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1. Introduction
A classical topic in integer programming is that of lift-
ing, introduced by Padberg (1973): given mixed-integer sets
Q ⊂ �n and R ⊂ �n+p such that Q is the restriction of
R obtained by setting the last p variables to 0, and given
a valid inequality

∑n
i=1 ajxj ¶ b for Q, find coefficients

an+11 0 0 0 1 an+p such that
∑n+p

i=1 ajxj ¶ b is valid for R. Cur-
rent state-of-the-art integer programming solvers routinely
use lifted knapsack covers, lifted flow covers, and other
liftings. The lifting coefficients an+11 0 0 0 1 an+p can be com-
puted sequentially, choosing the best possible value at each
step. However, different orderings of the variables usu-
ally lead to different answers. An aspect of liftings that
has received attention is that of sequence-independent lift-
ing (Wolsey 1977, Gu et al. 2000, Atamtürk 2004). In
this paper, we revisit liftings from a geometric perspec-
tive, building on recent work relating minimal inequalities
to maximal lattice-free convex sets. Our results are best
described in the context of an infinite model, which we
present next.

Let S be the set of integral points in some rational poly-
hedron in �n such that dim4conv4S55 = n (for example S
could be the set of nonnegative integral points), and let
f ∈ conv4S5\�n. We consider the following semi-infinite
model:

x = f +
∑

r∈�n

rsr +
∑

r∈�n

ryr 1

x ∈ S1

sr ¾ 01 r ∈�n1

yr ¾ 01 yr ∈�1 r ∈�n1

s1 y have finite support.

(1)

The infinite vectors s and y having finite support means
that they are nonzero only in a finite number of entries.
Given two functions � and � from �n to �, the inequality

∑

r∈�n

�4r5sr +
∑

r∈�n

�4r5yr ¾ 1 (2)

is valid for (1) if it holds for every 4x1 s1 y5 satisfying (1).
If (2) is valid, we say that the function 4�1�5 is valid
for (1). A valid function 4�1�5 is minimal if there is
no valid function 4�′1� ′5 distinct from 4�1�5 such that
�′4r5¶ �4r5, � ′4r5¶�4r5 for all r ∈�n.

Model (1) is a natural abstraction of the simplex tableau.
Indeed, setting all but a finite number of the sr and yr vari-
ables to zero reduces (1) to a problem in tableau form with
right-hand-side f , where x are the basic variables, and the
sr and yr variables not set to zero are the nonbasic ones.
Therefore, information about valid inequalities for (1) auto-
matically transfers to the problem of cutting off a fractional
basic solution of the linear programming relaxation. Most
cutting planes used in practice (Gomory mixed-integer cuts,
mixed-integer rounding inequalities, knapsack covers, flow
covers, lift-and-project cuts, and many others) are valid for
Gomory’s corner polyhedron, which is the convex hull of
solutions to (1) where S = �n and all but a finite number
of the variables sr and yr are set to 0.

One of the most effective cutting planes used in solvers
are the Gomory mixed-integer cuts, which correspond to
valid functions for (1) when n = 1 and S = �. It is well
known that, among all cutting planes derived from a single
equation, Gomory mixed-integer cuts have the best possi-
ble coefficients (i.e., the smallest) on the nonbasic continu-
ous variables. To transfer this notion to the general setting
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of (1), Dey and Wolsey (2010) proposed to study the fol-
lowing simpler model, where the integer variables yr are
all set to zero.

x = f +
∑

r∈�n

rsr 1

x ∈ S1

sr ¾ 01 r ∈�n1

s has finite support.

(3)

We refer to this model as the continuous semi-infinite
relaxation relative to f . Given a valid function � for (3),
the function � is a lifting of � if 4�1�5 is valid for (1). If
� is a minimal valid function for (3) and � is a lifting of �
such that 4�1�5 is minimal, we say that � is a minimal
lifting of �.

Minimal valid inequalities for (3) are well understood in
terms of maximal S-free convex sets. We are interested in
characterizing liftings of minimal valid inequalities for (3).

We remark that, given any valid function � for (3) and
a lifting � of �, the function � ′ defined by � ′4r5 =

min8�4r51�4r59 is also a lifting of �. Indeed, given 4s̄1 ȳ5
satisfying (1), we show that
∑

r∈�n

�4r5s̄r +
∑

r∈�n

� ′4r5ȳr ¾ 10

Let 4s̃1 ỹ5 be defined by s̃r = s̄r , ỹr = ȳr for every r ∈ �n

such that �4r5 ¶ �4r5, and s̃r = s̄r + ȳr , ỹr = 0 for every
r ∈ �n such that �4r5 < �4r5. One can readily verify that
4s̃1 ỹ5 satisfies (1), hence

∑

r∈�n �4r5s̃r +
∑

r∈�n �4r5ỹr ¾ 1.
Furthermore,
∑

r∈�n

�4r5s̄r +
∑

r∈�n

� ′4r5ȳr =
∑

r∈�n

�4r5s̃r +
∑

r∈�n

�4r5ỹr ¾ 10

In particular, if � is a minimal valid function for (3) and
� is a minimal lifting of �, then � ¶ �.

We first concentrate on deriving the best possible lifting
coefficient of one single integer variable. Namely, given
d ∈�n, we consider the model

x = f +
∑

r∈�n

rsr +dz1

x ∈ S1

sr ¾ 01 r ∈�n1

z¾ 01 z ∈�1

s has finite support.

(4)

Given a minimal valid function � for (3), let �l4d5 be
the minimum scalar � such that the inequality
∑

r∈�n

�4r5sr +�z¾ 1

is valid for (4).
By definition, �l ¶� for every lifting � of �. In general,

the function 4�1�l5 is not valid for (1). However, when
4�1�l5 is valid, �l can be viewed as a trivial sequence-
independent lifting of �.

Proposition 1. Let � be a minimal valid function for (3).
When 4�1�l5 is valid for (1), �l is the unique minimal
lifting of �.

In this paper we give a geometric characterization of the
function �l, and we use this characterization to analyze spe-
cific minimal valid functions � for which �l is the unique
minimal lifting.

A valid function 4�1�5 is extreme for (1) if there do not
exist distinct valid functions 4�11�15, 4�21�25 such that
4�1�5= 1

2 4�
11�15+ 1

2 4�
21�25. Note that if � is extreme

for (3), then � is minimal.

Remark 2. If � is extreme for (3) and 4�1�l5 is valid
for (1), then 4�1�l5 is extreme for (1).

Indeed, given valid functions 4�11�15, 4�21�25 such
that 4�1�5 = 1

2 4�
11�15 + 1

2 4�
21�25, then �1 = �2 = �,

since � is extreme for (3), and �1 =�2 =�l since �1 ¾�l

and �2 ¾�l.

2. Lifting and S-Free Convex Sets
We observe that (4) is equivalent to the following

(

x
xn+1

)

=

(

f
0

)

+
∑

r∈�n

(

r
0

)

sr +

(

d
1

)

z

4x1 xn+15 ∈ S ×�+

sr ¾ 01 r ∈�n

z¾ 01

s has finite support.

(5)

Indeed 4x1 s1 z5 is a solution for (4) if and only if
4x1 xn+11 s1 z5 is a solution to (5) by setting xn+1 = z. Note
that the above is obtained from the continuous semi-infinite
relaxation relative to

(

f

0

)

by setting to 0 all variables rel-
ative to rays with nonzero 4n + 15th component, except
for

(

d

1

)

. Therefore, given any valid function �̄ for the con-
tinuous semi-infinite relaxation relative to

(

f

0

)

, then if we
let �4r5 = �̄

(

r

0

)

for r ∈ �n and � = �̄
(

d

1

)

, the inequality
∑

r∈�n �4r5sr +�z¾ 1 is valid for (5) and for (4).
A convex set is S-free if it does not contain any point

of S in its interior. Maximal S-free convex sets were char-
acterized in Basu et al. (2010b), where it was also shown
that there is a one-to-one correspondence between mini-
mal valid functions for (3) and maximal S-free convex sets
with f in their interior.

Theorem 3 (Basu et al. 2010b). A full-dimensional con-
vex set B is a maximal S-free convex set if and only if it is
a polyhedron such that B does not contain any point of S in
its interior and each facet of B contains a point of S in its
relative interior. Furthermore, if B∩conv4S5 has nonempty
interior, lin4B5 contains rec4B ∩ conv4S55.

We explain how minimal valid inequalities for (3) arise
from maximal S-free convex sets. Let B be a polyhedron
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with f in its interior, and let a11 0 0 0 1 at ∈�q such that B =

8x ∈�n � ai4x−f 5¶ 11 i = 1 0 0 0 1 t9. We define the function
�B2 �

n →� by

�B4r5= max
i=110001t

air0

Note that the function �B is convex, subadditive, i.e.,
�B4r5+�B4r

′5¾ �B4r + r ′5, and positively homogeneous,
i.e., �B4�r5= ��B4r5 for every �¾ 0.

We claim that if B is a maximal S-free convex set, then

∑

r∈�n

�B4r5sr ¾ 1 is valid for (3). (6)

Indeed, let 4x1 s5 be a solution of (3). Note that x ∈ S, thus
x y int4B5. Then

∑

r∈�n

�B4r5sr =
∑

r∈�n

�B4rsr5¾�B

(

∑

r∈�n

rsr

)

=�B4x−f 5¾11

where the first equation follows from positive homogeneity,
the first inequality follows from subadditivity of �B, and
the last one follows from the fact that x y int4B5.

The above functions are minimal (Dey and Wolsey 2010,
Basu et al. 2010b). It was proved in Basu et al. (2010b) that
the converse is also true, namely that every minimal func-
tion valid for (3) is of the form �B where B is a maximal
S-free convex set with f in its interior.

Example. We consider problem (1) when n = 1, 0 <
f < 1, and S = �. In this case the only maximal S-free
convex set containing f is the interval B = 60117. Thus
B = 8x ∈� � −f −14x− f 5¶ 11 41 − f 5−14x− f 5¶ 19, and
�B4r5= max8−f −1r1 41 − f 5−1r9.

Let � be a minimal valid function for (3), and let B =

8x ∈ �n � ai4x − f 5¶ 11 i = 11 0 0 0 1 t9 be a maximal S-free
convex set with f in its interior such that � = �B. We
define the set B4�5⊂�n+1 as follows:

B4�5=
{

4x1 xn+15 ∈�n+1
� ai4x− f 5+ 4�− aid5xn+1 ¶ 11

i = 11 0 0 0 1 t
}

0 (7)

Theorem 4. The inequality
∑

r∈�n �4r5sr +�z¾ 1 is valid
for (4) if and only if B4�5 is 4S ×�+5-free.

Proof. Let �̄ = �B4�5. By construction, �̄
(

r

0

)

= �4r5 for all
r ∈�n, while �̄

(

d

1

)

= �.
We show the “if” part of the statement. Given � such that

B4�5 is 4S×�+5-free, it follows by claim (6) that the func-
tion �̄ is valid for the continuous semi-infinite relaxation
relative to

(

f

0

)

. This implies that
∑

r∈�n �4r5sr + �z¾ 1 is
valid for (4).

We now prove the “only if” part. Let � be such that
∑

r∈�n �4r5sr + �z ¾ 1 is valid for (4). Given a point

(

x̄

x̄n+1

)

∈ S ×�+, we show that such point is not in the inte-
rior of B4�5. Indeed, let r̄ = x̄ − x̄n+1d − f , z̄ = x̄n+1, and
4s̄r5r∈�n be defined by

s̄r =

{

1 if r = r̄ 1

0 otherwise0

Note that f +
∑

r∈�n r s̄r +dz̄= f + r̄ + x̄n+1d = x̄. Because
x̄ ∈ S and

∑

r∈�n �4r5sr +�z¾ 1 is valid for (4), we have

1 ¶
∑

r∈�n

�4r5s̄r +�z̄= �4r̄5+�x̄n+1 = max
i=110001t

ai r̄ +�x̄n+1

= max
i=110001t

6ai4x̄− f 5+ 4�− aid5x̄n+170

Thus there exists i ∈ 811 0 0 0 1 t9 such that ai4x̄− f 5+ 4�−

aid5x̄n+1 ¾ 1. This shows that
(

x̄

x̄n+1

)

is not in the interior of
B4�5. �

Theorem 4 implies that �l4d5 is the minimum value of
� such that B4�5 is 4S ×�+5-free.

Example (Continued). In the previous example, let
d ∈� and � ∈�. If � 6= 0, then the set B4�5 is the two-
dimensional polyhedron with two facets, containing the
points

(0
0

)

and
(1

0

)

, respectively, and with one vertex, namely
(

f

0

)

+ �−1
(

d

1

)

. If � = 0, then B4�5 is the split set 60117 +

�
(

d

1

)

�. It is immediate to verify that for � < 0, the interior
of B4�5 contains one of the integral points

(

�d�

1

)

or
(

�d�

1

)

.
For example, let f = 1

4 . See Figure 1. For d = 3
2 ,

�B4d5= 2. One can readily verify that B4�5 is �×�+-free
if and only if � ¾ 2

3 ; otherwise, it contains the point
(2

1

)

.
Hence �l4d5= 2

3 .
For d = 1, �B4d5= 4

3 . It is immediate that B4�5 is �×

�+-free if and only if �¾ 0, hence �l4d5= 0.

Theorem 5. Let � be a minimal valid function for (3)
and � be a minimal lifting of �. Then there exists � > 0
such that �, �, and �l coincide on the ball of radius �
centered at the origin.

Proof. Because � is a minimal valid function for (3),
there exists a maximal S-free convex set B = 8x ∈�n � ai ·

4x− f 5¶ 11 i = 11 0 0 0 1 t9 such that � = �B.
Let

�= max
1¶i1 j¶t

max
�r�=1

4ai − aj5r0

Because B is a maximal S-free convex set, every facet
of B contains a point of S in its relative interior. Hence, for
i = 11 0 0 0 1 t, there exists xi ∈ S such that ai4x

i −f 5= 1 and
aj4x

i − f 5¶ 1 − �i, j 6= i, for some positive �i. Let � > 0
such that ��¶ �i for i = 11 0 0 0 1 t.

Let d ∈ �n such that �d� ¶ �. We will show that for
every � < �4d5, B4�5 contains a point of S × �+ in its
interior. By Theorem 4, this implies that �l4d5 ¾ �4d5.
Because �l ¶� ¶ �, this implies �l4d5=�4d5= �4d5.

Let i, 1 ¶ i¶ t, such that �4d5= aid. Let �= �4d5−�

for some �> 0. We show that B4�5 contains the point
(

xi

1

)
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Figure 1. Example: f = 1
4 . Top: d = 3

2 . Bottom: d = 1.

f d

(b)

(a)

x1

B (�)

x2

f d x1

B (�)

x2

in its interior. Indeed, by (7), B4�5 is the set of points in
�n+1 satisfying the inequalities

aj4x− f 5+ 64ai − aj5d− �7xn+1 ¶ 11 j = 11 0 0 0 1 t0

Substituting
(

xi

1

)

, we obtain

ai4x
i − f 5− �< 11

aj4x
i − f 5+ 4ai − aj5d− �< 11 j = 11 0 0 0 1 t1 j 6= i1

where the first inequality follows from ai4x
i−f 5= 1, while

the second follows from aj4x
i − f 5¶ 1 −�i, �d�¶ �, and

4ai − aj54d/�d�5¶ � by our choice of �.
Thus

(

xi

1

)

is in the interior of B4�5. �
Example (Continued). From the previous example
where n = 1, 0 < f < 1 and S = �, note that �l4d5 =

�B4d5 for every d ∈ 6−f 11 − f 7. Indeed, if d < 0, then
B4�5 contains

(0
1

)

for all � < �B4d5; while if d ¾ 0, then
B4�5 contains

(1
1

)

for all � < �B4d5. Furthermore, for
� = �B4d5, if d < 0 the facet of B4�5 containing

(0
0

)

is vertical and contains the point
(0

1

)

, if d ¾ 0, then the
facet of B4�5 containing

(1
0

)

is vertical and contains the
point

(1
1

)

.

Theorem 5 implies that, for every minimal valid func-
tion � for (3), there exists a region R� ⊆�n containing the
origin in its interior such that � and � coincide in R� for
every minimal lifting � of � for (1). Because � is piece-
wise linear, it follows that � is piecewise linear around the
origin. This is in contrast with extreme functions � for the
pure integer semi-infinite relaxation (i.e., the set (1) where
all the sr are set to 0), which need not be piecewise linear
(Basu et al. 2010a).

Lemma 6. Let � be a minimal valid function, and � be a
minimal lifting of �. Then

(i) for every r ∈ �n and w ∈ �n ∩ lin4conv4S55, �4r5 =

�4r +w5;
(ii) for every r ∈�n such that r +w ∈R� for some w ∈

�n ∩ lin4conv4S55, �4r5= �4r +w5.

Proof. (i) Let r̄ ∈ �n and w ∈ �n ∩ lin4conv4S55. Sup-
pose �4r̄5 6= �4r̄ +w5. Because −w ∈ �n ∩ lin4conv4S55,
we may assume �4r̄5 > �4r̄ + w5. Because w ∈ �n ∩

lin4conv4S55, then a point x ∈ �n is in S if and only if
x+w ∈ S. Thus a point 4x̄1 s̄1 ȳ5 satisfies (1) if and only if
4x̄+wȳr̄ 1 s̄1 ỹ5 satisfies (1), where ỹr̄ = 0, ỹr̄+w = ȳr̄+w + ȳr̄ ,
and ỹr = ȳr for every r ∈ �n\8r̄1 r̄ + w9. This shows that
the function � ′ defined by � ′4r̄5=�4r̄+w5, � ′4r5=�4r5
for every r ∈ �n\8r̄9 is a lifting of �, contradicting the
minimality of �.

(ii) It follows from (i) that �4r5=�4r +w5. By defini-
tion of R� , �4r +w5= �4r +w5. �

This lemma is closely related to a result of Balas and
Jeroslow (1980). It implies the following property.

Theorem 7. If for every r ∈ �n there exists wr ∈ �n ∩

lin4conv4S55 such that r + w ∈ R� , then there exists a
unique minimal lifting of �, namely the function � defined
by �4r5= �4r +wr5. Furthermore, � =�l.

Example (Continued). From the previous example
where n = 1, 0 < f < 1, and S = �, we have shown
that �4r5 = �l4r5 for every r ∈ 6−f 11 − f 7. Note
that, for every r ∈ �, r − �r + f � ∈ 6−f 11 − f 7. Thus
�l4r5 = �4r − �r + f �5 for all r ∈ �, and �l is the
unique minimal lifting of �. Thus �l4r5= max8−f −14r −

�r + f �51 41 − f 5−14r − �r + f �59. More explicitly, if
r − �r� < 1 − f , then �l4r5 = 4r − �r�5/41 − f 5, while if
r − �r�¾ 1 − f , �l4r5= 4�r� − r5/f .

Given a tableau row x = f +
∑h

i=1 p
isi +

∑k
j=1 q

jyj ,
where si ¾ 0, i = 11 0 0 0 1 h, and yj ¾ 0 and integer, j =

11 0 0 0 1 h, the inequality
∑h

i=1 �4p
i5si +

∑k
j=1 �l4q

j5yj ¾ 1 is

h
∑

i=1
pi¾0

pi

1 − f
si +

h
∑

i=1
pi<0

−
pi

f
si +

k
∑

j=1
qj−�qj�<1−f

qj − �qj�

1 − f
yj

+

k
∑

j=1
qj−�qj�¾1−f

�qj� − qj

f
yj ¾ 11

which is the Gomory mixed-integer cut associated with the
tableau row.
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Figure 2. Wedges and corresponding region R+ 8f 9 shaded in gray.

x1 x1

f
f

f + R f + R

r̂
r̂

x2

x2 x2 = 0

Note. The inequality corresponding to the wedge on the right has a unique minimal lifting.

3. Applications
We illustrated in §2 how our geometric approach can be
used to derive Gomory’s mixed-integer cuts. In this section,
we give three examples of how it can be applied to the
multirow case.

3.1. Wedge Inequalities

We consider the problem (1) where n= 2 and S =�×�+.
We focus on inequalities arising from maximal S-free con-
vex sets with two sides and one vertex. We call such sets
wedges.

Let B = 8x ∈�2 � ai4x−f 5¶ 11 i = 1129 be such a max-
imal S-free convex set. Because B is S-free, its only vertex
must be in the interior of conv4S5, rec4B5 has dimension 2,
and for every nonzero element r ∈ rec4B5, r2 < 0.

Note that rec4conv4S55 = �×�+ and B has empty lin-
eality space. By Theorem 3, lin4B5 ⊇ rec4B ∩ conv4S55,
hence rec4B5 ∩ conv4S5 = �. In particular, 4� × 8095 ∩

rec4B5 = �, thus by symmetry we may assume a1

(1
0

)

< 0
and a2

(1
0

)

> 0, that is, a11 < 0 and a21 > 0.
Let r̂ be a nonzero vector such that a1r̂ = a2r̂ . Clearly,

the second coordinate of r̂ is nonzero. Note that any point
x ∈ �2 can be uniquely written as x = f + �x r̂ + �x

(1
0

)

where �x1�x ∈ �. Let x̄ ∈ S be a point in the relative
interior of one of the two facets of B, say ah4x̄− f 5 =

1, ak4x̄− f 5 < 1. Note that 0 > 4ak − ah54x̄ − f 5 =

�x̄4ak1 − ah15, hence �x̄ < 0 if h = 1 and �x̄ > 0 if h = 2.
Let x1 be a point of S in the relative interior of the facet
defined by a14x − f 5¶ 1 such that �x1

is largest possible,
and let x2 be a point of S in the relative interior of the facet
defined by a24x−f 5¶ 1 such that �x2

is smallest possible.
Let �i = �xi . Note that �1 < 0 < �2. We define the region
R= 6�11�27+ �r̂�. (See Figure 2.)

Lemma 8. For every d ∈R, �l4d5= �B4d5.

Proof. Let d ∈ R, that is d = �r̂ + �
(1

0

)

, for some � ∈ �
and � ∈ 6�11�27. We consider the case � ¶ 0. The case
�¾ 0 is similar.

Note that 4a1 − a25d = �4a1 − a25r̂ + �4a11 − a215 ¾ 0
because 4a1 −a25r̂ = 0, �¶ 0, a11 < 0, and a21 > 0. Hence
�B4d5= max8a1d1a2d9= a1d.

We will show that, for every � < �B4d5, the set B4�5

defined in (7) contains the point
(

x1

1

)

in its interior. By The-
orem 4, this will imply �l4d5¾ �B4d5, and thus �l4d5 =

�B4d5.
Let �= �B4d5−� for some �> 0. Then B4�5 is the set

of x ∈�3 satisfying

a14x− f 5− �x3 ¶ 11

a24x− f 5+ 4a1 − a25dx3 − �x3 ¶ 10

Substituting
(

x1

1

)

in the first inequality, we obtain
a14x

1 − f 5 − � = 1 − � < 10 Substituting in the second
inequality, we obtain

a24x
1
− f 5+ 4a1 − a25d− �

= �x1
a2r̂ +�1a21 +�4a1 − a25r̂ +�4a11 − a215− �

= �x1
a1r̂ +�1a11 + 4�−�154a11 − a215− �

¶ a14x
1
− f 5− �= 1 − �< 11

where the first inequality in the last row follows from
�1 ¶ �, a11 < 0, a21 > 0. Thus

(

x1

1

)

is in the interior of
B4�5. �

Let y1 and y2 be the intersection of the facets defined by
a14x−f 5¶ 1 and a24x−f 5¶ 1, respectively, with the axis
x2 = 0. That is, a14y

1 −f 5= 1, y1
2 = 0, and a24y

2 − f 5= 1,
y2

2 = 0. Because B is S-free, y2
1 − y1

1 ¶ 1, where equality
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holds if and only if y11 y2 are integral. Furthermore, it is not
difficult to show that �2 −�1 ¶ y2

1 − y1
1 . Thus �2 −�1 = 1

if and only if y1, y2 are integral vectors. In this case, for
every r ∈�2 there exists wr ∈�×809 such that r +wr ∈R.
Because lin4conv4S55 = � × 809, by Theorem 7, �l4r5 is
the unique minimal lifting of �B, and �l4r5 = �B4r +wr5
for every r ∈�2.

Dey and Wolsey (2010) show that �B is extreme for (3)
if and only if B contains at least three points of S. Thus
Remark 2 implies the following theorem.

Theorem 9. If B contains at least three points of S and
B∩ 4�× 8095 is an interval of length 1, then 4�B1�l5 is a
valid extreme inequality for (1).

Example. Let f =
(2/3

1/3

)

and S = � × �+. Consider the
wedge

W =
{

x ∈�2
� −3

(

x1 − 2
3

)

+ 3
(

x2 − 1
3

)

¶ 11
12
5

(

x1 − 2
3

)

− 3
5

(

x2 − 1
3

)

¶ 1
}

0

The set W is a maximal S-free convex set, as one may
easily see from Figure 3.

The corresponding minimal inequality is given by

�4r5= max
{

− 3r1 + 3r21
12
5 r1 − 3

5 r2

}

0

One can easily verify that the vector r̂ =
(2

3

)

satisfies
−3r̂1 +3r̂2 = 12

5 r̂1 − 3
5 r̂2, and that the region R is thus given

by R= 6− 4
9 1

5
9 7+ �

2
3 �. This can be written as

R=
{

r ∈�2
� − 4

9 ¶ r1 − 2
3 r2 ¶ 5

9

}

0

For every r ∈ R2, define the integral vector wr by wr
1 =

−
⌊

r1 − 2
3 r2 − 4

9

⌋

, wr
2 = 0. Note that wr ∈ lin4S5 ∩ �2 and

r +wr ∈R for all r ∈�2. The unique minimal lifting for �

Figure 3. Set W in the example and corresponding
region R+ 8f 9 shaded in gray.

r2

r2 + wr2

r4 + wr4

wr2

wr4

W

r1
f + R

f

r3

r5

r4

x1 = 0

is therefore the function � defined by �4r5 = �4r +wr5.
The explicit formula is given by

�4r5= max
{

− 3
(

r1 −
⌊

r1 − 2
3 r2 − 4

9

⌋ )

+ 3r21

12
5

(

r1 −
⌊

r1 − 2
3 r2 − 4

9

⌋ )

− 3
5 r2

}

0

Suppose now that we are given the following two rows
of the optimal simplex tableau for the linear relaxation of
a mixed integer program:

x1 = 2
3 + x3 + x4 − x6 − 4

5x71

x2 = 1
3 + 3

2x3 − 2x4 − 7
3x5 + x6 − 4

5x71

x11 x21 x31 x41 x51 x61 x7 ¾ 01

x11 x21 x41 x6 ∈�0

The lifted inequality determined by the wedge W is
�4r15x3 + �4r25x4 + �4r35x5 + �4r45x6 + �4r55x7 ¾ 1,
where r1 =

( 1
3/2

)

, r2 =
( 1
−2

)

, r3 =
( 0
−7/3

)

, r4 =
(

−1
1

)

, r5 =
(

−4/5
−4/5

)

. This gives the inequality

3
2x3 − 6

5x4 + 7
5x5 + 9

5x6 ¾ 10

Note that the nonlifted inequality (that is, the inequality
obtained from W if we ignored the integrality conditions
on x4 and x6) is

3
2x3 + 18

5 x4 + 7
5x5 + 6x6 ¾ 10

3.2. Simplicial Polytopes

In this section we focus on valid inequalities for (3) arising
from maximal lattice-free simplicial polytopes, in the case
where S = �n. Recall that a polytope is simplicial if each
of its facets is a simplex.

Let B = 8x ∈ �n � ai4x − f 5 ¶ 11 i = 11 0 0 0 1 t9 be an n-
dimensional maximal lattice-free simplicial polytope, and
let v11 0 0 0 1 vp be its vertices. For i = 11 0 0 0 1 t, let Vi ⊂

811 0 0 0 1 p9 be the set of indices of vertices of the facet
defined by ai4x − f 5 ¶ 1, that is ai4v

j − f 5 = 1 for all
j ∈ Vi. Let r i = vi − f , i = 11 0 0 0 1 p. Note that because B is
simplicial, 8r j � j ∈ Vi9 consists of n linearly independent
vectors, for i = 11 0 0 0 1 t, and air

j = 1 for all j ∈ Vi, while
air

j < 1 for all j y Vi.
Let x̄ be an integral point in the relative interior of the

facet defined by ai4x − f 5 ¶ 1, that is, ai4x̄ − f 5 = 1,
aj4x̄ − f 5 < 1, j 6= i. Then x̄ can be uniquely written as
x̄ = f +

∑

j∈Vi
�̄jr

j , where
∑

j∈Vi
�̄j = 1, �̄j ¾ 0, j ∈ Vi. Let

R4x̄5= 8
∑

j∈Vi
�jr

j � 0 ¶ �j ¶ �̄j1 j ∈ Vi9.
Let us denote by I the set of all points x̄ in �n such that

x̄ is contained in the relative interior of some facet of B.
Let R=

⋃

x̄∈IR4x̄5.

Lemma 10. For every d ∈R, �l4d5= �B4d5.
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Proof. We need only to show that, given x̄ ∈ I and
d ∈ R4x̄5, �l4d5 = �B4d5. By symmetry we may assume
that x̄ is in the relative interior of the facet defined by
a14x̄ − f 5 ¶ 1, and that V1 = 811 0 0 0 1 n9. Let �̄11 0 0 0 1 �̄n

nonnegative such that
∑n

j=1 �̄j = 1 and x̄ = f +
∑n

j=1 �̄jr
j .

Because d ∈ R4x̄5, there exist �11 0 0 0 1�n such that d =
∑n

j=1 �jr
j and 0 ¶ �j ¶ �̄j , j = 11 0 0 0 1 n. Note that, for

i = 11 0 0 0 1 t, 4a1 − ai5d =
∑n

j=1 �j4a1 − ai5r
j ¾ 0. Thus

�B4d5= a1d.
We will show that for every � < �B4d5, the set B4�5

defined as in (7) contains the point
(

x̄

1

)

in its interior.
By Theorem 4, this will imply �l4d5 ¾ �B4d5, and thus
�l4d5= �B4d5.

Let �= �B4d5−� for some �> 0. Then B4�5 is the set
of x ∈�n+1 satisfying

a14x− f 5− �xn+1 ¶ 11

ai4x− f 5+ 4a1 − ai5dxn+1 − �xn+1 ¶ 11 i = 21 0 0 0 1 t0

Substituting
(

x̄

1

)

in the first inequality, we obtain
a14x̄−f 5−�= 1−�< 10 Substituting in the ith inequality,
i = 21 0 0 0 1 n+ 1, we obtain

ai4x̄− f 5+ 4a1 − ai5d− �

=

n
∑

j=1

�̄jair
j
+

n
∑

j=1

�j4a1 − ai5r
j
− �

=

n
∑

j=1

�̄j −

n
∑

j=1

�̄j41 − air
j5+

n
∑

j=1

�j41 − air
j5− �

= 1 −

n
∑

j=1

4�̄j −�j541 − air
j5− �

¶ 1 − �< 11

where the equality in the third line follows from air
j = 1

for j = 11 0 0 0 1 n, the equality on the fourth line follows
from

∑n
j=1 �̄j = 1, while the first inequality on the last line

follows from �j ¶ �̄j and air
j ¶ 1. �

In light of Theorem 7, we are interested in cases where
for every r ∈�n there exists wr ∈�n such that r +wr ∈R,
because in this case �l is the unique minimal lifting.

Dey and Wolsey (2008) studied the case n = 2. In this
case maximal lattice-free polytopes are either triangles or
quadrilaterals (Lovász 1989). Dey and Wolsey show that
the above property holds if and only if B is a triangle con-
taining at least four integral points (see Figure 4), while
it does not hold if B is a triangle containing exactly three
integral points or if B is a quadrilateral. They also show
that when B is a triangle with at least four integral points,
4�B1�l5 is extreme for (1). This fact also follows from
Remark 2 and from the fact that �B is extreme for (3)
whenever B is a maximal lattice-free triangle (Cornuéjols
and Margot 2009).

We next show that the above property holds when B is
the n-dimensional simplex conv801 ne11 0 0 0 1 nen9, where ei

Figure 4. Lattice-free triangles giving inequalities with
a unique minimal lifting.

(a)

(b)

f

f

Note. Region R+ 8f 9 is shaded.

denotes the ith unit vector. We assume that f is in the
interior of B. The picture on the top in Figure 4 shows the
case n= 2. Note that B = 8x ∈�n �

∑n
i=1 xi ¶ n1 xi ¾ 01 i =

11 0 0 0 1 n9. The point e−ei, where e denotes the vector of all
ones, is the unique integral point in the relative interior of
the facet of B defined by xi ¾ 0, and e is the unique integral
point in the relative interior of the facet of B defined by
∑n

i=1 xi ¶ n. Thus I= 8e1 e− e11 0 0 0 1 e− en9.
Let d11 0 0 0 1 dn+1 be defined as follows: di = ei − 41/n5f ,

i = 11 0 0 0 1 n and dn+1 = −41/n5f . Then R4e5 =

8
∑n

j=1 �jd
j � 0 ¶ �i ¶ 1, i = 11 0 0 0 1 n9 and R4e − ei5 =

8
∑n+1

j=1 �jd
j � 0 ¶ �k ¶ 1, k = 11 0 0 0 1 n+ 1, �i = 09. There-

fore, R = 8
∑n+1

j=1 �jd
j � 0 ¶ �i ¶ 1, i = 11 0 0 0 1 n+ 1, �i = 0

for some i, 1 ¶ i¶ n+ 19.

Lemma 11. Let B = conv801 ne11 0 0 0 1 nen9. For every r ∈

�n, there exists w ∈�n such that r +w ∈R.

Proof. Note that for 1 ¶ i1 j ¶ n+ 1, di −dj ∈�n.
Let Ci = cone8dj � j 6= i11 ¶ j ¶ n + 19, i = 11 0 0 0 1

n + 1. Note that
⋃n+1

i=1 Ci = �n and Ci ∩ Ck = cone8dj �
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j 6= i1 k1 1 ¶ j ¶ n + 19. Furthermore, −di ∈ Ci for i =

11 0 0 0 1 n+ 1.

Claim. Let r ∈ �n and let i such that r ∈ Ci. There exists
a unique � ∈ �n+1 such that r =

∑n+1
j=1 �jd

j and �i = 0.
Furthermore, � is nonnegative and �j ¶ �′

j for every non-
negative �′ ∈�n+1 such that r =

∑n+1
j=1 �

′
jd

j .

We prove the claim. Because Ci is generated by n lin-
early independent vectors, r can be uniquely written as r =
∑n+1

j=1 �jd
j such that �i = 0, and � must be nonnegative

because r ∈ Ci. Given a nonnegative �′ ∈ �n+1 such that
r =

∑n+1
j=1 �

′
jd

j distinct from �, then �′
i > 0. Hence,

−di
= 4�′

i5
−1

n+1
∑

j=1
j 6=i

4�′

j −�j5d
j3

thus �′
j − �j ¾ 0 because −di ∈ Ci. Hence, by the above

argument −di can be uniquely written as a linear combi-
nation of the extreme rays of Ci, and such combination is
nonnegative. This proves the claim.

Let us now consider r ∈ �n. Let i be such that r ∈ Ci,
1 ¶ i ¶ n + 1. Let � ∈ �n+1 such that r =

∑n+1
j=1 �jd

j and
�i = 0. By the above claim � is nonnegative. Let �̄ =

maxj=110001n+1 �j . If �̄¶ 1, then r ∈R. If not, �k = �̄ > 1 for
some 1 ¶ k¶ n+ 1.

Let r ′ = r + 4ei − ek5 = r + 4di − dk5. Then r ′ =
∑

j 6=i1k �jd
j + di + 4�k − 15dk. Let h be such that r ′ ∈ Ch,

1 ¶ h¶ n+ 1 and let �′ ∈ �n+1 be the unique vector such
that r ′ =

∑n+1
j=1 �

′
jd

j and �′
h = 0. By the previous claim,

�′ satisfies the following properties:
• r ′ − r ∈�n and �′

h = 0,
• 0 ¶ �′

j ¶ �j , j 6= i, 1 ¶ j ¶ n+ 1,
• 0 ¶ �′

i ¶ 1, 0 ¶ �′
k ¶ �k − 1.

Thus, either maxj=110001n+1 �
′
j ¶ �̄ − 1, or the number of

indices j such that �′
j = �̄ is smaller than the number

of indices j such that �j = �̄. This implies the statement of
the lemma. �

It can be shown that, in this case, R is a polytope with
(

n+1
2

)

pairs of parallel facets, and that R has volume 1. Thus,
by Lemma 11, all possible translations of R by integral vec-
tors form a tiling of �n. Therefore for every d ∈�n, there
exists wd ∈ �n such that d + wd ∈ R. By Theorem 7, the
function �l defined by �l4d5 = �B4d +wd5 is the unique
minimal lifting of �B.

Whenever B is a maximal lattice-free simplex, �B is
extreme for (3). Indeed, if v11 0 0 0 1 vn+1 are the vertices
of B and we define r j = vj − f , j = 11 0 0 0 1 n + 1,
�B is extreme for (3) if and only if

∑n+1
j=1 �B4r

j5sj ¾ 1
is extreme for the convex hull of the set Rf 4r

11 0 0 0 1 rn+15
defined as the set of all s ∈ �n+1 such that f +
∑n+1

j=1 r
jsj ∈ �n and s ¾ 0 (see Dey and Wolsey 2010).

In this case, because each facet of B contains an inte-
gral point, for i = 11 0 0 0 1 n + 1 there exists si ∈ �n+1

such that sij > 0 for all j 6= i, 1 ¶ j ¶ n + 1, sii = 0 and

∑n+1
j=1 s

i
jr

j ∈�n. Hence s11 0 0 0 1 sn+1 are linearly independent
points of Rf 4r

11 0 0 0 1 rn+15, and
∑n+1

j=1 �B4r
j5sij = 1 for i =

11 0 0 0 1 n+ 1. This shows that
∑n+1

j=1 �B4r
j5sj ¾ 1 defines a

facet of conv4Rf 4r
11 0 0 0 1 rn+155, and thus it is extreme for

conv4Rf 4r
11 0 0 0 1 rn+155. Therefore, �B is extreme for (3).

The above statement and Remark 2 imply the following.

Theorem 12. If B = conv401 ne11 0 0 0 1 nen5, 4�B1�l5 is
extreme for (1) with S =�n.

By standard arguments, the above theorem holds up
to unimodular transformations and integer translations of
the set B. Namely, given any unimodular n × n-matrix
U (i.e., an integral matrix with determinant one) and any
vector v ∈ �n such that f is in the interior of the set
B′ = conv4v1n4Ue15 + v1 0 0 0 1 n4Uen5 + v5, then 4�B′ 1�l5
is extreme for (1) with S = �n. Note that, given a vec-
tor f y�n, one can always find an appropriate unimodular
matrix U and integral vector v so that f is in the interior
of the corresponding set B′. This type of lifted inequality
has been used in computational experiments by Espinoza
(2010) and recently by Balas and Qualizza (2009), and the
results seem to indicate that such cuts might be useful in
practice.

3.3. Simple Cones

We consider the case where S = �n−1 ×�+ and the maxi-
mal S-free convex set B is the translation of a simple cone.
That is, B has a unique vertex v, and B− v is a simple
cone. Recall that a polyhedral cone in �n is simple if it is
generated by n linearly independent vectors, and therefore
it has n facets. This case extends the wedge inequalities
of §3.1.

Let B = 8x ∈�n � ai4x− f 5¶ 11 i = 1 0 0 0 1 n9. By Theo-
rem 3, rec4B ∩ conv4S55 is contained in the lineality space
of B, which is empty. Therefore, B ∩ conv4S5 is bounded.
Therefore the polytope B ∩ 4�n−1 × 8095 is an an 4n− 15-
dimensional simplex P . Let v11 0 0 0 1 vn be the vertices of P ,
and let r j = vj − f , j = 11 0 0 0 1 n. By symmetry, we may
assume that air

j = 1 for 1 ¶ i1 j ¶ n, i 6= j , and air
i < 1.

Let r̂ = v− f . Note that for i = 11 0 0 0 1 n, ai r̂ = 1.
Let x̄ be a point of S in the relative interior of one of the

facets of B, say the facet defined by ah4x− f 5¶ 1. Then x̄
can be uniquely written as x̄ = f +�̄r̂+

∑n
j=1 �̄jr

j such that
0 ¶ �̄j , j = 11 0 0 0 1 n, and �̄h = 0. Let R4x̄5 = 8

∑n
j=1 �jr

j �

0 ¶ �j ¶ �̄j1 j = 11 0 0 0 1 n9+ �r̂�. Let us denote by I the
set of all points x̄ in S such that x̄ is contained in the
relative interior of some facet of B. Let R=

⋃

x̄∈IR4x̄5.

Lemma 13. For every d ∈R, �l4d5= �B4d5.

Proof. We need only to show that, given x̄ ∈ I and
d ∈ R4x̄5, �l4d5 = �B4d5. By symmetry we may assume
that x̄ is in the relative interior of the facet defined by
a14x− f 5¶ 1. Let �̄ ∈� and �̄21 0 0 0 1 �̄n nonnegative such
that x̄ = f + �̄r̂ +

∑n
j=2 �̄jr

j . Because d ∈R4x̄5, there exist
� ∈ � and �11 0 0 0 1�n such that d = �r̂ +

∑n
j=2 �jr

j and
0 ¶ �j ¶ �̄j , j = 21 0 0 0 1 n.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Conforti, Cornuéjols, and Zambelli: A Geometric Perspective on Lifting
Operations Research 59(3), pp. 569–577, © 2011 INFORMS 577

Note that for i = 21 0 0 0 1 t, 4a1 − ai5d = �4a1 − ai5r̂ +
∑n

j=2 �j4a1 − ai5r
j ¾ 0, because 4a1 − ai5r̂ = 0 and

4a1 − ai5r
j ¾ 0. Thus �B4d5= a1d.

We will show that for every � < �B4d5, the set B4�5
defined in (7) contains the point

(

x̄

1

)

in its interior. By The-
orem 4, this will imply �l4d5¾ �B4d5, and thus �l4d5 =

�B4d5.
Let �= �B4d5−� for some �> 0. Then B4�5 is the set

of x ∈�n+1 satisfying

a14x− f 5− �xn+1 ¶ 11

ai4x− f 5+ 4a1 − ai5dxn+1 − �xn+1 ¶ 1 i = 21 0 0 0 1 t0

Substituting
(

x̄

1

)

in the first inequality, we obtain
a14x̄−f 5−�= 1−�< 10 Substituting in the ith inequality,
i = 21 0 0 0 1 n+ 1, we obtain

ai4x̄− f 5+ 4a1 − ai5d− �

= �̄ai r̂ +

n
∑

j=2

�̄jair
j
+�4a1 − ai5r̂ +

n
∑

j=2

�j4a1 − ai5r
j
− �

= �̄a1r̂ +

n
∑

j=2

�̄ja1r
j
− �̄i4a1 − ai5r

i
+�i4a1 − ai5r

i
− �

= a14x̄− f 5− 4�̄i −�i54a1 − ai5r
i
− �

¶ 1 − �< 11

where the equality in the third line follows from ai r̂ = a1r̂
and a1r

j = air
j for all 2 ¶ j ¶ n such that i 6= j , while the

first inequality on the last line follows from �i ¶ �̄i and
air

i < 1 = a1r
i. �

Note that P is an n−1-dimensional simplex in �n−1×809
and P does not contain any point of �n−1 × 809 in its inte-
rior. Suppose that P is maximal lattice-free in �n−1 × 809.
In this case we can apply the results of §3.2 to identify
cases where �l is a lifting of �B.

Let f̄ be the intersection of the line f + �r̂� with
�n−1 × 809, and let r̄ j = vj − f̄ . For every point x̄ ∈�n−1 ×

809 in the relative interior of one of the facets of P , say
the facet defined by ah4x− f 5¶ 1, x̄ can be uniquely writ-
ten as x̄ = f̄ +

∑n
j=1 �̄j r̄

j such that 0 ¶ �̄j , j = 11 0 0 0 1 n,
and �̄h = 0. Let R̄4x̄5 = 8

∑n
j=1 �j r̄

j � 0 ¶ �j ¶ �̄j1 j =

11 0 0 0 1 n9. Note that R̄4x̄5 = R4x̄5 ∩ 4�n−1 × 8095. Let Ī
be the set of all points x̄ ∈ �n−1 × 809 in the relative inte-
rior of some of the facets of P . We define R̄=

⋃

x̄∈Ī R̄4x̄5.
Then R⊇ R̄+�r̂�. Hence, if for every r ∈�n−1 × 809 there
exists w ∈ �n−1 × 809 such that r + w ∈ R̄, it also holds

that for every r ∈�n there exists wr ∈�n−1 × 809 such that
r +wr ∈R.

Because �n−1 × 809 is the lineality space of conv4S5,
Theorem 7 implies that �l is the unique minimal lifting of
�B, and �l4r5= �4r +wr5.

The above property holds, for example, when n= 2 and
P is an interval of length one (as seen in §3.1), when
n = 3 and P is a maximal lattice-free triangle contain-
ing at least four points in �2 × 809, or for general n
when P is a unimodular transformation of conv401 4n−15 ·
e11 0 0 0 1 4n− 15en−15.
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