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Abstract In this paper we consider an infinite relaxation of the mixed integer linear
program with two integer variables, nonnegative continuous variables and two equality
constraints, and we give a complete characterization of its facets. We also derive an
analogous characterization of the facets of the underlying finite integer program.

1 Introduction

We consider the mixed 2-integer-variable linear program with two constraints

x = f +
k∑

j=1

r j s j

x ∈ Z
2 (1)

s ∈ R
k+
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where f ∈ Q
2\Z

2, k ≥ 1, and r j ∈ Q
2\ {0}. Let R f (r1, . . . , rk) be the convex hull of

all vectors s ∈ R
k+ such that f +∑k

j=1 r j s j is integral. R f (r1, . . . , rk) is a polyhedron
(We refer the reader to [17] for standard definitions). Model (1) was considered by
Andersen, Louveaux, Weismantel and Wolsey [1]. They showed that the nontrivial
facets of R f (r1, . . . , rk) are necessarily defined by split inequalities or intersection
cuts [2] arising from triangles or quadrilaterals in R

2. A goal of this paper is to give a
converse to the result in [1]: which splits, triangles and quadrilaterals actually define
facets of R f (r1, . . . , rk)? We present our analysis in the more general context of the
Gomory-Johnson infinite group relaxation.

Gomory [9], Gomory and Johnson [12] and Johnson [13] suggested relaxing the
k-dimensional space of variables s = (s1, . . . , sk) to an infinite-dimensional space,
where the variables sr are defined for any r ∈ Q

2. We get the infinite program with
two integer variables and two constraints

x = f +
∑

rsr

x ∈ Z
2

s ≥ 0 with finite support. (2)

The vector s = (sr )r∈Q2 is said to have finite support if sr �= 0 for a finite number
of r ∈ Q

2. Let R f be the convex hull of all vectors s ≥ 0 with finite support such that
f + ∑

rsr is integral. Note that the polyhedron R f (r1, . . . , rk) is obtained from R f

by setting sr = 0 for all r ∈ Q
2\{r1, . . . , rk}. Our motivation for working with R f

is that it only has one parameter, namely f , and therefore the results are cleaner than
with R f (r1, . . . , rk). A drawback of R f is that it is not a closed set. For example, the
sequence sk for k = 1, 2, . . . defined by

sk
r =

{ 1
k if r = −k f
0 otherwise

is in R f and converges to 0, but 0 �∈ R f since f ∈ Q
2\Z

2. Throughout the paper,
we relate results obtained for the convex set R f to those obtained for the polyhedron
R f (r1, . . . , rk).

1.1 Minimal valid inequalities

We say that an inequality αs ≥ β is valid for R f [resp. R f (r1, . . . , rk)] if it is satisfied
by all vectors in R f [resp. R f (r1, . . . , rk)]. Inequalities si ≥ 0 are called trivial valid
inequalities. In this paper, we discuss only nontrivial valid inequalities. The solution
s = 0 is not feasible for R f . Any valid inequality for R f that cuts off the vector s = 0
is of the form

∑
ψ(r)sr ≥ 1, (3)
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Fig. 1 Representation of Bψ for nondegenerate cases

where ψ : Q
2 → R ∪ {+∞} and, as above, we only consider vectors s with finite

support. To avoid ambiguity, the product +∞ · 0 is defined to be 0.
Any valid inequality for R f yields a valid inequality for R f (r1, . . . , rk) by simply

restricting it to the space r1, . . . , rk . Furthermore, a full description of the polyhedron
R f (r1, . . . , rk) is obtained from the set of valid inequalities for R f by adding the
constraints sr = 0 for r �= r1, . . . , rk . Therefore we will assume in the remainder that
valid inequalities for R f (r1, . . . , rk) are restrictions of valid inequalities for R f .

An inequality
∑
ψ(r)sr ≥ 1 valid for R f is minimal if there is no valid inequality∑

ψ ′(r)sr ≥ 1 where ψ ′ ≤ ψ and ψ ′(r) < ψ(r) for at least one r ∈ Q
2. Note

that when ψ(r) = +∞ we have ψ ′(r) < ψ(r) if and only if ψ ′(r) is finite. If ψ
defines a minimal valid inequality

∑
ψ(r)sr ≥ 1, we also say that the function ψ is

minimal. In [4], it was shown that a minimal valid functionψ is nonnegative, positively
homogeneous, piecewise linear, and convex. Recall that a function ψ is positively
homogeneous if ψ(λr) = λψ(r) for all λ ≥ 0. Since ψ is always nonnegative in this
paper, we simply say homogeneous to mean positively homogeneous. Define

Bψ := {x ∈ Q
2 : ψ(x − f ) ≤ 1}. (4)

The convexity of ψ implies that Bψ is a convex set in Q
2. The following result was

proved in [4].

Theorem 1.1 Let f ∈ Q
2. A minimal valid function ψ for R f is nonnegative,

homogeneous, piecewise linear, and convex. Furthermore, the closure of the set Bψ
in R

2 is a full-dimensional polyhedron with 2, 3 or 4 edges, it contains no integral
point in its interior but each edge contains at least one integral point in its relative
interior.

We will simply say in the interior of an edge to mean in its relative interior. Next
we describe the different sets Bψ arising in Theorem 1.1.

The point f is in Bψ since ψ(0) = 0. The nondegenerate case is obtained when f
is in the interior of Bψ (see Fig. 1). In this case, an extension ofψ to R

2 is obtained by
defining ψ(x − f ) = 1 for all points on the boundary of the closure of Bψ , denoted
by clBψ . Indeed, the knowledge of f and of the boundary of clBψ together with the
homogeneity of ψ is enough to compute the value of ψ(r) for any vector r ∈ R

2\{0}:
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Fig. 2 Level curves of ψ(r) for nondegenerate cases

Fig. 3 Representation of Bψ for degenerate cases

If there is a positive scalar λ such that the point f + λr is on the boundary of clBψ ,
we get that ψ(r) = 1/λ. Otherwise, if there is no such λ, r is an unbounded direction
of clBψ and ψ(r) = 0. Note that this extension of ψ to R

2 is a continuous function.
We use the graphic representation of Bψ to describe ψ when possible. The

inequalities corresponding to the three cases of Fig. 1 will be called split, triangle
and quadrilateral inequalities. They are special cases of the intersection cuts of
Balas [2]. Split inequalities in higher dimensions were studied by Cook, Kannan and
Schrijver [6], who coined the name. These inequalities are equivalent to Gomory’s
mixed integer inequalities [10] (see [5] for a proof). In Fig. 2, we represent the func-

tion ψ in the (r1, r2)-space where r =
(

r1
r2

)
∈ R

2. Solid lines give level curves of

ψ(r) with values 0 and 1 for the three examples of Fig. 1.
The degenerate case is obtained when f is a vertex of clBψ or when f lies on one

of its edges (see Fig. 3 for three examples). Then ψ is not finite everywhere [4]. An
extension ofψ to R

2∪{+∞} is obtained by definingψ(x − f ) = 1 for all points on the
boundary of clBψ , except for directions (x − f ) supporting edges of clBψ containing
f : For any direction 0 �= r ∈ R

2 such that the half-line Lr = {x = f +λr for λ > 0}
is entirely outside clBψ , we haveψ(r) = +∞. For the directions such that the half-line
Lr goes through the interior of clBψ , let f + λr be the point where Lr intersects the
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Fig. 4 Level curves of ψ(r) for degenerate cases

boundary of clBψ ; then we get ψ(r) = 1/λ. Finally, when Lr supports an edge E of
clBψ , assume that y = f +λr is the first integral point encountered on Lr starting from
f (such a point exists since E contains an integral point and f is rational, implying
that Lr contains infinitely many integral points) and let x = f +µr be the first vertex
of clBψ encountered (if any); if y is encountered first, we get ψ(r) = 1/λ and if x is
encountered first, we get ψ(r) = 1/µ. The resulting extension of ψ to R

2 ∪ {+∞} is
not continuous, even in the region where ψ is finite. Dey et al. [7] showed in a more
general context that, if ψ(r) < +∞ everywhere, then ψ is continuous, and therefore
ψ is nondegenerate.

There are five different degenerate inequalities, depending on the type of set clBψ
and the position of f on its faces: degenerate split, vertex-degenerate triangle, edge-
degenerate triangle, vertex-degenerate quadrilateral and edge-degenerate quadrila-
teral inequalities. Solid lines in Fig. 4 give level curves of ψ(r) with value 1 for the
three examples of Fig. 3.

A convex set with no integral point in its interior is called lattice-free. Maximal
lattice-free convex sets in R

n are polyhedra with at most 2n facets [3,14,18]. The
complete list of all maximal lattice-free convex sets in the plane is known:

Theorem 1.2 (Lovász [14]) A maximal lattice-free convex set in the (x1, x2)-plane
R

2 is one of the following:
(i) A line ax1 + bx2 = c, where a/b is irrational.

(ii) A strip c ≤ ax1 + bx2 ≤ c + 1 where a and b are coprime integers and c is an
integer.

(iii) A triangle with a least one integral point in the interior of each of its edges.
(iv) A quadrilateral containing exactly four integral points, with exactly one of them

in the interior of each of its edges; Moreover, these four integral points are
vertices of a parallelogram of area 1.

The polyhedra referred to in Theorem 1.1 correspond to the last three cases of
Theorem 1.2. The first case does not play a role here as we only consider rational vectors
f and r in the definition of R f . Note that if we had defined R f and R f (r1, . . . , rk)

for parameters in R
2 instead of Q

2, the strict inequality
∑

r �=r0 sr > 0 would be
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valid when r0
1/r0

2 is irrational and the line f + λr0 contains no integral point (this
inequality corresponds to the first case of Theorem 1.2 and it is not implied by the valid
inequalities of Theorem 1.1 since these inequalities all have ψ(r0) > 0). In particular
R f (r1, . . . , rk) would not be a polyhedron anymore. Thus the assumption that the
vectors f and r are rational is important in the definitions of R f and R f (r1, . . . , rk).

On the other hand, extending the definition of ψ and Bψ to R
2 is useful since the

maximal lattice-free triangles and quadrilaterals in cases ii) and iii) of Theorem 1.2
may have irrational corner vertices. In the remainder of the paper,ψ and Bψ are always
assumed to be defined over R

2.

1.2 Facets

A valid inequality
∑
ψ(r)sr ≥ 1 for R f is extremal, or defines a facet of R f if

there does not exist two distinct valid inequalities
∑
ψ j (r)sr ≥ 1, j = 1, 2, such

that ψ = 1
2ψ1 + 1

2ψ2. By extension, we also say that the function ψ itself defines a
facet of R f . Note that, although we only use nontrivial inequalities in this definition,
including them would give an equivalent definition.

Remark 1.3 The definition of a facet implies that if ψ defines a facet of R f then ψ is
minimal.

Remark 1.4 If a valid function ψ is not facet defining for R f , then ψ ≥ 1
2ψ1 + 1

2ψ2
where ψ1 and ψ2 are both minimal valid functions and ψ �= ψ1 or ψ2.

Gomory [11] recently noted that triangle inequalities define facets of R f and raised
the question of completely describing the facets of R f . In this paper, we give such a
characterization. It is summarized in the next theorem.

Theorem 1.5 The facets of R f are all split inequalities, all triangles inequalities, all
quadrilateral inequalities that satisfy a certain ratio condition, all degenerate split
inequalities, some degenerate triangle inequalities (see Theorems 4.9 and 4.10 for
details) but no degenerate quadrilateral inequalities.

A valid inequality
∑k

i=1 ψ(r
i )si ≥ 1 for R f (r1, . . . , rk) defines a facet of

R f (r1, . . . , rk) if there does not exist two distinct valid inequalities
∑k

i=1 ψ j (r i )si ≥
1, j = 1, 2, such that ψ(r i ) = 1

2ψ1(r i ) + 1
2ψ2(r i ) for i = 1, . . . , k. This definition

of a facet of R f (r1, . . . , rk) is consistent with the usual definition of a facet of a po-
lyhedron only if the polyhedron is full dimensional. The next lemma shows that this
is the case.

Lemma 1.6 If R f (r1, . . . , rk) is nonempty, then it is full dimensional.

Proof The recession cone of R f (r1, . . . , rk) is R
k+. 	


In the remainder, we assume that R f (r1, . . . , rk) �= ∅. Note that this is easy
to check. In particular, this is always the case when the rays r j for j = 1, . . . , k
span R

2.
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Fig. 5 Data, a nonmaximal lattice-free quadrilateral defining a facet, and a maximal lattice-free triangle
defining the same facet

In [1], Andersen, Louveaux, Weismantel and Wolsey study R f (r1, . . . , rk) and
they prove that, when nonnegative combinations of r1, . . . , rk span R

2, all the non-
trivial facets of R f (r1, . . . , rk) are split inequalities or are triangle or quadrilateral
inequalities where the vertices of Bψ are on the rays f +λr i , λ > 0, for i = 1, . . . , k.
They do not, however, describe precisely which triangles and quadrilaterals generate
facets. Some of the polyhedra Bψ they use are maximal lattice-free but, in order to
have vertices of Bψ on rays f + λr i , λ > 0, they also use polyhedra Bψ that are not
maximal lattice-free. See Fig. 5.

In addition to Theorem 1.5, the other main result of this paper is a characterization
of the facets of R f (r1, . . . , rk).

Theorem 1.7 The facets of R f (r1, . . . , rk) are

(i) Split inequalities where the infinite direction of Bψ is r j for some j = 1, . . . , k
and the line f +λr j contains no integral point; or where Bψ satisfies a certain
ray condition (see Theorem 3.12 for details).

(ii) Triangle inequalities where the triangle Bψ has its corner points on three half-
lines f + λr j for some j = 1, . . . , k and λ > 0; or where the triangle Bψ
satisfies a certain ray condition (see Sect. 3.2.1 for details).

(iii) Quadrilateral inequalities where the corners of Bψ are on four half-lines f +λr j

for some j = 1, . . . , k and λ > 0, and Bψ satisfies a certain ratio condition
(see Theorem 3.10 for details).

(iv) None of the degenerate cases are needed to define the facets of R f (r1, . . . , rk).

The paper is organized as follows. In Sect. 2, we give simple technical results that
are useful in the remainder of the paper. In Sect. 3 we prove Theorem 1.7 and in Sect. 4
we prove Theorem 1.5.

2 Preliminaries

The three lemmas in this section collect simple properties that will be used in the
remainder of the paper.

The first lemma is a characterization of maximal lattice-free triangles that was
observed by Dey and Wolsey [8].
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Lemma 2.1 If T is a maximal lattice-free triangle in R
2, then

(i) T has exactly three integral points on its boundary, one in the interior of each
edge, or

(ii) T has exactly six integral points on its boundary, the three vertices and one in
the middle of each edge, or

(iii) T has exactly one edge E with at least two integral points in its interior. The
vertex opposite edge E is nonintegral.

Proof Suppose T has an edge E1 with at least two integral points y1, y2 in its interior,
and another edge E2 with two integral points y3, y4 distinct from the point x3 =
E1 ∩ E2. Say x3, y1, y2 appear in this order in E1 and x3, y3, y4 appear in this order
in E2. Then the points y2 + (y3 − y1) and y4 + (y1 − y3) are integral points and at
least one of them is in the triangle x3 y2 y4 and thus in the interior of T , a contradiction.
This shows that either (iii) holds or every edge of T has exactly one integral point in
its interior.

In the latter case, either (i) holds or T has an integral corner point x3. Let E1 and
E2 be the edges of T containing x3 and let yi be the integral vertex in the interior of
Ei for i = 1, 2. Let xi be the symmetric of x3 relative to yi . Since xi is integral and
therefore not interior to Ei by our assumption, T is contained in the triangle x1x2x3. It
is easy to verify that the triangle x1x2x3 only contains six integral points, namely the
xi s, y1, y2 and the middle y3 of x1 and x2: Indeed, the only integral points in triangle
x3 y1 y2 are its corners and by translation and symmetry the same holds for x1 y1 y3,
y1 y2 y3 and x2 y2 y3. By maximality, T is the triangle x1x2x3. Therefore (ii) holds.

	

Lemma 2.2 Let f ∈ Q

2 and let ψ be valid and minimal for R f . Let x1, x2, x3 ∈ R
2

be three distinct points such that x2 = µx1 + (1 − µ)x3 for some 0 < µ < 1.

(i) If ψ(x1 − f ) ≤ 1 and ψ(x2 − f ) = 1 then ψ(x3 − f ) ≥ 1.
(ii) If ψ(x1 − f ) ≤ 1, ψ(x2 − f ) = 1, and ψ(x3 − f ) ≤ 1 then ψ(x1 − f ) =

ψ(x3 − f ) = 1.
(iii) If ψ(x1 − f ) = ψ(x2 − f ) = ψ(x3 − f ) = 1 then ψ(x − f ) = 1 for all x on

the line segment µ′x1 + (1 − µ′)x3 for 0 ≤ µ′ ≤ 1.

Proof (i) By Theorem 1.1,ψ is convex and thus 1 = ψ(x2 − f ) ≤ µψ(x1 − f )+
(1 − µ)ψ(x3 − f ) ≤ µ+ (1 − µ)ψ(x3 − f ).

(ii) Using (i), we have ψ(x3 − f ) ≥ 1 and thus ψ(x3 − f ) = 1. Symmetry implies
ψ(x1 − f ) = 1.

(iii) Without loss of generality, assume that x = µ′x1 + (1 −µ′)x3 = µ′′x2 + (1 −
µ′′)x3 for some 0 ≤ µ′′ ≤ 1. Convexity of ψ then implies that ψ(x − f ) ≤
µ′′ψ(x2 − f )+ (1 −µ′′)ψ(x3 − f ) = 1. Applying (ii) to the triplet x1, x2, x ,
we get ψ(x − f ) = 1. 	


Lemma 2.3 Let f ∈ Q
2 and let ψ be valid for R f . Assume that ψ ≥ 1

2ψ1 + 1
2ψ2

where ψ j is valid and minimal for j = 1, 2.

(i) If ψ(y − f ) = 1 for an integral point y then ψ j (y − f ) = 1 for j = 1, 2.
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(ii) Let y1 and y2 two distinct integral points. Let E be a line segment with y1, y2 ∈
E and with y1 in the interior of E. If ψ(x − f ) = 1 for all x ∈ E then
ψ j (x − f ) = 1 for all x ∈ E, j = 1, 2.

(iii) Let x1 and y1 be two distinct points, with y1 integral. Let E be a line segment
with x1, y1 ∈ E and with y1 in the interior of E. If ψ(x − f ) = 1 for all
x ∈ E and ψ1(x1 − f ) = ψ2(x1 − f ) = 1 then ψ j (x − f ) = 1 for all x ∈ E,
j = 1, 2.

(iv) Let L be a line with direction d ∈ Q
2 and containing integral points. If ψ(x −

f ) = 1 for all x ∈ L, then ψ j (x − f ) = 1 for all x ∈ L, j = 1, 2.

Proof (i) Since y is an integral point andψ j is valid,ψ j (y− f ) ≥ 1. Asψ(y− f ) =
1 and ψ ≥ 1

2ψ1 + 1
2ψ2, we get ψ j (y − f ) = 1 for j = 1, 2.

(ii) Let x ∈ E with x outside the line segment y1 y2 with y1 between x and y2.
Such an x exists as y1 is in the interior of E . We claim that ψ j (x − f ) = 1 for
j = 1, 2. If x is integral, point (i) proves it. Assume now that x is not integral.
Lemma 2.2 (i) for ψ j and the triplet y2, y1, x shows that ψ j (x − f ) ≥ 1. As
ψ(x − f ) = 1 and ψ ≥ 1

2ψ1 + 1
2ψ2, we get ψ j (x − f ) = 1. This proves the

claim.
Using Lemma 2.2 (iii), we get that ψ j (z − f ) = 1 for all z on the line segment
xy2 for j = 1, 2.
If there exists a point x outside the segment y1 y2 with y2 between x and y1, a
similar reasoning can be used to getψ j (z − f ) = 1 for all z on the line segment
xy1 for j = 1, 2.

(iii) Similar to (ii) with x1 replacing y2.
(iv) Let x̄ ∈ L . Observe that since d ∈ Q

2, there exist infinitely many integral points
on L . It it thus possible to find three distinct integral points y1, y2, y3 ∈ L such
that both y2 and x̄ are in the interior of the line segment E = y1 y3. Since
ψ(x − f ) = 1 for all x ∈ E , point (ii) above implies that ψ j (x − f ) = 1 for
all x ∈ E (and thus for x̄), for j = 1, 2. 	


3 Facets of R f (r1, . . . , rk)

In this section we prove Theorem 1.7. We first show that degenerate cases can be
ignored when dealing with R f (r1, . . . , rk). We then characterize when triangle and
quadrilateral inequalities define facets. Finally we give conditions for split inequalities
to define facets of R f (r1, . . . , rk).

3.1 Degenerate cases are not needed for R f (r1, . . . , rk)

Theorem 3.1 Let f, r1, . . . , rk ∈ Q
2 with k ≥ 1. Every nontrivial facet of

R f (r1, . . . , rk) can be obtained from a nondegenerate minimal valid function ψ .

Proof It suffices to show that any degenerate minimal valid function ψ is identical
to a nondegenerate minimal valid function ψ ′ in the k directions r1, . . . , rk . Without
loss of generality, assume that ψ(r i ) < +∞ if and only if i ≤ � for some 0 ≤ � ≤ k.
We consider the five possible degenerate cases for ψ .
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(i) ψ defines a degenerate split inequality. Let L0 be the infinite edge of clBψ
containing f and let y1 and y2 be the first integral points on L0 encountered
starting from f in each direction, respectively. Let L1 be the other infinite edge
of clBψ and let y3 and y4 be two distinct integral points on L1. For i = 1, . . . , �,
if there exists µi > 0 such that f + µi r i is a point on L1, let wi be this point.
Otherwise, definewi = f . The convex hull of {wi | i = 1, . . . , �}∪{y1, . . . , y4}
is a lattice-free quadrilateral Q with no integral point in the interior of the edge
E containing f . Replacing E by an edge parallel to E arbitrarily close to E ,
enlarging slightly Q gives a lattice-free quadrilateral Q′ with f in its interior. Let
ψ ′ be the minimal valid function corresponding to Q′. We haveψ ′(r i ) ≤ ψ(r i )

for i = 1, . . . , k, proving the result.
(ii) ψ defines a vertex-degenerate triangle or quadrilateral inequality. Let E1 and

E2 be the two edges of clBψ incident with f and let y1 and y2 be the first
integral points encountered on these edges starting from f . Let x be a point
arbitrarily close to f with ψ(x − f ) = +∞ and such that the cone K with
vertex x and generated by the vectors xy1 and xy2 contains all positive multiples
of the rays r1, . . . , r� except, possibly, those in directions f y1 or f y2. If ψ
defines a triangle inequality, let L1 be the line supported by the edge of clBψ
not containing f and let H be the half-space limited by L1 and containing x .
Otherwise, ψ defines a quadrilateral inequality, and let H be the cone formed
by the two edges of the quadrilateral not containing f . The intersection of K
with H is a lattice-free triangle T or quadrilateral Q with f in its interior. Let
ψ ′ be the minimal function corresponding to T or Q. We have ψ ′(r i ) ≤ ψ(r i )

for i = 1, . . . , k, proving the result.
(iii) ψ defines an edge-degenerate triangle or quadrilateral inequality. Consider first

the case where the edge E1 containing f also contains an integral point interior
to E1 on each side of f . This situation can only occur when clBψ is a triangle by
Theorem 1.2 (iv). Let y1 and y2 be the first integral points on E1 encountered
starting from f in each direction, respectively. Let x be a point arbitrarily close
to f with ψ(x − f ) = +∞ and such that the cone K with vertex x and
generated by the vectors xy1 and xy2 contains all the positive multiples of the
rays r1, . . . , r� except, possibly, those in directions f y1 or f y2. The intersection
of K with the cone formed by the two edges of clBψ not containing f is a
lattice-free quadrilateral Q with f in the interior of Q. Let ψ ′ be the minimal
valid function corresponding to Q. We have ψ ′(r i ) ≤ ψ(r i ) for i = 1, . . . , k,
proving the result.
Finally consider the case where the interior of the edge E1 that contains f has
all its integral points on one side of f . Let y be the closest integral point of f in
the interior of E1. By tilting the edge E1 around y by a small angle we modify
the original triangle T (resp., quadrilateral Q) into a new triangle T ′ (resp.
quadrilateral Q′) with f in its interior. Let L ′

1 be the line containing this tilted
edge. Choose the tilting angle small enough so that all rays r1, . . . , r� except,
possibly, those in the direction f y point in the half-space limited by L ′

1 and
containing T ′ (resp., Q′). Let ψ ′ be the minimal valid function corresponding
to T ′ (resp., Q′). We have ψ ′(r i ) ≤ ψ(r i ) for i = 1, . . . , k, proving the result.

	


123



On the facets of mixed integer programs with two integer variables and two constraints

3.2 Triangle and quadrilateral inequalities for R f (r1, . . . , rk)

Let us turn now to the nondegenerate cases, i.e. f is in the interior of Bψ . We distinguish
two cases depending on whether Bψ is unbounded or a polytope. We deal with the
polytopes in this section and with the unbounded case in the next section.

3.2.1 Reducing the dimension k

Let f, r1, . . . , rk ∈ Q
2 with k ≥ 1. Let Bψ be a maximal lattice-free triangle or

quadrilateral with f in its interior. In this section we reduce the question of whether
ψ defines a facet of R f (r1, . . . , rk) to a problem on at most four rays r j .

For j = 1, . . . , k, let p j be the intersection of the half-line f + λr j , λ ≥ 0, with
the boundary of Bψ . The point p j is called the boundary point for r j . Let P be a
set of boundary points. We say that a point p ∈ P is active if it can have a positive
coefficient in a convex combination of points in P generating an integral point. Note
that p ∈ P is active if and only if p is integral or there exists q ∈ P such that the
segment pq contains an integral point in its interior. We say that an active point p ∈ P
is uniquely active if it has a positive coefficient in exactly one convex combination of
points in P generating an integral point.

We apply the following Reduction Algorithm:

0. Let P = {p1, . . . , pk}.
1. While there exists p ∈ P such that p is active and p is a convex combination of

other points in P , remove p from P . At the end of this step, P contains at most
two active points on each edge of Bψ and all points of P are distinct.

2. While there exists a uniquely active p ∈ P , remove p from P .
3. If P contains exactly two active points p and q (and possibly inactive points),

remove both p and q from P .

We say that the ray condition holds for a triangle or a quadrilateral if P = ∅ at
termination of the Reduction Algorithm.

Lemma 3.2 At termination of the Reduction Algorithm, the set of active points in P
is either empty or consists of the corner points of Bψ .

Proof Let Q be the set of active points in P at termination of the Reduction Algorithm.
Suppose the lemma does not hold.

Observation 1 Step 1 implies that Q has at most two points on each edge.
Observation 2 Step 2 implies that every point of Q is involved in at least two distinct

convex combinations.
Observation 3 Let E be an edge of Bψ with a unique integral interior point. By

Observations 1 and 2, Q cannot contain a point interior to E .
Observation 4 Step 3 and Observation 2 imply that |Q| ≥ 3.

Suppose Bψ is a triangle of Type (i) or (ii) of Lemma 2.1. Observation 3 and the
fact that Q misses at least one corner of Bψ implies that all the points of Q are on the
same edge. This contradicts Observations 1 and 4.
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Suppose Bψ is a triangle of Type (iii) of Lemma 2.1. By Observations 3 and 4, Q
has two points in the edge with multiple integral points and one in the corner of Bψ
opposite that edge. This last point contradicts Observation 2 since Q misses at least
one corner of Bψ .

Suppose Bψ is a quadrilateral. By Observation 3, the points of Q are corner points
of Bψ . Since Q misses at least one corner of Bψ , there is a point q ∈ Q such that
only one of the two edges containing q also contains another point of Q. But then q
contradicts Observation 2. 	


Let x1, . . . , xh denote the corner points of Bψ . We define the corner rays of Bψ to
be the rays r j = x j − f for j = 1, . . . , h.

Theorem 3.3 Let f, r1, . . . , rk ∈ Q
2 with k ≥ 1. Let Bψ be a maximal lattice-free

triangle or quadrilateral with f in its interior. Let h = 3 when Bψ is a triangle and
h = 4 when Bψ is a quadrilateral. Then ψ defines a facet of R f (r1, . . . , rk) if and
only if either

(i) The set {r1, . . . , rk} contains rays r i1, . . . , r ih that are positive multiples of the
corner rays of Bψ and ψ defines a facet of R f (r i1, . . . , r ih ), or

(ii) the ray condition holds.

Proof The function ψ defines a face of R f (r1, . . . , rk). We study its dimension.
Let S = {s1, . . . , st } in R f (r1, . . . , rk) be a maximum cardinality set of affinely
independent points that satisfy the inequality

∑k
j=1 ψ(r

j )s j ≥ 1 as an equality.

Let R be the 2 × k matrix whose column j is r j for j = 1, . . . k. Let S be the k × t
matrix whose column i is si for i = 1, . . . t . Let D be the k ×k diagonal matrix whose
( j, j) entry is ψ(r j ) for j = 1, . . . k. Observe that D is invertible and let

R̄ = R · D−1 and S̄ = D · S.

Let us denote column j of R̄ by r̄ j and column i of S̄ by s̄i . Observe that for
j = 1, . . . , k we have ψ(r̄ j ) = 1 implying that the point p j = f + r̄ j is on the
boundary of Bψ . As multiplying each component of all the vectors in S by a positive
number does not change its affine dimension, the column set of S̄ has the same affine
dimension as the column set of S.

Claim 1 For i = 1, . . . , t , the coordinates of the vector s̄i are the coefficients of a
convex combination of the points in P that yields an integral point on the boundary
of Bψ .

Indeed, we have

k∑

j=1

s̄i
j =

k∑

j=1

ψ(r j )si
j = 1

123



On the facets of mixed integer programs with two integer variables and two constraints

Moreover, s̄i ≥ 0 and f + ∑k
j=1 r j si

j ∈ Z
2. Thus

k∑

j=1

p j s̄i
j =

k∑

j=1

( f + r̄ j )s̄i
j = f +

k∑

j=1

r j si
j ∈ Z

2.

Therefore the coordinates of s̄i are the coefficients of a convex combination of points in
P that yields an integral point. Since the only integral points in Bψ are on its boundary,
the claim follows.

Claim 1 implies that the columns of S̄ are affinely independent if and only if they
are linearly independent.

Claim 2 Suppose that the Reduction Algorithm removes point pk ∈ P in Step 1.
If k = 1, then ψ defines a facet of R f (r1, . . . , rk). Otherwise, ψ defines a face of
dimension w of R f (r1, . . . , rk) if and only if ψ defines a face of dimension w− 1 of
R f (r1, . . . , rk−1).

The boundary point pk is a convex combination of other points in P , say pk =∑k−1
j=1 α j p j . Define the k-vector v by

v j =
{
α j for j = 1, . . . , k − 1
−1 for j = k

.

As pk is active, there exists a nonzero entry in row k of S̄. We can assume without
loss of generality that s̄t

k > 0. The vector s̄t+1 = s̄t + s̄t
kv is in R f (r1, . . . , rk)

and satisfies the inequality
∑k

j=1 ψ(r
j )s j ≥ 1 as an equality. Therefore it belongs

to the affine space generated by the columns of S̄. The vectors s̄t , s̄t+1 are linearly
independent. It is thus possible to find a set S̄′ of t linearly independent vectors in
{s̄1, . . . , s̄t+1} and containing s̄t , s̄t+1. Then replacing s̄i by s̄i + s̄i

kv for all s̄i ∈ S̄′
except s̄t is just doing elementary column operations and does not change the rank,
since v = 1

s̄t
k
(s̄t+1 − s̄t ). As the resulting vectors have a zero entry in component k

except s̄t
k > 0, by removing s̄t from S̄′ and deleting row k in S̄′, we reduce by one

both the dimension of the whole space and the dimension of the affine space spanned
by S̄. The converse is proved analogously, adding one zero component to the columns
in S̄ and one new column in S̄ corresponding to a convex combination where pk is
active. The dimension of the space is increased by one as is the number of affinely
independent points on the face. This proves the claim.

Claim 3 Suppose that the Reduction Algorithm removes point pk ∈ P in Step 2.
If k = 1, then ψ defines a facet of R f (r1, . . . , rk). Otherwise, ψ defines a face of
dimension w of R f (r1, . . . , rk) if and only if ψ defines a face of dimension w− 1 of
R f (r1, . . . , rk−1).

Point pk is involved in a single convex combination s̄i . If k = 1, pk is integral
and the result clearly holds. Otherwise, removing s̄i and component k in S̄, we reduce
by one both the dimension of the whole space and the dimension of the affine space
spanned by S̄. The converse is proved as above. This proves the claim.
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Claim 4 Suppose that k = 2 and the Reduction Algorithm removes points p1, p2 ∈ P
in Step 3. Then ψ defines a facet of R f (r1, r2).

Points p1, p2 are involved in two distinct convex combinations s̄1, s̄2, and the result
clearly holds.

Using Claims 2, 3 and 4 recursively, we get thatψ defines a facet of R f (r1, . . . , rk)

if and only the ray condition holds or ψ defines a facet of R f (r i1, . . . , r ik′ ) where
P ′ = {pi1 , . . . , pik′ } is the set of remaining boundary points at termination of the
Reduction Algorithm.

Let S′ be the k′×t ′ matrix obtained from S̄ while applying the Reduction Algorithm.
If some p ∈ P ′ is not active, then the row of S′ corresponding to p has only zero
entries. This implies t ′ < k′, proving thatψ does not define a facet of R f (r i1, . . . , r ik′ ).
Therefore ψ defines a facet of R f (r1, . . . , rk) if and only if all points in P ′ are active
and either the ray condition holds or ψ defines a facet of R f (r i1, . . . , r ik′ ). Now the
theorem follows from Lemma 3.2. 	


3.2.2 Rationality of the triangles and quadrilaterals that define facets
of R f (r1, . . . , rk)

We say that a triangle or quadrilateral is rational if its boundary lines have rational
equations, or equivalently, if the coordinates of its corner points are rational.

Lemma 3.4 Let f, r1, . . . , rk ∈ Q
2. The maximal lattice-free triangles and quadri-

laterals of Theorems 3.3 (i) are rational.

Proof By a theorem of Meyer [16], the rationality of f, r1, . . . , rk implies that
R f (r1, . . . , rk) is a rational polyhedron. Therefore its facets

∑k
j=1 ψ(r

j )s j ≥ 1

have rational coefficients ψ(r j ). For triangles and quadrilateral inequalities, these co-
efficients are strictly positive. Therefore x j = f + 1

ψ(r j )
r j has rational coordinates

for j = 1, . . . , k. In particular, the coordinates of the corner points are rational. 	

As usual, let f, r1, . . . , rk ∈ Q

2. Suppose that Bψ is a maximal lattice-free triangle
or quadrilateral with f in its interior such that the ray condition holds. By Theorem 3.3,
ψ defines a facet of R f (r1, . . . , rk). It may happen that Bψ is irrational, but there exists
a maximal lattice-free rational triangle or quadrilateral Bψ ′ defining the same facet of
R f (r1, . . . , rk) as Bψ . The proof of this claim is straightforward, since the only edges
of Bψ that can possibly be irrational have only one integral point y in their interior
and no ray intersects them except possibly at y. Pivoting the edge slightly around y,
we can make the edge rational.

3.2.3 Corner rays

In this section, we assume that Bψ is a maximal lattice-free triangle or quadrilateral
and that f is in its interior.

Let x1, . . . , xh be the vertices of Bψ and let r1, . . . , rh be the corner rays of Bψ
with r j = x j − f . We always assume that the vertices are topologically ordered so
that the edges of the boundary of Bψ are convex combinations of xi and xi+1 with
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indices taken modulo h. Let yi be an integral point that can be obtained as a nontrivial
convex combination of xi and xi+1 for i = 1, . . . , h (indices are always implicitly
taken modulo h).

Define Y as the 2 × h matrix whose column i is the vector yi for i = 1, . . . , h
(Recall that h = 3 or 4). Define X as the 2 × h matrix whose column i is the vector xi

for i = 1, . . . , h. Let S be the h×h matrix whose column i is the vector corresponding
to the coefficients in the convex combination of xi and xi+1 giving yi for i = 1, . . . , h.

We then have

Y = X · S (5)

with

S =
⎛

⎝
α 0 1 − γ

1 − α β 0
0 1 − β γ

⎞

⎠ or S =

⎛

⎜⎜⎝

α 0 0 1 − δ

1 − α β 0 0
0 1 − β γ 0
0 0 1 − γ δ

⎞

⎟⎟⎠

where α, β, γ and δ are all strictly between 0 and 1.
Since we are interested in the dimension of faces of polyhedra, which requires

checking affine independence of points, we add a third row full of 1s to the matrices
Y (resp. X ) to obtain matrix Ȳ (resp., X̄ ). Due to the specific form of the matrix S, we
still have

Ȳ = X̄ · S. (6)

Let A be an m × n matrix. The nullspace of A is N (A) = {x ∈ R
n | Ax = 0} and the

columnspace of A is C(A) = {z ∈ R
m | z = Ax for some x ∈ R

n}.
The following three results are classical results of linear algebra [15]:

Lemma 3.5 Let A be an m × n matrix and B be an n × p matrix. Then

rank(A · B) = rank(B)− dim(N (A) ∩ C(B)).

Corollary 3.6 Let A be an m × n matrix and B an n × p matrix. If rank(A) = n,
then

rank(A · B) = rank(B).

Proof If rank(A) = n, then N (A) = {0} and has dimension 0. Applying Lemma 3.5
yields the result. 	

Corollary 3.7 Let A be an m × n matrix and B an n × p matrix. Then

rank(A · B) ≤ min{rank(A), rank(B)}.

Proof Apply Lemma 3.5 to A · B and its transpose. 	
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Triangle inequalities

Theorem 3.8 Triangle inequalities define facets of R f (r1, r2, r3)when r1, r2, r3 are
the corner rays.

Proof Since h = 3 and Bψ is a triangle, both Ȳ and X̄ have rank 3. By Corollary
3.6, S has rank 3 too. It implies that the columns of S are affinely independent. Since
they all satisfy with equality the inequality

∑3
i=1 ψ(r

i )si ≥ 1, this inequality defines
a facet of R f (r1, r2, r3). 	


Putting together Theorems 3.3 and 3.8, we get:

Theorem 3.9 A triangle inequality defines a facet of R f (r1, . . . , rk) if and only if one
of the following holds:

(i) the set {r1, . . . , rk} contains rays r i1 , . . . , r i3 that are positive multiples of the
corner rays of the triangle.

(ii) The ray condition holds.

Quadrilateral inequalities
When k = 4, both Ȳ and X̄ have rank 3. By Lemma 3.5, we have

3 = rank(Ȳ ) = rank(X̄ · S) = rank(S)− dim(N (X̄) ∩ C(S)).
Since rank(X̄) = 3, we have that N (X̄) is a one-dimensional linear space. Hence

dim(N (X̄) ∩ C(S)) ≤ 1 and rank(S) = 4 if and only if N (X̄) ⊆ C(S).
Theorem 3.10 Consider a maximal lattice-free quadrilateral with vertices xi , integral
point yi on edge xi xi+1 (indices taken modulo 4) and corner rays r i , i = 1, . . . , 4.
The corresponding quadrilateral inequality defines a facet of R f (r1, r2, r3, r4) if and
only if there is no t ∈ R+ such that the point yi divides the edge joining xi to xi+1 in
a ratio t for odd i and in a ratio 1/t for even i, i.e.

||yi − xi ||
||yi − xi+1|| =

{
t for i = 1, 3
1
t for i = 2, 4

. (7)

Proof Let F be the face of R f (r1, . . . , r4) defined by
∑4

i=1 ψ(r
i )si = 1. As f +r i =

xi is on the boundary of Bψ , we have ψ(r i ) = 1 for i = 1, . . . , 4. Hence, if s ∈ F
then

∑4
i=1 si = 1. Recall that R f (r1, . . . , rk) is the convex hull of vectors in the set

H := {s ∈ R
4+ | f +∑4

i=1 r i si is integral}. Thus, if F is a facet, then there exist four
affinely independent vectors s j , for j = 1, . . . , 4, in H with

4∑

i=1

s j
i = 1 and z j = f +

4∑

i=1

ri s
j
i =

4∑

i=1

( f + ri )s
j
i integral.

This implies that z j is in the convex hull of x1, . . . , x4, for j = 1, . . . , 4. Theorem 1.2
shows that the only integral points in Bψ are the points y1, . . . , y4. Moreover, for each
j = 1, . . . , 4, there is a unique convex combination of x1, . . . , x4 that produces y j ,
namely column j of matrix S. In other words, F is a facet if and only if the columns
of S are affinely independent. Observe that the columns of S are affinely independent
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if and only if they are linearly independent since the sum of the entries in any column
of S is 1. It follows that F is a facet if and only if rank(S) = 4.

Let u = (1,−1, 1,−1)T . By Theorem 1.2 (iv), the points y1, . . . , y4 are the vertices
of a parallelogram. This implies that Ȳ · u = 0. Then (6) gives X̄ · S · u = 0. We now
have two cases:

(i) S · u = 0. Then rank(S) ≤ 3 and Corollary 3.7 shows that rank(S) = 3.
Solving the linear system S · u = 0 gives α = 1 − β = γ = 1 − δ. This is
equivalent to the ratio condition of the statement.

(ii) S · u �= 0. Then for v = S · u we have X̄ · v = 0, and as v �= 0, we have
that N (X̄) is the linear space spanned by v. Since v is obtained as a linear
combination of the columns of S, we have N (X̄) ⊆ C(S) and by Lemma 3.5 we
get rank(S) = 4. Since all the columns of S satisfy with equality the inequality∑4

i=1 ψ(r
i )si ≥ 1, this inequality defines a facet of R f (r1, r2, r3, r4). 	


We say that a maximal lattice-free quadrilateral satisfies the ratio condition when
(7) does not hold for any t > 0.

We illustrate the ratio condition by a couple of examples. The quadrilateral inequa-

lity generated from the square whose edges contain the integral points

(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)
in their middle does not define a facet of R f , independently of the posi-

tion of f in its interior. As mentioned in [4], when f is in the center of the square, the
resulting quadrilateral inequality is a convex combination of the two split inequalities
whose respective unbounded directions are the two coordinate axes. However, if one
tilts just one edge of the square around its (integral) middle point, the resulting trape-

zoid has three distinct ratios ||yi −xi ||
||yi −xi+1|| . Therefore the ratio condition is satisfied and

Theorem 3.10 states that the resulting quadrilateral inequality defines a facet of R f .

We give another more complicated example, see Fig. 6. Let f =
(

1
2
1
2

)
and Q the

quadrilateral with vertices x1 =
(

7
6
1
6

)
, x2 =

(
7
8
13
8

)
, x3 =

(
− 7

6
1
6

)
, x4 =

(
7
8

− 1
8

)
.

Edge x1x2 contains integral point y1 =
(

1
1

)
with ratio

||y1 − x1||
||y1 − x2|| = 4

3
.

Edge x2x3 contains integral point y2 =
(

0
1

)
with ratio

||y2 − x2||
||y2 − x3|| = 3

4
.

Edge x3x4 contains integral point y3 =
(

0
0

)
with ratio

||y3 − x3||
||y3 − x4|| = 4

3
.

Edge x4x1 contains integral point y4 =
(

1
0

)
with ratio

||y4 − x4||
||y4 − x1|| = 3

4
.

Theorem 3.10 states that the quadrilateral inequality obtained from Q is not a facet.
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(a) (b)

Fig. 6 Illustration for the second example

Indeed, it can be obtained as a convex combination of two triangle inequalities,

each with a multiplier 1
2 . The first triangle T1 has vertices

(
3
2
0

)
,

(
4
5
7
5

)
,

(−2
0

)
. The

second triangle has vertices

(
1

− 1
3

)
,

(
1
2

)
,

(− 3
4
1
4

)
. Both triangles have all four points

y1, y2, y3, y4 on their boundaries. The corner rays of Q are r1 =
(

2
3

− 1
3

)
, r2 =

(
3
8
9
8

)
,

r3 =
(− 5

3

− 1
3

)
, r4 =

(
3
8

− 5
8

)
. Triangle T1 has corner rays positive multiples of r1, r2

and r3. Triangle T2 has corner rays positive multiples of r2, r3 and r4. If ψ , ψ1 and
ψ2 denote the functions defined by Q, T1 and T2 respectively, it is easy to verify that
ψ = 1

2ψ1 + 1
2ψ2 in each of the cones r ir i+1 (indices defined modulo 4). Indeed, each

of these functions is linear in each of the cones. So it is sufficient to verify the equality
ψ(r) = 1

2ψ1(r)+ 1
2ψ2(r) in each of the directions r i , i = 1, . . . , 4. In direction r1 we

have ψ1

(
1

− 1
2

)
= 1 and ψ2

(
1
2

− 1
4

)
= 1. This implies ψ1(r1) = 2

3 and ψ2(r1) = 4
3 .

Therefore ψ(r1) = 1
2ψ1(r1)+ 1

2ψ2(r1) as required. Similarly, for the other rays, we
find ψ1(r2) = 5

4 and ψ2(r2) = 3
4 ; ψ1(r3) = 4

3 and ψ2(r3) = 2
3 ; ψ1(r4) = 3

4 and
ψ2(r4) = 5

4 .
Putting together Theorems 3.3 and 3.10, we get:

Theorem 3.11 A quadrilateral inequality defines a facet of R f (r1, . . . , rk) if and
only if one of the following holds:

(i) the set {r1, . . . , rk} contains rays r i1, . . . , r i4 that are positive multiples of the
corner rays of the quadrilateral, and the ratio condition is satisfied.

(ii) The ray condition holds.
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When the ray condition holds for a quadrilateral Bψ , the half-lines f +λr j , λ ≥ 0,
can only intersect the boundary of Bψ at integral points. When this happens, it is easy
to find a maximal lattice-free triangle producing the same facet. Therefore we do not
need to mention the ray condition in (iii) of Theorem 1.7.

3.3 Split inequalities for R f (r1, . . . , rk)

When Bψ is unbounded, ψ defines a split inequality for R f by Theorem 1.1. We will
see in Theorem 4.1 that split inequalities always define facets of R f . The situation for
R f (r1, . . . , rk) is a little bit more complicated, as the next theorem shows.

Whenψ(r i ) > 0 for i = 1, . . . , k, we can define the boundary point for r i similarly
to the case of triangles and quadrilaterals, and we can apply the Reduction Algorithm
of Sect. 3.2.1. We say that the ray condition holds for a split if, at termination of the
Reduction Algorithm, either P = ∅, or P = {p1, q1, p2, q2} with p1, q1 on one of the
boundary lines and p2, q2 on the other and both line segments p1q1 and p2q2 contain
at least two integral points.

Theorem 3.12 Let f, r1, . . . , rk ∈ Q
2 with k ≥ 1. Letψ define a split inequality. The

inequality
∑k

i=1 ψ(r
i )si ≥ 1 defines a facet of R f (r1, . . . , rk) if and only if

(i) ψ(r i ) = 0 for some i = 1, . . . , k; or
(ii) ψ(r i ) > 0 for all i = 1, . . . , k and the ray condition holds.

Proof Suppose that ψ(r i ) = 0 for some i ∈ {1, . . . , k}. By Theorem 1.1, the only
minimal valid inequality having the coefficient of si equal to 0 is the split inequality
defined byψ . Thereforeψ ≥ 1

2ψ1 + 1
2ψ2 whereψ1 andψ2 are both valid and minimal

implies that ψ = ψ1 = ψ2. Remark 1.4 proves that ψ is a facet of R f (r1, . . . , rk).
Suppose now that ψ(r i ) > 0 for i = 1, . . . , k. Using arguments similar to those

used in the proof of Lemma 3.2, we obtain that at termination of the Reduction
Algorithm, the set Q of active points is either empty, or it contains exactly two points
p1, q1 in L1 and two points p2, q2 in L2 where L1, L2 are the boundary lines of
Bψ , and both line segments p1q1 and p2q2 contain at least two integral points. Using
arguments similar to those used in the proof of Theorem 3.3, we obtain that ψ defines
a facet if and only if, at termination of the Reduction Algorithm, the set P is empty
or only contains active points. In other words, ψ defines a facet if and only if the ray
condition holds. 	


4 Facets of R f

4.1 Split inequalities define facets of R f

4.1.1 Nondegenerate case

Let f ∈ Q
2. Consider a direction r0 ∈ Q

2\{0} such that the line L0 := {x =
f +αr0, α ∈ R} contains no integral point. Let L1 and L2 be parallel lines to L0, each
containing integral points, such that the set of points between L1 and L2 contains no
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Fig. 7 Illustration for
Theorem 4.1

integral point in its interior and contains L0. (See Fig. 7.) Defineψ(r0) = ψ(−r0) = 0,
ψ(x − f ) = 1 for any x ∈ L1 ∪ L2.

Theorem 4.1 Let f ∈ Q
2. Split inequalities define facets of R f .

Proof Suppose not. By Remark 1.4,ψ ≥ 1
2ψ1 + 1

2ψ2 whereψ1, ψ2 are minimal valid
functions and ψ �= ψ1 or ψ2.

By Theorem 1.1, ψ j (r0) ≥ 0 for j = 1, 2. Since ψ(r0) = 0, we have ψ j (r0) = 0
for j = 1, 2. Similarly ψ j (−r0) = 0.

Lemma 2.3 (iv) for Li proves that ψ j (x − f ) = 1 for all x ∈ Li , for all i = 1, 2,
j = 1, 2.

By homogeneity, ψ j is therefore defined over all of R
2. But then ψ1 = ψ2 = ψ , a

contradiction. 	


4.1.2 Degenerate case

Consider a direction r0 ∈ Q
2\{0} such that the line L0 := {x = f + αr0, α ∈ R}

contains integral points. Let L1 be a line parallel to L0 that contains integral points,
such that the set of points between L0 and L1 contains no integral point in its interior.
Let y1 and y2 be the first integral points encountered on the half-lines f +αr0, α ≥ 0,
and f − αr0, α ≥ 0 respectively. (See Fig. 8.) Define ψ(y1 − f ) = ψ(y2 − f ) = 1
and ψ(x − f ) = 1 for any x ∈ L1. Since ψ is homogeneous, this defines ψ(r) for
all r ∈ Q

2 in the closed half-space limited by L0 and containing L1. For all other
r ∈ Q

2\{0}, define ψ(r) = +∞. The inequality
∑
ψ(r)sr ≥ 1, a degenerate split

inequality, is valid for R f .

Theorem 4.2 Let f ∈ Q
2. Degenerate split inequalities define facets of R f .

Proof Suppose not. Then ψ ≥ 1
2ψ1 + 1

2ψ2 where ψ1, ψ2 are minimal valid functions
and ψ �= ψ1 or ψ2.

Lemma 2.3 (i) proves that ψ j (y1 − f ) = 1 for j = 1, 2 and Lemma 2.3 (iv) for L1
proves that ψ j (x − f ) = 1 for all x ∈ L1, j = 1, 2.
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Fig. 8 Illustration for
Theorem 4.2

By homogeneity,ψ j (x − f ) is therefore defined for all x ∈ R
2 that are in the closed

half-space H limited by L0 and containing L1. Observe that ψ(x − f ) = ψ j (x − f )
for all x ∈ R

2 and in H .
Suppose that there exists x1 �∈ H withψ j (x1− f ) < +∞ for j = 1 or j = 2. Then

ψ j (x − f ) ≤ ψ(x − f ) for all x ∈ R
2 with strict inequality for x1, a contradiction to

the minimality of ψ .
It follows that ψ1 = ψ2 = ψ , a contradiction. 	


4.2 Nondegenerate triangle and quadrilateral inequalities

Let f ∈ Q
2. Nondegenerate minimal valid inequalities that are not split inequalities

are generated by a function ψ such that Bψ is either a triangle or a quadrilateral and
f is in the interior of Bψ . Let x1, . . . , xk be the vertices of Bψ with k = 3 or k = 4.
Note that these vertices may have irrational coordinates. Let {r1, . . . , rk} be the corner
rays of Bψ , namely r i = xi − f .

Given a valid and minimal function ψ for R f and rays r1, . . . , rk we say that two
valid and minimal functions ψ1 and ψ2 for R f dominate ψ restricted to {r1, . . . , rk}
if ψ(r i ) ≥ 1

2 ψ1(r i ) + 1
2 ψ2(r i ) for i = 1, . . . , k and ψ(r i ) = ψ1(r i ) and ψ(r i ) =

ψ2(r i ) does not hold for all i = 1, . . . , k.
The next theorem will allow us to extend the proof of earlier results to cover the

case of possibly irrational corner rays.

Theorem 4.3 Let f ∈ Q
2 and let ψ be a minimal valid function for R f . Assume that

Bψ is a polytope with f in its interior and let r1, . . . , rk be the corner rays of Bψ .
Then there exist two minimal valid functions ψ1 and ψ2 dominating ψ restricted to
{r1, . . . , rk} if and only if ψ is not facet defining for R f .

Proof Let x1, . . . , xk be the vertices of Bψ . Let Ei denote the edge of Bψ between
vertices xi and xi+1 for i = 1 . . . , k and let yi be an integral point that can be
obtained as a nontrivial convex combination of xi and xi+1 for i = 1, . . . , k (indices
are implicitly taken modulo k).
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Assume first that the two functions ψ1, ψ2 of the statement of the theorem exist.
Let ψ̄ = 1

2 ψ1 + 1
2 ψ2. Consider the edge joining xi to xi+1. Since ψ1 and ψ2 are

valid functions and yi is integral, we have ψ1(yi − f ) ≥ 1 and ψ2(yi − f ) ≥ 1. This
implies ψ̄(yi − f ) ≥ 1. On the other hand, convexity of ψ̄ implies ψ̄(yi − f ) ≤
λψ̄(xi − f ) + (1 − λ)ψ̄(xi+1 − f ) where 0 < λ < 1 is the convex combination of
xi , xi+1 producing yi . Since ψ1 and ψ2 dominate ψ restricted to {r1, . . . , rk}, we get
ψ̄(yi − f ) ≤ λψ(xi − f ) + (1 − λ)ψ(xi+1 − f ) = 1. Therefore ψ̄(yi − f ) = 1.
Applying Lemma 2.2 (i) to ψ̄ and the triple xi yi xi+1, we get ψ̄(r i+1) ≥ 1. But as
1 = ψ(r i+1) ≥ ψ̄(r i+1), we get ψ̄(r i+1) = 1. Applying Lemma 2.2 (iii) toψ and the
triple xi yi xi+1, we get that ψ̄(x − f ) = ψ(x − f ) for all x in the segment xi xi+1. A
similar reasoning shows that ψ̄(x − f ) = 1 for all x on the boundary of Bψ , proving
that ψ̄ = ψ . But then ψ does not define a facet of R f as it is a convex combination of
ψ1 and ψ2.

For the converse, assume that ψ does not define a facet of R f and let ψ1 �= ψ2 be
two valid and minimal functions such that ψ ≥ 1

2 ψ1 + 1
2 ψ2 with ψ1(z − f ) �= 1 for

some z ∈ Bψ . Then either ψ1(z − f ) < 1 or ψ2(z − f ) < 1. Assume without loss of
generality that ψ1(z − f ) < 1 and that z ∈ Ei . Applying Lemma 2.3 (i) to yi , we get
ψ1(yi − f ) = 1. If we have ψ1(r i ) = ψ1(r i+1) = 1, applying Lemma 2.2 (iii) to ψ1
and the triple xi yi xi+1, we get that ψ1(x − f ) = 1 for all x in the segment xi xi+1.
This is a contradiction with ψ1(z − f ) < 1. Hence, either ψ1(r i ) �= ψ(r i ) = 1 or
ψ1(r i+1) �= ψ(r i+1) = 1 and ψ1, ψ2 are two valid minimal functions dominating ψ
restricted to {r1, . . . , rk}. 	


The following is an extension of Theorem 3.8 to cover the case of triangles with
possibly irrational corner rays.

Lemma 4.4 Let ψ be valid and minimal such that Bψ is a triangle with corner rays
r1, r2, r3 and f in its interior. Then ψ restricted to {r1, r2, r3} cannot be dominated
by two valid and minimal functions ψ1 and ψ2.

Proof The proof of Theorem 3.8 can be used as is. The definitions of Ȳ , X̄ and S
are not affected by the possible irrationality of some of the rays. It shows that the
rank of S is 3, i.e. the face F of {s ∈ R

3 | f + ∑3
j=1 r j s j ∈ Z

2, s ≥ 0} defined by∑
ψ(r j )s j ≥ 1 has dimension 2. Its equation is uniquely defined. This implies that

ψ restricted to {r1, r2, r3} cannot be dominated by two valid and minimal functions
ψ1, ψ2. 	


Similarly, the following is an extension of Theorem 3.10 to cover the case of qua-
drilaterals with possibly irrational corner rays.

Lemma 4.5 Let ψ be valid and minimal such that Bψ is a quadrilateral with corner
rays r1, r2, r3, r4 and f in its interior. Then ψ restricted to {r1, r2, r3, r4} cannot be
dominated by two valid and minimal functionsψ1 andψ2 if and only if the quadrilateral
satisfies the ratio condition.

Proof The proof of Theorem 3.10 can be used as is. The definitions of Ȳ , X̄ and S are
not affected by the possible irrationality of some of the rays. It shows that, depending
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on the ratio condition being satisfied or not, the rank of S is 4 or 3, i.e. the face F of
{s ∈ R

4 | f + ∑4
j=1 r j s j ∈ Z

2, s ≥ 0} defined by
∑
ψ(r j )s j ≥ 1 has dimension 3

or 2.
If the ratio condition is satisfied, then a proof similar to the one for Lemma 4.4 shows

that ψ restricted to {r1, r2, r3, r4} cannot be dominated by two valid and minimal
functions.

If the ratio condition is not satisfied, there exists an hyperplane containing F ∪ {0}
with equation

∑4
j=1 h j s j = 0. For ε > 0, define ψ1, ψ2 by ψ1(r j ) = ψ(r j ) + εh j

and ψ2(r j ) = ψ(r j ) − εh j . As ψ is valid, we have ψ(y − f ) ≥ 1 for all y ∈ Z
2

and Theorem 1.2 (iv) implies that equality holds only for the four integral points on
the boundary of Bψ , that is the four integral points obtained according to the convex
combinations corresponding to the columns of S. This shows that for ε > 0 small
enough, the two functions ψ1, ψ2 can be seen as restrictions of two valid quadri-
lateral inequalities. As ψ(r j ) = 1

2ψ1(r j ) + 1
2ψ2(r j ) for j = 1, . . . , 4, it follows

that ψ restricted to {r1, r2, r3, r4} is dominated by two valid and minimal functions.
	


As a consequence of the last three lemmas, we immediately get the following two
results.

Theorem 4.6 All maximal lattice-free triangles with f in their interior define facets
of R f .

Theorem 4.7 A maximal lattice-free quadrilateral having f in its interior defines a
facet of R f if and only if it satisfies the ratio condition.

Although only rational triangles and quadrilaterals are needed to define the
facets of R f (r1, . . . , rk) when f and the rays r j s are in Q

2 (see Sect. 3.2.2), irra-
tional triangles and quadrilaterals are needed to define some of the facets of R f for
f ∈ Q

2.

4.3 Degenerate triangle inequalities

In this section, we use the following notation:

Notation 4.8 Let T be a maximal lattice-free triangle in R
2. Let x1, x2, x3 be the

vertices of T such that edge Ei of T is the convex combination of xi and xi+1 for
i = 1, 2, 3 (indices are taken modulo 3). Let yi be an integral point in the interior of
Ei for i = 1, 2, 3.

Note that the existence of yi for i = 1, 2, 3 follows from Theorem 1.2.

4.3.1 f is a vertex of the triangle

Here, we assume also that f is a vertex of T . Without loss of generality, we assume
f = x2. Then edges E1 and E2 of T contain f . (See Fig. 9.)
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Fig. 9 Illustration for
Theorem 4.9

Define ψ(y1 − f ) = ψ(y2 − f ) = 1. By homogeneity, this defines ψ(x −
f ) for all x on the half-lines L1 and L2 starting from f and containing y1 and y2

respectively. Define ψ(x − f ) = 1 for any x in E3\{E1 ∪ E2}. By homogeneity,
this defines ψ in the open cone C limited by L1 and L2. Finally, define ψ(x − f ) =
+∞ for any x outside C ∪ L1 ∪ L2. Then ψ defines a vertex-degenerate triangle
inequality.

Theorem 4.9 A vertex-degenerate triangle inequality defines a facet of R f if and only
if the edge of T opposite f contains at least two integral points in its interior.

Proof Suppose first that the edge E3 contains only one integral point y3 in its interior.
Construct maximal lattice-free triangles T ′ and T ′′ from T by keeping the half-lines
L1 and L2 unchanged, and tilting the edge E3 around the integral point y3 so that the
new edges E ′

1 (E ′′
1 respectively) are slightly shorter (longer respectively) than E1. The

same construction used to define the functionψ from T can be used to define functions
ψ ′ and ψ ′′ from T ′ and T ′′ respectively. The functions ψ ′ and ψ ′′ are linear in the
open cone C limited by L1 and L2 and ψ(y3) = ψ ′(y3) = ψ ′′(y3) = 1. Therefore,
we can write ψ as a convex combination of ψ ′ and ψ ′′. This shows that ψ does not
define a facet in this case.

Now consider the case where E3 contains two integral points y3 and y4 in its
interior. Suppose that ψ does not define a facet of R f . Then ψ ≥ 1

2ψ1 + 1
2ψ2 where

ψ j is valid and minimal for j = 1, 2. Lemma 2.3 (ii) shows that ψ j (x − f ) = 1 for
all x in the interior of E3.

By Lemma 2.3 (i), ψ j (y1 − f ) = 1, for j = 1, 2. By homogeneity, this defines
ψ j (x − f ) for all x on the half-line L1. Similarlyψ j (y2− f ) = 1 and by homogeneity,
this definesψ j (x− f ) for all x on the half-line L2. Observe thatψ(x− f ) = ψ j (x− f )
for all x ∈ R

2 and in C ∪ L1 ∪ L2.
Suppose that there exists x4 �∈ C ∪ L1 ∪ L2 with ψ j (x4 − f ) < +∞ for j = 1

or j = 2. Then ψ j (x − f ) ≤ ψ(x − f ) for all x ∈ R
2 with strict inequality for x4, a

contradiction with the minimality ofψ . It follows thatψ1 = ψ2 = ψ , a contradiction.
Therefore ψ define a facet of R f . 	
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Fig. 10 Illustration for
Theorem 4.10

4.3.2 f is on an edge of the triangle

Here we use Notation 4.8 and we assume that f is in the interior of an edge of T .
Without loss of generality, we assume f ∈ E1 and that y1 is between f and x1. (See
Fig. 10.)

Define ψ(x − f ) = 1 for any x ∈ (E2\{x2}) ∪ (E3\{x1}). Let L1 denote the line
containing the segment E1. Since ψ is homogeneous, ψ(x − f ) is defined for all
x ∈ R

2 in the open half-space H limited by L1 and containing x3.
Define ψ(y1 − f ) = 1. On the half-line from f that goes through x2, let y4 be

the first integral point encountered, starting from f . If y4 is reached before x2, then
set ψ(y4 − f ) = 1. Otherwise set ψ(x2 − f ) = 1. By homogeneity, this defines
ψ(x − f ) for all x ∈ L1.

For all x ∈ R
2\(L1 ∪ H), define ψ(x − f ) = +∞. Then ψ defines an edge-

degenerate triangle inequality.

Theorem 4.10 An edge-degenerate triangle inequality defines a facet of R f if and
only if at least one of the two edges not containing f contains at least two integral
points y with ψ(y − f ) = 1.

Proof Suppose first that E2 and E3 each contain only one integral point, y2 and y3

respectively. Let x4 and x5 be points on the line f x3 such that x3 is their middle point
and the distance between x4 and x5 is very small. Let T ′ (resp. T ′′) denote the triangle
with one side contained in L1, one side containing x4 y2 (resp. x5 y2) and one side
containing x4 y3 (resp. x5 y3). The convex sets T ′ and T ′′ define valid functions ψ ′
and ψ ′′ as above. Furthermore ψ is a convex combination of ψ ′ and ψ ′′, showing that
ψ is not facet defining.

Suppose now that edge Ei contains at least two integral points for i = 2 or 3. Without
loss of generality, we can assume i = 2. Suppose that ψ does not define a facet of
R f . Then ψ ≥ 1

2ψ1 + 1
2ψ2 where ψ j are valid and minimal for j = 1, 2. Lemma 2.3

(ii) shows that ψ j (x − f ) = 1 for all x ∈ E2\E1. In particular ψ j (x3 − f ) = 1. for
j = 1, 2.
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Fig. 11 Illustration for
Theorem 4.12

The edge E3 contains the integral point y3 in its interior and the point x3. Lemma 2.3
(iii) shows that ψ j (x − f ) = 1 for all x ∈ E3\E1. This shows that ψ1(x − f ) =
ψ2(x − f ) = ψ(x − f ) for all x in the open half-space H containing x3 limited
by L1.

Lemma 2.3 (i) shows that ψ j (y1 − f ) = 1, for j = 1, 2. On the half-line of L1
going through x2 there are two cases. If an integral point y4 is encountered starting
from f before reaching x2, Lemma 2.3 (i) yields ψ j (y4 − f ) = 1, for j = 1, 2. So
suppose that no integral point is encountered starting from f before reaching x2. In
this case ψ(x2) = 1 and Lemma 2.3 (iii) for E2 and with x3 playing the role of x1 of
the lemma shows that we have ψ j (x2) = 1. By homogeneity, this defines ψ j (x − f )
for all x ∈ L1, for j = 1, 2.

Finally, the discontinuity of ψ j on the half-line of L1 from f in the direction of y1

implies that ψ j (x − f ) = +∞ for all x �∈ H ∪ L1, using a similar argument as in the
proof of Theorem 4.9. 	


4.4 Degenerate quadrilateral inequalities

In this section, we use the following notation:

Notation 4.11 Let Q be a maximal lattice-free quadrilateral in R
2. Let x1, . . . , x4 be

the vertices of Q such that edge Ei of Q is the convex combination of xi and xi+1 for
i = 1, . . . , 4 (indices are taken modulo 4). Let yi be the unique integral point in the
interior of Ei for i = 1, . . . , 4.

Note that the existence and unicity of yi for i = 1, . . . , 4 follows from Theorem 1.2.

4.4.1 f is a vertex of the quadrilateral

Here, we assume that f is a vertex of Q. Without loss of generality, we assume f = x2.
(See Fig. 11.)

Defineψ(y1 − f ) = ψ(y2 − f ) = 1. By homogeneity, this definesψ(x − f ) for all
x on the half-lines L1 and L2 starting from f and containing y1 and y2 respectively.
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Define ψ(x − f ) = 1 for any x in E3 ∪ E4\{x1 ∪ x3}. By homogeneity, this defines
ψ in the open cone C limited by L1 and L2. Finally, define ψ(x − f ) = +∞ for any
x outside C ∪ L1 ∪ L2. Then ψ defines a vertex-degenerate quadrilateral inequality.

Theorem 4.12 A vertex-degenerate quadrilateral inequality never defines a facet
of R f .

Proof Let x5 and x6 be points on the line f x4 such that x4 is their middle point and
the distance between x5 and x6 is very small. Let Q′ denote the quadrilateral with
vertices x5, f and two others on lines f x1 and f x2 respectively, and containing the
integral points yi for i = 1, . . . , 4 in the interior of its edges. Quadrilateral Q′′ is
defined similarly except that it has vertex x6 instead of x5. The convex sets Q′ and Q′′
define valid functions ψ ′ and ψ ′′ as above. Furthermore ψ is a convex combination of
ψ ′ and ψ ′′ with ψ1 �= ψ2, proving that the vertex-degenerate inequality is not a facet.

	


4.4.2 f is on an edge of the quadrilateral

Here, we use Notation 4.11 and we assume that f is on one of the edges of Q. Without
loss of generality, we assume f ∈ E1 and that y1 is between f and x1.

Define ψ(y1 − f ) = 1. By homogeneity, this defines ψ(x − f ) for all x on the
half-line of L1 starting from f and containing y1. Define ψ(x − f ) = 1 for any x in
E2 ∪ E3 ∪ E4\{x1}. By homogeneity, this definesψ in the rest of the closed half-plane
H limited by the line L1. Finally, define ψ(x − f ) = +∞ for any x outside C . Then
ψ defines an edge-degenerate quadrilateral inequality.

Theorem 4.13 An edge-degenerate quadrilateral inequality never defines a facet
of R f .

Proof As in the proof of Theorem 4.12, we can perturb Q into two quadrilaterals Q′
and Q′′ going through f and yi for i = 1, . . . , 4 and vertices on the lines f x3 or f x4

and construct the corresponding functions ψ ′ and ψ ′′ as above. Then ψ is a convex
combination of ψ ′ and ψ ′′ proving that the edge-degenerate inequality is not a facet.
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