z-module and so by Lemma 5.16 Z[αβ] and Z[α±β] are finitely generated
Z-modules as well. So, the result follows by Lemma 5.17. □

5.1.4. Conjugates. Let α be an algebraic number. By the fundamental theo-
rem of algebra, we can write

mα(X) = (X − α(1))(X − α(2)) · · · (X − α(n))

for some α(i) ∈ C. We call the elements α(i) the conjugates of α. These elements
will help us define some key functions and invariants of a number field K which
will be useful in studying its ring of integers. First we note the following.

Lemma 5.18. The conjugates of any algebraic integer are distinct.

Proof. This follows because mα is irreducible over Q and so must have distinct
roots over C, but let’s prove this from scratch. Suppose for a contradiction that
α(i) = α(j) for some i ̸= j. Then we can write

mα(X) = (X − α(i))2g(X)

for some g(X) ∈ C[X]. Taking the formal derivative gives

m′α(X) = 2(X − α(i))g(X) + (X − α(i))2g′(X).

So, we have m′α(α
(i)) = 0. That is, α(i) is a root of both mα and m′α. But since mα

is irreducible, it must be that gcd(mα,m) = 1 and so by the Euclidean Algorithm
in Q[X] there exist q, t ∈ Q[X] so that

q(X)mα(X) + t(X)m′α(X) = 1.

But if evaluate both sides of this equation at α(i) we get 0 = 1, a contradiction. □

Remark 5.19. Note that it is not always the case that the conjugates of α are
in K = Q(α). For example, the conjugates of α = 3

√
2 are 3

√
2, ζ 3

√
2, ζ2 3

√
2 where

ζ = e2πi/3 is a primitive 3rd root of unity. Since K is real in the case, we see that
the conjugates of α, which are complex, certainly are not in K. Number fields that
contain the conjugates of every element are called Galois over Q.

The following results will tell us that for a number field K = Q(α1, . . . , αn), the
conjugates exactly define the monomorphisms σ : K ↪→ C that fix Q (that is, the
injective field homomorphisms with σ(q) = q for all q ∈ Q).

Theorem 5.20. Let α be an algebraic number with conjugates α(1), . . . , α(n) and let
K = Q(α). Then, there are exactly n distinct monomorphisms σi : K ↪→ C fixing
Q and are given by σi(α) = α(i). That is, for p(α) ∈ Q(α) where p(X) ∈ Q[X] we
define σi(p(α)) = p(α(i)).

Proof. It can be checked directly that the maps σi(α) = α(i) are injective field
homomorphisms, which are distinct by Lemma 5.18. Furthermore, they fix Q by
construction. Conversely, suppose that σ : K ↪→ C is a monomorphism fixing Q.
Then,

mα(σ(α)) = σ(mα(α)) = 0,

and so σ(α) is a conjugate of α. □
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In fact, automatically this will define all monomorphisms on any given number
field, due to the following theorem.

Theorem 5.21 (Primitive Element Theorem). If K is a finite extension of Q, then
there exists an element θ so that K = Q(θ).

However, we can usually get by without having to find a primitive element of K, so
we omit the proof of this theorem and refer the reader to Theorem 2.2 of [ST16]
for the details. Instead, we will use the following result to find the monomorphisms
on number fields of the form K = Q(α1, . . . , αn).

Theorem 5.22. Let K ⊆ L be number fields. Then every embedding K ↪→ C that
fixes Q extends to exactly [L : K] embeddings L ↪→ C that fix Q.

Proof. We induct on [L : K]. The case [L : K] = 1 is clear, so suppose that
[L : K] > 1. Then, there exists an element α ∈ L with α ̸∈ K. By the tower law
and Theorem 5.10, since L is algebraic over Q it is also algebraic over K, and so
there is an irreducible polynomial f ∈ K[X] with f(α) = 0. Write

f(X) = Xd + a1X
d−1 + · · ·+ a0,

where ai ∈ K and d ≥ 2. Take any embedding σ : K ↪→ C and let g := σ · f , where
(σ · f)(X) := Xd + σ(a1)X

d−1 + · · ·+ σ(a0).

It can be shown that since f is irreducible, so is g, and so g has distinct roots
β(1), . . . , β(d) in C. Define the maps σ̃i : K(α) ↪→ C by sending

σ̃i(α) = β(i) and σ̃i(k) = σ(k)

for all k ∈ K. It can be verified that σ̃i is a monomorphism, and by construction
σ̃i extends K. By the inductive hypothesis, each of the d = [K(α) : K] embeddings
σ̃i extends to exactly [L : K(α)] embeddings, and so by the tower law there are
[L : K(α)][K(α) : K] = [L : K] embeddings extending σ as desired. □

Example 5.23. Let’s find all monomorphisms of K = Q(
√
2,
√
3) into C that fix

Q. Since
√
2 has conjugates ±

√
2 the embeddings

σi : Q(
√
2) ↪→ C

are given by σ1(
√
2) =

√
2 and σ2(

√
2) = −

√
2. Observe that the proof of Theorem

5.22 tells us precisely how to extend these embeddings. Since
√
3 has minimal

polynomial f(X) = X2−3 over Q(
√
2) we get that σi ·f = f and so the embeddings

σ̃ij extending σi are given by

σ̃i1(
√
3) =

√
3 and σ̃i1(

√
2) = σi(

√
2)

and
σ̃i2(

√
3) = −

√
3 and σ̃i2(

√
2) = σi(

√
2).

So the embeddings of K into C, of which there should be exactly 4 = [Q(
√
2,
√
3) :

Q] are defined by

σ̃11 :
√
2 7→

√
2 and

√
3 7→

√
3

σ̃12 :
√
2 7→

√
2 and

√
3 7→ −

√
3

σ̃21 :
√
2 7→ −

√
2 and

√
3 7→

√
3

σ̃22 :
√
2 7→ −

√
2 and

√
3 7→ −

√
3



5.1. Background and Basics 59

5.1.5. The Norm and Trace. The norm and trace will be functions mapping
from a number field K to the rational numbers, so that the restriction to the ring
of integers OK maps to the integers. These functions will often let us translate
questions about arithmetic in OK to arithmetic in Z.

Definition 5.24. LetK be an algebraic number field, and σ1, . . . , σn be the distinct
embeddings K ↪→ C fixing Q. Then, the norm of α in K is given by

NK(α) :=

n∏
i=1

σi(α)

and the trace of α in K is given by

TrK(α) :=
n∑
i=1

σi(α).

Lemma 5.25. For any α ∈ K we have NK(α),TrK(α) ∈ Q. Furthermore, if
α ∈ OK then we have NK(α),TrK(α) ∈ Z.

Proof. Suppose that α has conjugates α(1), . . . , α(m) labeled so that

σi(α) = σ(i).

Recall from Theorem 5.22 we can relabel our σj so that

σi(α) = σm+i(α) = · · · = σ(d−1)m+i

where d = n/m and for all i = 1, . . . ,m. Next, since

mα(X) = (X − α(1))(X − α(2)) · · · (X − α(n))

we can write

mα(X) = Xm −

(
m∑
i=1

α(i)

)
Xm−1 + · · · ±

(
m∏
i=1

α(i)

)
.

Since mα(X) ∈ Q[X] we have NQ(α)(α),TrQ(α)(α) ∈ Q. Furthermore, if α ∈ Z̄ then
mα(X) ∈ Z[X] and so NQ(α)(α),TrQ(α)(α). The result follows by Exercise 6. □

In the exercises, you will also show that the norm gives a characterization of units
in OK and how it gives a sufficient condition for an element in OK to be prime.

5.1.6. Discriminants. For a number field K of degree n over Q and subset
A = {α1, . . . , αn} of K, the discriminant of the set A is the value

∆(α1, . . . , αn) = det(σi(αj))
2.

Observe that ∆(α1, . . . , αn) = 0 precisely when the αi form a Q-basis for K. Fur-
thermore, if α1, . . . , αn and β1, . . . , βn are two Q-bases for K with

βk =

n∑
i=1

cikαi

then we have

(5.1) ∆(β1, . . . , βn) = (det(cik))
2∆(α1, . . . , αn).
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Theorem 5.26. For any subset {α1, . . . , αn} of a number field K, we have

disc(α1, . . . , αn) = det(TrK(αiαj))
2.

Proof. We have

∆(α1, . . . , αn) = det(σi(αj))
2

= det(σi(αj)) det(σi(αj))

= det(σj(αi)) det(σi(αj))

= det((σj(αi))(σi(αj))

= det(σ1(αiαj) + · · ·+ σn(αiαj))

= det(TrK(αiαj)),

as desired. □

This, along with Lemma 5.25 gives the following Corollary.

Corollary 5.27. For a subset {α1, . . . , αn} of a number field K, ∆(α1, . . . , αn) is
in Q. If α1, . . . , αn ∈ OK then ∆(α1, . . . , αn) is in Z. Furthermore, if all of the
conjugates of the αi are real, then ∆(α1, . . . , αn) ≥ 0.

5.1.7. Orders and Integral Bases. The following will allow us to define the
discriminant as an invariant of K, and furthermore will help us understand OK as
a Z-module. We first need the following observation.

Lemma 5.28. If α ∈ K then there exists a nonzero integer c so that cα ∈ OK .

Proof. Write mα(X) = Xn + a1X
n−1 + · · · a0. Since ai ∈ Q there is a nonzero

integer c ∈ Z so that cai ∈ Z for all i. Observe that cα is a root of

f(X) = Xn + ca1X
n−1 + · · ·+ a0 ∈ Z[X]

so we have cα ∈ OK . □

Theorem 5.29. For a number field K, OK is a free Z-module of rank n = [K : Q].

Proof. Let {α1, . . . , αn} be a basis for K. By Lemma 5.17 we know that there
exist ci ∈ Z with ciαi ∈ OK . Letting c = c1 · · · cn we have cαi ∈ OK for all i. It is
not difficult to also check that {cα1, . . . , cαn} is a basis for K, so by replacing αi
with cαi we may assume that {α1, . . . , αn} ⊆ OK . Next, let

d := ∆(α1, . . . , αn).

Recall that d ̸= 0, and letM denote the free Z-module with basis {α1/d, . . . , αn/d}.
We first claim that OK ⊆M . To see this, take any α ∈ OK and write

α = x1α1 + · · ·+ xnαn

with xi ∈ Q. If we let σ1, . . . , σn denote the distinct embeddings K ↪→ C then we
obtain a system of equations that can be organized as followsσ1(α)...

σn(α)

 =

σ1(α1) · · · σ1(αn)
...

. . .
...

σn(α1) · · · σn(αn)


x1...
xn
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By Cramer’s rule, we have that

xi = det(Ai)/ det(σi(αj)),

where Ai is a matrix consisting of σi(αj)’s and σi(α)’s. Since OK is a ring and the
conjugate of any algebraic integer is also an algebraic integer, we get det(A) ∈ OK .
Furthermore, we have

dxi =
√
d · det(A)

So dxi ∈ Z̄ ∩ Q which gives dxi ∈ Z as desired. Hence, OK is contained in a free
Z-module of rank n and so by Lemma 5.16 OK is a free Z-module of rank ≤ n.
Finally, we show that OK has rank at least n. By the primitive element theorem, we
can write K = Q(θ) for some θ ∈ K. By Lemma 5.28 we may assume that θ ∈ OK .
Recall that Lemma 5.17 tells us Z[θ] is a free Z-module of rank n = [K : Q], and
by definition Z[θ] ⊆ OK . □

Definition 5.30. An order O in a number field K is any free Z-module with rank
n = [K : Q] that is also a ring with unity.

For example, O = Z[
√
5] is an order in K = Q(

√
5). However, O ≠ OK because for

example α = 1+
√
5

2 has minimal polynomial X2 −X − 1 and so α ∈ OK but not in
O.

Theorem 5.31. The ring of integers of any number field is the maximal order.
That is, if O is an order in K, then we have O ⊆ OK .

Proof. Take any α ∈ O. Then Z[α] ⊆ O. Since O is a finitely generated free Z-
module, then by Lemma 5.16 so is Z[α]. So, if α has degree d then {1, α, . . . , αd−1}
is a Z-basis for Z[α] and so we must have αd =

∑d−1
i=0 ciα

i for some ci ∈ Z and so
α ∈ OK . □

This Theorem gives rise to the following definition.

Definition 5.32. The index of an order O in OK is the size of the quotient group

(OK : O) := |OK/O|.

Note that, since O is an order, (OK : O) is finite.

Next, we see how the discriminant can be used to measure the “size” of an order.

Theorem 5.33. Let {α1, . . . , αn} be a Z-basis for an order O in a number field
K. Then {β1, . . . , βn} is a Z-basis for O if and only if the change of basis matrix
C is in GLn(Z); that is, there exists a matrix D so that CD = I. Furthermore, we
have

∆(α1, . . . , αn) = ∆(β1, . . . , βn).

Proof. Write

βi =

n∑
k=1

cikαk and αi =

n∑
k=1

dikβk
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for cik, dik ∈ Z. This givesβ1...
βn

 = C

α1

...
αn

 , and

α1

...
αn

 = D

β1...
βn


where C = (cik) and D = (dik) are in Matn(Z). Soβ1...

βn

 = CD

β1...
βn

 ,

but since {β1, . . . , βn} are Q-linearly independent, we must have CD = I. Taking
determinants gives det(C) det(D) = 1. But since det(C),det(D) ∈ Z we have
det(C) = ±1 and so by Equation (5.1) we get ∆(α1, . . . , αn) = ∆(β1, . . . , βn). □

This gives rise to the following definition.

Definition 5.34. The discrimimant ∆O of an order O is the discriminant of any
Z-basis of O. We call the discrimimant of the ring of integers OK the discrimimant
of K, and typically use the notation ∆K to mean ∆OK

.

Note that, since OK has rank [K : Q], any Z-basis for OK is also a Q-basis for K.

Definition 5.35. A Q-basis {α1, . . . , αn} is called an integral basis for a number
field K if it is also a Z-basis for OK .

5.2. Finding Rings of Integers

We will see later in this chapter that the ring of integers OK of a number field has
several nice arithmetic properties. In this section, we show how the following result
gives one strategy to find OK .

Theorem 5.36. Let O be an order in K. Then,

∆O = ∆K(OK : O)2.

Proof. Let {α1, . . . , αn} be a Z-basis for OK and {β1, . . . , βn} a Z-basis for O. By
Theorem 5.31 we know that {β1, . . . , βn} ⊆ OK and so we can writeβ1...

βn

 = C

α1

...
αn


for some C ∈ Matn(Z). Next, we write C in Smith Normal Form. That is, using
row and column operations, we can construct matrices X,Y ∈ GLn(Z) so that
XCY = diag(d1, . . . , dn) where di ∈ Z. So, we have

X

β1...
βn

 = diag(d1, . . . , dn)Y
−1

α1

...
αn

 .
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Let β
′
1
...
β′n

 = X

β1...
βn

 and

α
′
1
...
α′n

 =

α1

...
αn

 .

Since X,Y −1 ∈ GLn(Z) then by Theorem 5.33 we know that {β′1, . . . , β′n} is a
Z-basis for O and {α′1, . . . , α′n} is a Z-basis for OK and by construction we have
β′i = diα

′
i. So,

∆O = det(σi(β
′
j))

2 = det(diσi(α
′
j))

2 = ∆OK
(d1 · · · dn)2.

By the structure theorem for modules over PIDs, we have the isomorphism

φ : OK

∼=−→ Z⊕n, a1α1 + · · ·+ anαn 7→ (a1, . . . , an).

So, we see that φ(O) ∼= d1Z⊕ d2Z⊕ · · · ⊕ dnZ, which gives

|OK/O| = |Z⊕n/(d1Z⊕ d2Z⊕ · · · ⊕ dnZ)| = d1 · · · dn
as desired. □

Note that if ∆O contains no square factor, we must have (OK : O) = 1, immediately
giving OK = O. So if we can find an order in K with square-free discriminant, we
automatically must have found the ring of integers. However, we don’t always get
so lucky. The following results show how we might still use the theorem above.

Proposition 5.37. Let O be an order in a number field K with I = (OK : O).
Then we have

OK ⊆ 1

I
O.

Proof. As in the proof of 5.36, there exists a basis {α1, . . . , αn} for OK so that
{d1α1, . . . , dnαn} is a basis for O. Now, for any α ∈ OK we have

α = a1α1 + · · ·+ anαn

for ai ∈ Z and since I = d1 · · · dn we get

α =
1

I
((a1d2 · · · dn)d1α+ · · ·+ (a1d1 · · · dn−1)dnα) ∈

1

I
O.

□

Proposition 5.38. Suppose that O is an order inK with basis {β1, . . . , βn}. Then,
for every prime p dividing the index (OK : O), there exists a nonzero element
α ∈ OK of the form

α =
1

p
(r1α1 + · · · rnαn)

where ri ∈ Z with 0 ≤ ri < p.

Proof. Suppose that OK ̸= O so that there exists a prime p dividing (OK : O).
By Proposition 5.37 we have

OK ⊆ 1

I
O.

Take α ∈ OK with α ̸∈ O. Then we can write

α =
1

I
(b1β1 + · · ·+ bnβn)
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for some bi ∈ Z. Write I = pd for a prime p and d ∈ Z. Then we get

dα =
1

p
(b1β1 + · · ·+ bnβn)

Divide p into each bi to write
bi = pqi + ri

where 0 ≤ ri < p. Since α ̸∈ O then we have ri ̸= 0 for some i ∈ {1, . . . , n}. We get

dα =
1

p
(r1β1 + · · ·+ rnβn) + α′,

where α′ = q1β1 + · · ·+ qnβn ∈ O ⊆ OK . So, dα− α′ ∈ OK as desired. □

Example 5.39. Let K = Q( 3
√
5). We claim that OK = Z[ 3

√
5]. To see this, let

θ = 3
√
5 and note that θ has conjugates θ, ζθ, ζ2θ where ζ = e2πi/3 is a primitive

3rd root of unity. Letting O = Z[θ] we have

∆O = det

1 θ θ2

1 ζθ ζ2θ2

1 ζ2θ ζθ2

2

= θ6

1 1 1
1 ζ ζ2

1 ζ2 ζ

2

= 52(3ζ2 − 3ζ)2

= 52 · 32(ζ2 − ζ)2

= 52 · 32 · ζ + ζ2 − 2ζ3

= −33 · 52.

Note that 1 + ζ + ζ2 = ζ3−1
ζ−1 and since ζ3 = 1 we get ζ + ζ2 = −1. So, by Theorem

5.36 we have
−33 · 52 = ∆K(OK : O)2.

For a contradiction, suppose that 3 | (OK : O). Then by Proposition 5.38 there
exists an element α ∈ OK of the form

α =
1

3
(r1 + r2θ + r3θ

2).

with 0 ≤ ri < 3. Asking technology to help you take the norm gives

NK(α) =
1

27
(r31 − 15r1r2r3 + 5r32 + 25r33)

We can check all possibilities for ri ∈ {0, 1, 2} to see that NK(α) ̸∈ Z and so
α ̸∈ OK . If p = 5 divides the index (OK : O) then again by Proposition ?? there’s
a nonzero element β ∈ OK of the form

β =
1

5
(r1 + r2θ + r3θ

2)

with 0 ≤ ri < 5. Taking the trace gives TrK(β) = r1/5 and so we must have r1 = 0.
Similar to above, we can compute

NK(β)
1

125
(5r2 + 25r33)
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and check by hand that there is no choice of ri ∈ {0, . . . , 4} making NK(β) ∈ Z
unless β = 0. So we must have (OK : O) = 1 giving OK = Z[θ].

Remark 5.40. Note that number fields K with ring of integers of the form Z[θ] for
some θ ∈ K are called monogenic. We’ll see in a future section that the cyclotomic
fields Q(ζ) are monogenic, where ζ is a root of unity. Characterizing monogenic
fields and finding explicit information about their generators is a topic of current
interest (see for example [GSS19] and [Akh22]).

5.3. Unique Factorization of Ideals in OK

The ring of integers OK is a number field K is meant to generalize the integers
Z inside of the rational numbers Q. Unfortunately, this analogy does not immedi-
ately extend our fundamental theorem. That is, not every ring of integers has the
property that elements factor uniquely into primes. In this section, we show that
if we instead pass to ideas, we can recover such a theorem. First, we review some
ring theory background.

5.3.1. Irreducible and Prime Elements. . Let R be a ring. Recall that an
element u ∈ R is called a unit if it has a multiplicative inverse in R.

Definition 5.41. A nonzero nonunit p ∈ R is said to be prime if it satisfies the
following property:

if p | ab then p | a or p | b,
for any a, b ∈ R. A nonzero element a ∈ R is said to be irreducible if whenever
a = xy, either x or y is a unit in R.

It is not always the case that irreducibles are prime.

Example 5.42. Observe that 2 is irreducible but not prime in Z[
√
−5]. To see

this, note that we can wrte

2 · 3 = (1 +
√
−5)(1−

√
−5).

If 2 | (1±
√
−5) then by Exercise 6 we would have

NK(2) | NK(1±
√
−5) ⇒ 4 | 6,

where K = Q(
√
−5), a contradiction. So 2 is not prime. Now, if 2 were reducible

we could write
2 = xy

for x, y ∈ Z[
√
−5] nonunits. Again by Exercise 6 this implies that N(x), N(y) ̸= ±1.

So we have
NK(2) = NK(x)NK(y) ⇒ NK(x) = ±2.

Note that we can write x = a+ b
√
−5 and so the above implies that

a2 + 5b2 = ±2.

But there are no integer solutions a, b to the above equation and so x ̸∈ Z[
√
−5].

So 2 must be irreducible.

If our ring R is an integral domain, the converse does hold.

Lemma 5.43. If R is an integral domain, then every prime is irreducible.
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Proof. Suppose that p is prime, and write p = xy. Without loss of generality, say
that p | x. Then we can write x = ap for some a ∈ R. So we get

p = apy ⇒ p(1− ay) = 0

and since R is an integral domain and p ̸= 0 we get 1− ay = 0. Hence, ay = 1 and
so a is a unit. □

In Exercise 10 you’ll show that factorization into irreducibles (and hence factoriza-
tion into primes) is not guaranteed in a ring of integers.

5.3.2. Prime Ideals. Recall that an ideal a is a subset of a ring R that’s an
additive group with the property that for every r ∈ R we have ra ⊆ a.

Definition 5.44. A proper ideal a in a ring R is called maximal if for all ideals
b ⊆ R with a ⊆ b either b = a of b = R.

Definition 5.45. An ideal p in a ring R is called prime if for all ideals b, c in R
with bc ⊆ p, we have b ⊆ p or c ⊆ p.

Note that this definition generalizes the notion of prime element, since for principle
ideals (a) and (b) in a ring R we have (b) ⊆ (a) if and only if a | b. The following
alternate definition of prime ideals will often be useful.

Definition 5.46. A proper ideal a in a ring R is called prime if for all elements
b, c ∈ R with bc ∈ a either b ∈ a or c ∈ a.

Lemma 5.47. Definition 5.45 and 5.46 are equivalent.

Proof. Suppose that p is prime as given in Definition 5.45, and suppose b, c ∈ R
with bc ∈ p. Then (b)(c) ⊆ p and so either (b) ⊆ p or (c) ⊆ p and so b or c is an
element of p. Conversely, suppose that p is prime as given in Definition 5.46 and let
a, b be ideals in R with bc ⊆ p. Suppose that b ̸⊆ p. Then, there exists an element
b ∈ b with b ̸∈ p. Now, for any c ∈ c we have bc ∈ bc ⊆ p and so we must have
c ∈ p. This gives c ⊆ p. □

Lemma 5.48. In a ring R, every maximal ideal is prime.

Proof. Let a be a maximal ideal in R, and take any b, c ∈ R with bc ∈ a. Suppose
that b ̸∈ a. Then a+ (b) is an ideal strictly containing a, and so by maximality we
must have a+ (b) = R. So, there exists some a ∈ a and r ∈ R with a+ rb = 1. So,
c = ac+ rbc ∈ a. □

5.3.3. Primes Factorization of Ideals in OK . While the converse of Lemma
5.48 does not hold in general (see Exercise 11, for example) this does hold in OK .

Lemma 5.49. Let K be a number field. Then every prime ideal in OK is maximal.

Proof. Let p be a prime ideal in O. Then for any α ∈ p we have NK(α) ∈ p. So,

OK/p ⊆ OK/(NK(α)).

Since (NK(α)) = NK(α) ·OK then we have |OK/(NK(α))| is finite. The result will
then follow by Exercise 12. □
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To prove our generalization of the fundamental theorem of arithmetic for rings
of integers, it will be useful to think of the ideals in OK as elements of a group.
Unfortunately there is not a good notion of inverses for ideals, so we will have to
expand the elements we consider.

Definition 5.50. A fractional ideal in K is an OK-module a ⊆ K so that the set

da = {da | a ∈ a}
is an ideal in OK for some nonzero element d ∈ OK . We call d a common denomi-
nator of a, and denote the set of fractional ideals in OK by Id(K).

For example, the fractional ideals in Z are precisely qZ for q ∈ Q. In fact, if OK

is any principal ideal domain, the fractional ideals are precisely given by kOK for
k ∈ K. In general, any fractional ideal a with common denominator d can be
written in the form a = d−1b for an ideal b in OK .

Recall, given ideals a, b in a ring R, their product

ab =

{∑
i

aibi | ai ∈ a, bi ∈ b

}
is also an ideal. We use this to define a group structure on Id(K).

Theorem 5.51. For a number field K, Id(K) forms a group with products defined
as follows: for a, b ∈ Id(K), write a = c−1c and b = d−1d for c, d ∈ K̸=0 and c, d
ideals in OK . Then,

ab := (cd)−1cd.

Furthermore, inverses are given by

a−1 = {x ∈ K | xa ⊆ OK}.
Note that a−1 includes more than just common denominators, since we are allowing
elements x to be in K, instead of just in OK .

Proof. It follows from definition that Id(K) is closed under products and that
Id(K) has identity OK = (1). For any a ∈ Id(K), it can be checked that a−1 is an
OK-module, and if we take any nonzero d ∈ a then by definition

da−1 ⊆ OK

So d is a common denominator for the OK module a−1, giving a−1 ∈ Id(K). So,
what’s left to show is that

aa−1 = OK

for any a ∈ Id(K). One set inclusion follows from definition: if we take any nonzero
α ∈ aa−1 then α ∈ da−1 for some nonzero d ∈ a and as above da−1 ⊆ OK so
that α ∈ OK . The other set inclusion is a bit more delicate, so to save some time
(and my sanity) I’m going to skip this and instead refer the reader to Section 5.2
of [ST16]. □

We are now prepared to prove our generalization of the fundamental theorem of
arithmetic for rings of integers.

Theorem 5.52. Every nonzero ideal in OK can be written as a product of prime
ideals, uniquely up to the order of the factors.
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Proof. Let S be the set of ideals that are not the product of prime ideals, and
for a contradiction suppose that S is not empty. We can choose a maximal ideal
a in S, since the ring OK is Noetherian (that is, every nonempty set of ideals has
a maximal element; this follows from OK being a finitely generated free Z-module,
but we’ll omit the details here). Since a isn’t a product of prime ideals, it’s not
prime itself, and so by Lemma 5.48 a is not maximal in OK . So, there exists a
maximal (and hence prime) ideal p with a ⊆ p ⊆ OK . It can be shown that

a ⊆ ap1 ⊆ OK

(this step is nontrivial, and again uses OK being Noetherian, but it’s a bit lengthy
to do carefully so let’s skip it). Since a is maximal in S, we have that ap−1 ̸∈ S
and so we can write

ap−1 = p1 · · · pr ⇒ a = pp1 · · · pr,

for prime ideals pi in OK , contradicting a ∈ S. So, every ideal is a product of prime
ideals. For uniqueness, suppose that we have

(5.2) p1 · · · pr = q1 · · · qs

for prime ideals pi, qj Then p1 ⊇ q1 · · · qs and since p1 is prime we have p1 ⊇ qi for
some i. But since prime ideals are maximal in OK , which we showed in Lemma
5.49, then we must have p1 = qi. Without loss of generality, suppose that i = 1.
Multiplying both sides of Equation (5.2) by p−11 gives

p2 · · · pr = q2 · · · qs.

Repeating this process r times, where without loss of generality r ≤ s, we get

OK = qr+1 · · · qs.

But since qs is a prime ideal, it must be a proper subset of OK and so

qr+1 · · · qs ⊆ qs ⊆ OK

which gives OK ̸= qr+1 · · · qs, a contradiction unless r = s. □

5.4. The Class Group

The following Theorem will motivate our definition of the class group.

Theorem 5.53. Elements in OK factor uniquely into irreducibles if and only if
every ideal of OK is principal.

Remark 5.54. Note that unique factorization means that we can write any a ∈ OK

as a = up1 · · · pr for a unit u and irreducibles pi, and furthermore this representation
is unique up to permutation and choice of unit. A domain in which elements factor
uniquely into irreducibles as above is often called a unique factorization domain, or
UFD for short.

To prove this result, we need to define one more object.
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5.4.1. The Norm of an Ideal. Given a number field K and an ideal a in OK ,
the norm of the ideal a is defined as the size of the quotient group.

NK(a) := |OK/a|

Observe that any ideal a in OK is a Z-module by definition. Furthermore, for any
a ∈ a we have aOK ⊆ a ⊆ OK and so a is a finitely generated free Z-module of
rank n = [K : Q]. So, we can define the discriminant of a to be

∆(a) := ∆(α1, . . . , αn),

where {α1, . . . , αn} is any Z-basis for a. Note here that while a is a free Z-module
of maximal rank that is closed under products, it is only an order when a = OK is
the trivial ring, since otherwise a does not contain 1. We have the following.

Proposition 5.55. Given an ideal a in OK ,

NK(a) = |∆(a)/∆K |1/2.

Proof. As in the proof of Theorem 5.36, since a is a finitely generated Z-submodule
of OK then there exists a Z-basis {α1, . . . , αn} for OK so that {d1α1, . . . , dnαn} is
a Z-basis for a. So, if σi are the distinct embeddings K ↪→ C then we have

∆(a) = det(σi(djαj)) = (d1 · · · dn)2∆K .

The result follows by taking square roots, since NK(a) = |OK/a| = d1 · · · dn. □

Proposition 5.56. If a = (a) is a principal ideal, then NK(a) = |N(a)|.

Proof. Suppose that OK has Z-basis {α1, . . . , αn}. Then, the ideal (a) has Z-basis
{aα1, . . . , aαn} and so by Proposition 5.55 we have

N((a)) = |∆(aα1, . . . , aαn)/∆(α1, . . . , αn)|1/2

= |σ1(a) · · ·σn(a)|
= |NK(a)|,

where σi denote the distinct embeddings K ↪→ C. □

We have the following properties.

Theorem 5.57. Let a and b be nonzero ideals in OK . Then,

a NK(ab) = NK(a)NK(b);

b NK(a) is an element of a;

c If NK(a) is prime, then so is a;

d If a is prime, then there is a distinct rational prime p with p ∈ a and NK(a) = pm

for an integer m with m ≤ [K : Q].

Proof. We refer the reader to Section 5.3 of [ST16] for the details of part (a),
since it is a bit lengthy. Next, since N(a) is the size of the quotient group OK/a
then for any x ∈ OK we have N(a)x ∈ a. Setting x = 1 gives part (b). For (c),
note that if we write a in its prime factorization

a = p1 · · · pt
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for prime ideals pi, then we have NK(a) = NK(p1) · · ·NK(pt). Since the pi are
prime, we have pi ̸= OK and so NK(pi) ̸= 1 for any i. Hence, NK(a) is not prime.
Finally, suppose that a is prime. Write NK(a) = p1 · · · pt for rational primes pi. By
part (b) we have (NK(a)) ⊆ a and so (p1) · · · (pt) ⊆ a. Since a is prime this means
(pi) ⊆ a for some i. So,

OK/a ⊆ OK/(pi)

⇒ NK(a) | NK((pi)) = |NK(pi)| = pni ,

where n = [K : Q], noting that the final equality follows because pi ∈ Q. Observe
furthermore that pi is distinct. If it were the case that p, q ∈ (a) for distinct primes
p and q then we would have

1 = cp+ dq ∈ (a),

for some integers c, d since gcd(p, q) = 1. But then 1 ∈ a giving a = OK , which
contradicts a being prime. □

We are now prepared to the main result of this section.

Proof of Theorem 5.53. Suppose that every ideal in OK is principal (in fact,
this direction will hold for any principal ideal domain; the only extra step would
be to show that PIDs are Noetherian). Let S be the set of ideals in OK of the
form (x) where x does not factor uniquely into irreducibles in OK . Since x is not
irreducible, we can write x = yz for some nonunits y, z ∈ OK . So, (x) ⊆ (y) and
similarly (x) ⊆ (z). Note that (x) is a proper subset of (y) and (z) by Exercise 15,
and so (y), (z) ̸∈ S. So we can write y and z as a product of irreducibles, contra-
dicting the fact that (x) ∈ S. So S = ∅ as desired. To see that factorization is
unique, it suffices to show that irreducibles are prime (and proceed as in the proof
of the Fundamental Theorem of Arithmetic). Let x be irreducible. Note that if
(x) ⊆ (y) then x ∈ (y) and so x = yz. But since x is irreducible, either y or z is a
unit; that is either (x) = (y) or (y) = OK . So, (x) is maximal. Now, suppose that
x | ab. If x ∤ a then (x) is a proper subset of (x, a). Since (x) is maximal, this gives
(x, a) = OK . That is, there exist q, r ∈ O so that xq + ar = 1. Multiplying by b
gives xqb+ abr = b and since x | ab this gives x | b.

Conversely, suppose that OK has unique factorization of elements into irreducibles.
First, we show that in this case, irreducibles are prime. To see this, let p ∈ OK be
irreducible, and suppose that p | ab. Write pc = ab for c ∈ OK and factor a, b, c
uniquely into irreducibles as follows

a = up1 · · · pn
b = vq1 · · · qm
c = wr1 · · · rs.

for units u, v, w Then we have

p(wr1 · · · rs) = (up1 · · · pn)(vq1 · · · qm).

By unique factorization, we know that p must be associate to one of the pi or qj ’s.
Without loss of generality, suppose that p = tp1 for a unit t ∈ O×K . Then p | a as
desired. Next, since we know that ideals factor uniquely into prime ideals, it will
suffice to show that every prime ideal is principal. So, take a prime ideal p in OK .
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By Theorem 5.57 (2), we know that N := NK(p) is an element of p. Write N in its
unique factorization as

N = π1 · · ·πs

for irreducibles πi. Then, π1 · · ·πs ∈ p, and since p is prime this gives πi ∈ p for
some i, and so (πi) ⊆ p. By above, we know that πi is prime, and so by Exercise
16 we get that (πi) is a prime ideal. Since prime ideals are maximal in OK we have
(πi) = p as desired. □

Remark 5.58. Note that we’ve showed a bit more. We have the following.

(1) If OK is a UFD, then irreducible elements are prime.

(2) When OK is a UFD, prime factorization of elements corresponds to prime
factorization of the corresponding principal ideals.

(3) If OK is not a UFD, and π ∈ OK is irreducible but not prime, then the prime
factorization of the ideal (π) contains a nonprincipal ideal.

The class group will then help us understand how “badly” a ring of integers fails
unique factorization. We have the following.

Definition 5.59. Let P(K) denote the group of all principal fractional ideals; that
is, fractional ideals of the form kOK for some k ∈ K. Then, the class group of K
is the quotient group

H(K) := Id(K)/P(K).

The size of H(K) is called the class number of K, and is often denoted hK .

The following result follows directly as a corollary to Theorem 5.53.

Theorem 5.60. Elements in OK factor uniquely into irreducibles if and only if
hK = 1.

We will see in the next chapter that even when hK ̸= 1, if the class group isn’t
“too large” we can use unique factorization into ideals to recover our strategy for
solving Diophantine equations. First, we show that hK is in fact always finite. To
do so, it will be useful to give a geometric interpretation of OK . These methods
will also give us a strategy to compute some class numbers.

5.5. Some Geometry of Numbers

In this section, we show how to view the ring of integers as a lattice in Rn. The
perspective of viewing certain number theoretic objects as figures in Rn is used to
study a wide range of problems. In this section, we’ll take a brief detour to give one
such example outside of algebraic number theory. Readers interested in learning
more about this technique can consult Cassels’ text ([Cas97]) and Pete Clark’s
lecture notes ([?])
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5.5.1. Lattices.

Definition 5.61. Let B = {b1, . . . , bn} be a linearly independent subset of Rn. The
lattice Λ generated by the set B is the free Z-module generated by {e1, . . . , en}.
The fundamental domain of Λ is the set T ⊆ Rn given by

T = {
∑

aibi | 0 ≤ ai < 1}.

We call this domain “fundamental” because every element x in Rn can be written
in the form x = a+ ℓ where a ∈ T and ℓ ∈ Λ. In this way, the fundamental domain
tiles Rn by boxes whose corners are in the lattice Λ. Note that the fundamental
domain of a lattice depends on choice of basis B. To define an invariant of our
lattice, we look at its size.=

Definition 5.62. Let {b1, . . . , bn} be a basis for a lattice Λ. Then, the determinant
of Λ (sometimes called the covolume) is the value

d(Λ) = |det(b1, . . . , bn)|.

Observe that d(Λ) gives the volume of any fundamental domain of Λ.

Note that d(Λ) does not depend on choice of basis, since the change of basis matrix
between any two bases of a free Z-module of rank n is in GLm(Z), and hence has de-
terminant ±1 (as discussed in Theorem 5.33). Furthermore, since the determinant
of a collection of vectors gives the volume of their corresponding parallelepiped, the
determinant of a lattice measures the volume of any fundamental domain.

5.5.2. Minkowski’s Convex Body Theorem. We recall the following defini-
tions.

Definition 5.63. Let X be a subset of Rn. Then X is convex if for every x, y ∈ X
we have

λx+ (1− λ)y

is also in X, for every 0 ≤ λ ≤ 1. We call X centrally symmetric if for all x ∈ X
we have −x ∈ X.

The following Theorem is one of the key tools in geometry of numbers. To save
some time we skip the proof, and instead refer the reader to Chapter 7 of [ST16].

Theorem 5.64 (Minkowski’s Convex Body Theorem). Let Λ be a lattice in Rn. If
X is a convex centrally symmetric subset of Rn and

vol(X) > 2n det(Λ),

then X contains a non-zero lattice point of Λ.

In the next section, we’ll give an embedding of OK into the Rn which will map
ideals to lattices. This perspective, along with the theorem above, will help us
study the size of the class group. First, we show how Minkowski’s convex body
theorem can be used to give an alternate proof of Lagrange’s four square’s theorem
to that seen in the previous chapter.
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5.5.3. Another Proof of Lagrange’s Four Square Theorem. We give an alter-
nate prof of Theorem 4.24. Note that if we can write integers n = a2 + b2 + c2 + d2

and m = A2 +B2 + C2 +D2 as sums of four squares, then we can write

mn = (aA−bB−cC−dD)2+(aB+bA+cD−dC)2+(aC−bD+cA+dB)2+(aD+bC−cB+dA)2.

So, it suffices to show that any prime is a sum of four squares. Since we have

2 = 12 + 12 + 02 + 02

we may assume that p is an odd prime. Observe by the pigeonhole principle there
exists integers u, v so that

u2 + v2 + 1 ≡ (mod p).

Let Λ be the lattice in R4 generated

(p, 0, 0, 0)

(0, p, 0, 0)

(u, v, 1, 0)

(−v, u, 0, 1).

Observe that det(Λ) = p2. Furthermore for any (x1, x2, x3, x4) ∈ Λ it can be
checked that

ux1 + vx2 ≡ x3(mod p),

ux2 − vx1 ≡ x4(mod p)

which gives

x21 + x22 + x23 + x24 = x21 + x22 + (ux1 + vx2)
2 + (ux2 − vx1)

2

= (u2 + v2 + 1)(x21 + x22)

≡ 0(mod p).

Now, let X = Br(0) be a ball in R4 of radius r centered at the origin with r =
√
2p.

Then,

vol(X) = (1/2)π2(2p)2 > 24 det(Λ).

So by Minkowski’s Convex Body Theorem, there exists a nonzero point (a, b, c, d)
in Λ and in X. Since (a, b, c, d) is in Λ then by above we have

a2 + b2 + c2 + d2 ≡ 0(mod p),

and since (a, b, c, d) ∈ X, which is a ball of radius r =
√
2p then we have

0 < a2 + b2 + c2 + d2 < 2p

which gives a2 + b2 + c2 + d2 = p as desired. □
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5.6. Ideals as Lattices

Let K be a number field of degree n. Note that if σ : K ↪→ C is any embedding
fixing Q, then so is σ̄, where

σ̄(α) := σ(α)

for any α ∈ K (note that the bar notation above means to take the complex con-
jugate). Since σ̄ = σ if and only if σ(K) ⊆ R, then the complex embeddings
must come in conjugate pairs and n = r + 2s, where r denotes the number of
real embeddings and 2s the number of complex embeddings. Label the embed-
dings so that σ1, . . . , σr are real (that is σi(K) ⊆ R for i = 1, . . . , r) and so that
σr+1, . . . , σr+s, σ̄r+1, . . . , σ̄r+s are complex. Then, for each element α ∈ K we can
define a map Ψ : K → Rn by

Ψ(α) = (σ1(α), . . . , σr(α),ℜ(σr+1(α)),ℑ(σr+1(α)), . . . ,ℜ(σr+s(α)),ℑ(σr+s(α))),

where ℜ(z) and ℑ(z) denote the real and imaginary parts of a complex number z,
respectively. We have the following.

Theorem 5.65. If a is any ideal in OK , then Λa := Ψ(a) is a lattice in Rn with

det(Λa) = 2−s
√

|∆(a)|,

where s is the number of complex conjugate pair embeddings K ↪→ C.

Proof. Recall that any ideal a is a free Z-module with rank n = [K : Q]. Let
{α1, . . . , αn} be any Z-basis for a. Note that Ψ is Z-linear, and so Ψ(a) is generated
by {Ψ(α1), . . . ,Ψ(αn)}. Next, consider the matrix

A =

σ1(α1) · · · σr(α1) · · · ℜ(σr+i(α1) ℑ(σr+i(α1)) · · ·
...

. . .
...

. . .
...

...
. . .

σ1(αn) · · · σr(αn) · · · ℜ(σr+i(αn) ℑ(σr+i(αn)) · · ·

 .

Let

Ci :=

R(σr+i(α1))
...

ℜ(σri(αn))

 and Ci+1 =

ℑ(σr+i(α1)
...

ℑ(σr+i(αn)

).

Then, if we replace Ci with Ci + iCi+1 and then afterwards replace Ci+1 with
−2iCi+1 + C1, we obtain the matrix

B =

σ1(α1) · · · σr(α1) · · · σr+i(α1) σ̄r+i(α1) · · ·
...

. . .
...

. . .
...

...
. . .

σ1(αn) · · · σr(αn) · · · σr+i(αn) σ̄r+i(αn) · · ·


with det(B) = (2i)s det(A). Hence,

|((2i)s det(A))2| = |det(B)2| = |∆(a)| ⇒ |det(A)| = 2−s
√

|∆(a)|.

Furthermore, since ∆(a) ̸= 0 then we know that the set {Ψ(α1), . . . ,Ψ(αn)} is
R-linearly independent, making Λa := Ψ(a) a lattice with covolume as desired. □

We now apply Minkowski’s Convex Body Theorem. The result below will be the
key fact we’ll need in the next section.
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Theorem 5.66. If a is a nonzero ideal of O, then there’s a nonzero α ∈ a with

|NK(α)| ≤
(
2

π

)s√
|∆(a)|,

where s is the number of complex conjugate pair embeddings K ↪→ C.

Proof. Let [K : Q] = n and n = r + 2s where r denotes the number of real
embeddings, and s the number of complex conjugate pair embeddings K ↪→ C. For
ε > 0, let c1, . . . , cr and d1, . . . , ds be real numbers so that(

2

π

)s√
|∆(a)|+ ε = c1 · · · crd1 · · · ds.

Define the set X ⊆ Rn by

X = {(x1, . . . , xn) ∈ Rn | |xi| < ci and |x2r+j + x2r+j+1| < dj},

where i ∈ {1, . . . , r} and j ∈ {1, ,̇s}. Observe that

vol(X) = 2rπsc1 · · · crd1 · · · ds.

So,

vol(X) > 2rπs
(
2

π

)s√
|∆(a)|

= 2r+s
√

|∆(a)|
= 2n det(Λa).

So, by Minkowki’s convex body theorem, there’s a nonzero element (x1, . . . , xn) ∈ X
that’s also contained in the lattice Λa. Since (x1, . . . , xn) ∈ Λa, then there’s an
element α ∈ a with

σ1(α) = x1, . . . , σr(α) = xr

σr+i(α) = xr+i + ixr+i+1, for i = 1, 3, . . . , 2s− 1,

where σ1, . . . , σr are the real embeddings and σr+1, σr+2s are the distinct complex
embeddings K ↪→ C. And since (x1, . . . , xn) ∈ X we have

|σi(α)| = ci

for all i ∈ {1, . . . , n}. So,

|NK(α)| = |σ1(α) · · ·σn(α)| < c1 · · · cn =

(
2

π

)s√
|∆(a)|+ ε.

Now, let Aε be the set of all α satisfying

|NK(α)| <
√

|∆(a)|+ ε.

Since lattices are discrete (a fact we have not shown, but isn’t too difficult), and
the image Ψ(Aε) is bounded then Aε must be finite. Since each Aε ̸= ∅ then there
must exist an element

α ∈
⋂
ε

Aε.

That is, |NK(α)| ≤
(
2
π

)s√|∆(a)| as desired. □
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5.7. Finiteness of the Class Group

The following Corollary will be the last step we need to prove that the class group
of any number field is finite.

Corollary 5.67. For any [a] ∈ Cl(K) there’s an ideal c in OK with [a] = [c] in
Cl(K) and

NK(c) ≤ (2/π)s
√
|∆K |.

Proof. Take any fractional ideal a in Id(K) and let d be a common divisor of a−1

so that b = da−1 ⊆ OK . By Theorem 5.66 there’s an element α ∈ b so that

|NK(α)| ≤
(
2

π

)s√
∆(b)

and by Theorem 5.55 we rewrite the right hand side to get

|NK(α)| ≤
(
2

π

)s√
|∆K |NK(b).

Since α ∈ b then (α) ⊆ b. So by Exercise 18 there’s an ideal c with cb = (α). By
Theorem 5.57 we have NK(c)NK(b) = |NK(α)| and so from above we get

NK(c) ≤
(
2

π

)s√
|∆K |.

It can then be checked that [c] = [a] in Cl(K). □

The finiteness of the class group then follows directly from the following observation.

Proposition 5.68. There are only finitely many ideals with a fixed norm.

We leave this proof as an exercise.

Example 5.69. LetK = Q(
√
−5). We’ll show that hK = 2 using the results above.

By Exercise 9 we have that OK = Z[
√
−5], which we know does not have unique

factorization by Exercise 10, so hK > 1. Note that the embeddings K ↪→ C are
given by

σ1 :
√
−5 7→

√
−5, and σ2 :

√
−5 7→ −

√
−5.

So, σ2 = σ̄1 are a pair of complex conjugate embeddings, giving r = 0 and s = 1.
We compute ∆K = −20 and so we have(

2

π

)s√
|∆K | = 2

π

√
20 < 2.85.

By Corollary 5.67 every ideal a in OK is equivalent to an ideal c with norm 1 or 2.
If NK(c) = 1, then we would have c = OK , which gives [a] equal to the equivalence
class of principal fractional ideals. Now, if NK(c) = 2 then by Theorem 5.57(b) we
have that 2 ∈ c. By Exercise 18 this tells us that (2) = cd for some ideal d in OK .
But observe that

(2) = (2, 1 +
√
−5)2

and furthermore since NK((2, 1+
√
−5)) = 2, then (2, 1+

√
−5) is prime with norm

2. Hence, the only ideal with norm 2 in OK is (2, 1 +
√
−5). So, every fractional
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ideal in OK is either a principal fractional ideal, or equivalent to (2, 1+
√
−5) which

gives hK = 2.

5.8. Existence of Extensions with Unique Factorization

While OK may not always have unique factorization, the fact that the class group
of K is always finite will tell us the situation isn’t as bad as we might think. First,
we need the following lemma.

Lemma 5.70. Let K be a number field. Then there exists a finite extension L of
K so that for every ideal a in OK we have that aOL is a principal ideal in OL.

Proof. We give a sketch of this proof, and skip some of the details for the sake of
time. Since Cl(K) is finite, we can write Cl(K) = {[a1], . . . , [ah]} where h = hK
and we can choose ai to be ideals in OK (rather than fractional ideals). Note that
for each ai we have ahi = (αi) for αi ∈ OK . Let

L = K(α
1/h
1 , . . . , α

1/h
h ).

It can be shown that for each i we have that aiL is principal. Since every ideal a
in OK is equivalent to one of the ai, and aiOL is principal by above, with a bit of
work it follows that aOK is also principal. □

We have the following.

Theorem 5.71. For a number field K, there exists a finite extension L of K so
that for every nonzero nonunit a ∈ OK can be written uniquely (up to units and
permutation) in the form

a = p1 · · · pr,

for nonunits (but not necessarily irreducible) pi in OL.

Proof. Let L be as in Lemma 5.70, and take any a ∈ OK . Then, we can factor
the ideal (a) in OK as

(a) = p1 · · · pt,

for prime ideal pi in OK . By the previous lemma, we know that piOL = piOL and
so we get

(a)OL = p1 · · · ptOL.

By Exercise 15 this implies that a = up1 · · · pt for a unit u ∈ O×L . Uniqueness of
the pi (up to units) follows from unique factorization of the ideal (a). □
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Exercises

1. Show that the minimal polynomial mα(X) of an algebraic number α is unique.
(Hint: use the division algorithm in Q[X])

2. This problem will finish the our computation of the minimal polynomial of
α =

√
2 +

√
5 from Example 5.4. Show that f(X) = X4 − 14X2 + 9 does not

have a quadratic factor. (Hint: suppose that f(X) = (X2+aX+b)(X2+cX+d).
Use the fact that f(X) = f(−X) and compare coefficients to show that no such
integers a, b, c, d could exist).

3. Show that the following complex numbers are algebraic. Determine which are
algebraic integers. (Bonus: also find their minimal polynomials).

(a) (1 + i)/
√
2

(b) i+
√
2

(c) e2πi/3 + 2

(d)
√

1 +
√
2 +

√
1−

√
2

4. Show that the set of algebraic numbers Q̄ is countable. Conclude that there
exists infinitely many transcendental numbers.

5. Let K = Q(
√
2, 3

√
2). Find all monomorphisms K ↪→ C that fix Q.

6. Let K be a number field with [K : Q] = n. Prove the following.
(a) For any p, q ∈ Q and α, β ∈ K

NK(pαβ) = pnNK(α)NK(β), and

TrK(pα+ qβ) = pTrK(α) + qTrK(β).

(b) If α ∈ K with [K : Q] = n and [Q(α) : Q] = m then

NK(α) = dnNQ(α)(α), and

TrK(α) = dTrQ(α)(α),

where d = n/m.
(c) An element u ∈ OK is a unit (that is, u has a multiplicative inverse) if

and only if NK(u) = ±1.
(d) If p ∈ OK is prime, then NK(p) is a “rational prime” (that is, NK(p) is a

prime in Z; we typically will add the adjective “rational” when we want
to emphasize our element is a prime in Z instead of in OK).

7. Show that ∆(α1, . . . , αn) = 0 if and only if the αi are linearly dependent.

8. Find the ring of integers for the following number fields.
(a) Q(

√
2,
√
3)

(b) Q(
√
2, i)

(c) Q( 3
√
2)

(d) Q( 4
√
2)

9. Let K = Q(
√
D) for a square-free integer D. Show that

OK =

{
Z[
√
D], if D ̸≡ 1(mod 4)

Z
[
1+
√
D

2

]
, if D ≡ 1(mod 4).
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(Hint: observe that in the quadratic case, α is an algebraic integer if and only
if NK(α) and TrK(α) are both integers).

10. Show that 2 · 3 = (1 +
√
−5)(1 −

√
−5) gives two distinct factorizations of 6

into irreducibles in the ring Z[
√
−5].

11. Show that the ideal (X) is prime but not maximal in Z[X].

12. This problem will finish the proof of Lemma 5.49.
(a) For a commutative ring R, show that an ideal a ⊆ R is prime if and only

if R/a is an integral domain.
(b) Show that any finite integral domain is a field.
(c) Conclude that every prime ideal in OK is maximal.

13. Let R = Z[
√
−5] and consider the ideals

p = (2, 1 +
√
−5)

q = (3, 1 +
√
−5)

r = (3, 1−
√
−5).

Show that these ideals are maximal (and hence prime). Furthermore, show
that

p2 = (2), qr = (3)

pq = (1 +
√
−5), pr = (1−

√
−5).

14. Using the previous problem, show that the distinct factorizations into irre-
ducibles from Problem 10 comes from two different groupings of the factoriza-
tion into prime ideals (6) = p2qr.

15. Show that for two principal ideals (x), (y) in an integral domain R, if (x) = (y)
then x = uy for a unit u.

16. Show that an element p in an integral domain R is prime if and only if the ideal
(p) is prime.

17. Use Minkowski’s Convex Body Theorem to show that every prime p ≡ 1(mod 4)
is a sum of two integer squares by considering a lattice with elements of the
form (x1, x2) where x2 ≡ ux1(mod p) and u is any integer with u2 ≡ 1(mod p).

18. This problem will help finish the proof of Theorem 5.67. Show that if a and b
are ideals in OK with a ⊆ b, then there exists an ideal c so that cb = a. For
this reason, we sometimes use the notation b | a to mean a ⊆ b.

19. Prove Theorem 5.68; that is, show there are only finitely many ideals with a
fixed norm. Conclude that the class group of any number field is finite. (Hint:
use unique factorization in OK and Theorem 5.57).





Chapter 6

Diophantine Analysis
Revisited

We end the semester by looking at how some of the tools we developed in the
previous chapter can help us solve further Diophantine problems.

6.1. Further Mordell Equations

The following example shows how we can generalize the techniques from Examples
4.25 and 4.26 when the ring we factor over does not have unique factorization. This
example is pulled from Keith Conrad’s expository note [Conb].

Example 6.1. We show that the Mordell equation Y 2 = X3 − 5 has no integer
solutions. Suppose for a contradiction that there were integers x, y with y2 = x3−5.
Factoring over Z[

√
−5] gives

x3 = (y +
√
−5)(y −

√
−5).

It can be shown (by taking norms) that y +
√
−5 and y −

√
−5 have no common

divisors other than units. But, as we saw in Exercise 10, the ring Z[
√
−5] is not a

UFD, so we cannot conclude that y ±
√
−5 are perfect cubes. Instead, we pass to

ideals. Let K = Q(
√
−5) and recall by Exercise 9 that OK = Z[

√
−5]. Then we

have equality of ideals in OK

(x)3 = (y +
√
−5)(y −

√
−5).

Write

(y +
√
−5) = p1 · · · pt and (y −

√
−5) = q1 · · · qs

for prime ideals pi, qj in OK , which we recall are unique up to permutation and
units. We claim that none of the pi are equal to any of the qj . If they were, say
p = pi = qj for some i, j then we’d have

(y +
√
−5) = pa and (y +

√
−5) = pb

81
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for some ideals a, b in OK and so

y +
√
−5 ∈ (y +

√
−5) = pa ⊆ pab

y −
√
−5 ∈ (y −

√
−5) = pb ⊆ pab

which gives 2
√
−5 ∈ pab. Taking norms, we have that

NK(p) | |NK(2
√
−5)| = 20.

But since (y +
√
−5) = pa then we also have

NK(p) | |N(y +
√
−5)| = y2 + 5.

Looking at the equation x3 = y2 + 5 modulo 4, it can be shown that y must be
even and so NK(p) is odd, giving NK(p) = 5 and by above this gives

5 = NK(p) | (y2 + 5) ⇒ 5 | y.
Since x3 = y2 + 5 we have 5 | x as well, but then

5 = x3 − y2 ≡ 0(mod 25)

a contradiction. So the ideals (y +
√
−5) and (y −

√
−5) do not share a common

prime ideal factor. Since ideals factor uniquely in OK , and their product is equal
(x)3 we must have

(y +
√
−5) = a3 and (y −

√
−5) = b3

for ideals a, b in OK . Since a3 is principal, we know that the order of a divides 3 in
Cl(K). But by Example 5.69 we know that hK = 2 and so we must have the order
of a equal to 1 in Cl(K). That is, a (and similarly b) is principal. So we can write

(y +
√
−5) = (α)3 = (α3), and (y −

√
−5) = (β)3 = (β3)

for elements α, β ∈ OK and so by Exercise 15 we have

y +
√
−5 = uα3, and y −

√
−5 = vβ3

for units u, v ∈ O×K . In Exercise 5 you’ll show that O×K = {±1} and so we can
replace α, β with −α,−β if needed to write

y +
√
−5 = α3, and y −

√
−5 = β3

for α, β ∈ OK . We can now proceed as before. Write

y +
√
−5 = (a+ b

√
−5)3.

Comparing coefficients of
√
−5 gives

3a2b− 5b3 = 1 ⇒ b(3a2 − 5b2) = 1

and so b = ±1. But we see there is no integer solution a to the equation above.
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6.2. A Special Case of Fermat’s Last Theorem

Recall Fermat’s last theorem, which we introduced at the end of Chapter 4, claims
that there are no nontrivial integer solutions to the equation Xn + Y n = Zn for
n ≥ 3. Note that it suffices to prove this theorem only for prime exponents n.
Our goal in this section will be to prove the following special case of Fermat’s last
theorem.

Theorem 6.2. If p is an odd regular prime (defined below), then the equation

(6.1) Xp + Y p = Zp

has no solutions (x, y, z) with p ∤ xyz.

With some extra work, the condition that p ∤ xyz can be removed. For details
about this case, see Keith Conrad’s expository note [Conc]. The proof of Theorem
6.2 will start similarly to our strategy for solving Mordell equations. Observe that
if (x, y, z) is a solution to the Fermat equation (6.1) then we can factor over the
cyclotomic field K = Q(ζp) where ζp is a pth root of unity, to write

zp =

p−1∏
i=0

(x+ ζipy).

As before, our main step will be using the class group of K to show that the terms
x+ ζipy are pth powers. First, we look in more details at cyclotomic fields.

6.2.1. Cyclotomic Fields. Given an integer n, a cyclotomic field is a number
field of the form K = Q(ζ) where ζ is a primitive nth root of unity. Sometimes
we will refer to K as the nth cyclotomic field. Recall that the nth cyclotomic
polynomial is defined by

Φn(X) =
∏

(X − ζ),

where the product is taken over all primitive nth roots of unity. It is a field theory
exercise (which we will skip here) that the cyclotomic polynomials are irreducible,
and so

[Q(ζn) : Q] = φ(n).

For our purposes, we will only need to consider cyclotomic fields coming from pth
roots of unity ζp for a prime p. In this case,

Q(ζp) : Q) = p− 1

and

Φp(X) =

p−1∏
i=1

(X − ζi)

where ζ is any fixed primitive pth root of unity. This tells us that the conjugates
of ζ are precisely ζi for i ∈ {1, . . . , p− 1}. We will need the following lemmas.

Lemma 6.3. For any cyclotomic field K = Q(ζ) we have OK = Z[ζ].

Proof. (Let’s get through our special case of FLT first, and come back to this if
time). □

Lemma 6.4. The units of Z[ζ] are of the form rζk where r ∈ R and k ∈ Z.
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Proof. (Ditto). □

6.2.2. Regular Primes. A prime p is said to be regular if p does not divide
the class number hK , where K = Q(ζ) is the pth cyclotomic field. Our best
known result on regular primes relates them to the Bernouilli numbers (which we
do not discuss here). It is conjectured there are infinitely many regular primes, with
asymptotic density about 60%, although both of these conjectures are still open. If
these are true, Fermat’s last theorem is then true by somewhat elementary means
about 60% of the time. No one knows exactly the proof that Fermat was imagining
when he wrote his conjecture in the margins of his book. To me, it seems possible
that he was imagining some sketch of the proof we give below, but did not realize
unique factorization failed in cyclotomic fields. We’ll see, similar to the Mordell
equation we solved above, that this issue can be fixed when the class number is
“well behaved” (that is, when p is regular, which again we expect is true about
60% of the time). After this, the proof follows similarly to the elementary examples
we saw in Chapter 4.

6.2.3. Proof of Theorem 6.2. For time, we sketch the beginning of this argu-
ment. Note first that since p is odd then

Xp + Y p = Zp

has a solution if and only if
Xp + Y p = −Zp

does. So we instead work with the second equation. Supposing that (x, y, z) is an
integer solution, we factor over the pth cyclotomic field Q(ζ), where ζ = ζp, to get

−zp =
p−1∏
i=0

(x+ ζiy).

As in our Mordell equation example, this gives an equation of ideals

(z)p =

p−1∏
i=0

(x+ ζiy).

We first claim that the ideals (x+ ζiy) have no prime ideal factors in common. For
a contradiction, suppose p | (x + ζiy) and p | (x + ζjy) for a prime ideal p in OK

and i < j. Then, x+ ζiy, x+ ζjy are elements of p and so

x+ ζiy − (x+ ζjy) = yζi(1− ζk)

is also an element of p, where k = j − i. Observe that

1− ζℓ = (1− ζ)(1 + ζ + · · ·+ ζℓ−1)

for any j. So 1 − ζ divides 1 − ζk and if we choose t so that kt ≡ 1(mod p) then
1− ζk divides 1− ζkt = 1− ζ. So by Exercise 3 we have that 1− ζk = u(1− ζ) for
a unit u ∈ O×K . Since ζk is also a unit, this gives

y(1− ζ) ∈ p.

Since p is prime we have either y ∈ p or 1−ζ ∈ p. Observe that we may assume x, y
and z are pairwise relatively prime. If y ∈ p and by assumption x− ζiy ∈ p then by
above we also get zp ∈ p. But since gcd(y, zp) = 1 this gives 1 ∈ p, a contradiction.
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Now, if 1 − ζ ∈ p then NK(1 − ζ) divides N(z) = zp−1. In Exercise 4 you’ll show
that NK(1− ζ) = p which gives p | z, a contradiction. Hence, the ideals (x+ ζiy)
must not have any common prime ideal in their unique factorizations. Since ideals
in OK factor uniquely, this gives that

(x+ yζ) = ap

for some ideal a in OK . But, this tells us that ap is principal, and so the order of
a in Cl(K) divides p. Since p ∤ hK , a must be principal to start with, and so

(x+ yζ) = (δ)p ⇒ x+ yζ = uδp,

for δ ∈ OK and where u is a unit in OK . Note that this is precisely the step we
would have ended up at if Z[ζ] were a UFD! The rest of this argument uses some
congruence considerations, more complicated but similar in style to what we saw
in Chapter 4. For time, we’ll skip the rest of this argument, and instead refer the
reader to Keith Conrad’s expository note [Conc].

Exercises

1. Let K = Q(
√
−5). Show that O×K = {±1}, where O×K denotes the units of OK .

2. Let p be an odd prime, and K = Q(ζp) where ζp is a primitive pth root of unity.
Show that

NK(ζsp) = 1 for all s ∈ Z, and

TrK(ζsp) =

{
−1 if s ̸≡ 0(mod p)

p− 1 if s ≡ 0(mod p).

3. Let a, b be elements of a commutative ring R. If a | b and b | a show that a = ub
for a unit u ∈ R×.

4. Show that NK(1 − ζ) = p, where K = Q(ζ) and ζ is a primitive pth root of
unity.
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