BAYESIAN SOLUTION ESTIMATORS IN STOCHASTIC
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Abstract. We study a class of stochastic programs where some of the elements in the objective
function are random, and their probability distribution has unknown parameters. The goal is to find
a good estimate for the optimal solution of the stochastic program using data sampled from the
distribution of the random elements. We investigate two natural criteria for evaluating the quality
of a solution estimator, one based on the difference in objective values, and the other based on the
Euclidean distance between solutions. We use 7isk as the expected value of such criteria over the
sample space. Under a Bayesian framework, where a prior distribution is assumed for the unknown
parameters, two natural estimation-optimization strategies arise. A separate scheme first finds an
estimator for the unknown parameters, and then uses this estimator in the optimization problem. A
joint scheme combines the estimation and optimization steps by directly adjusting the distribution
in the stochastic program. We study the risk difference between the solutions obtained from these
two schemes for several classes of stochastic programs, while providing insight on the computational
effort to solve these problems. In particular, (i) we identify conditions under which the solution
estimators of both schemes are equal, (ii) for general problems, we show that the risk difference
between the two schemes can be arbitrarily large, (iii) for stochastic piecewise linear programs, we
derive explicit bounds on risk differences, and (iv) for stochastic geometric programs, we discuss the
difference in computational complexity of the two schemes and provide computational experiments.
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1. Introduction. Consider the following stochastic program

In (1), the vector & € R™ represents random variables with joint probability
density function g(x|@), where @ denotes a vector of parameters. Vector y € R™
represents decision variables that must belong to a closed set ) C R™. Function
f(z,y) : R"*™ — R contains both random variables and decision variables, and its
expectation with respect to the distribution g(x|@) forms the objective function of
the stochastic program.

If the parameters @ are known, problem (1) reduces to a classical stochastic
program with an optimal solution y*(@) and optimal value E,¢[f(x,y*(0))]. In
parametric stochastic programs, it is assumed that 0 is not known. In such situations,
T > 1 independent observations of the random variables & drawn from the distribution
g(x|0) are used to estimate the unknown parameters. The question is how to use this
data to find a good estimator for the true optimal solution y*(0) of (1)?
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Optimization models where some elements (such as coefficients) arise from a ran-
dom process are often formulated as stochastic programs. We refer the reader to [6]
for an introduction to stochastic programming, and to [31, 32] for applications in
energy and finance. Various solution techniques have been proposed in the literature
for different classes of stochastic programs. Examples of such techniques are Monte
Carlo, bootstrapping and scenario reduction techniques such as sample-average ap-
proximation (SAA); see [26]. Convergence results for the SAA method are discussed
in [27, 28], while bounds on the number of samples required to achieve converging
performance are derived in [8, 18, 29] . We refer the reader to [21] for convergence
results for the newsvendor problem and to [12] for the minimum spanning tree with
applications in network design.

Point estimation has been vastly studied in statistical inference and decision the-
ory. We refer the interested reader to [20] and many other references therein. Estima-
tion plays a central role in constructing appropriate optimization models that involve
uncertainty. For instance, the theory of minimaxity in estimation is closely related to
robust optimization. We refer the reader to [2, 3, 4] for introduction to the theory and
applications of robust optimization, and to [23] and reference therein for a detailed
account of the connection between robust optimization and minimaxity.

Several contributions evaluate the impact of integrating estimation and optimiza-
tion from various perspectives. In [10], the authors study a class of quadratic stochas-
tic programs and investigate the quality of the popular maximum likelihood estimator.
A recent study in the area of machine learning by [14] focuses on training predictive
models whose outcome is used in stochastic programs. Other related lines of work in
machine learning explore the end-to-end training systems where the end goal is directly
predicted from the raw input; see [22, 30] for instance. [9, 24] study a single-period
univariate newsvendor problem and introduce the notion of operational statistics as a
scheme that uses the optimization structure to design desirable estimators. Another
area where the combination of estimation and optimization can lead to a better out-
come is concerned with iterative estimation and optimization models; see [17, 16] for
a detained account.

In this paper, we focus on stochastic optimization and its connection to statistical
estimation theory. There are two main factors to fix before initiating this investigation:
(i) the criteria to measure the quality of solution estimators, (i) the schemes to
compute solution estimators. For (i), we consider a standard statistical criterion
(called risk) defined based on two natural measures in optimization: one that considers
the average difference between the objective value of the solution estimator and the
true optimal value of the stochastic problem, and the other that considers the average
Fuclidean distance between the solution estimator and the true optimal solution. For
(ii), we consider two natural schemes to compute solution estimators. In the first
scheme, the estimation process is performed separately from the optimization, and
its output estimator is used as a known input for the optimization problem. In the
second scheme, the estimation process is incorporated within the optimization step
to obtain a solution. The key question in this context is how different the risk value
and the computational complexity of the estimators obtained from the separate and
joint schemes are, based on the two criteria defined above?

We address this question from several angles under a Bayesian framework, where
a prior distribution is assumed for the unknown parameters. In Section 2, we formally
define the risk criteria and the separate and joint estimation-optimization schemes.
In Section 3, we identify conditions under which the two schemes yield the same so-
lutions, and provide examples that show an arbitrary large risk difference between
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the two schemes when these conditions do not hold. In Section 4, we study a class
of stochastic piecewise linear programs and evaluate the risk difference between the
separate and joint schemes both theoretically and computationally. This class gen-
eralizes the newsvendor and the median problems, and models several applications
in education and psychology. In Section 5, we conduct a risk assessment analysis
for the stochastic geometric programs. This structure has applications in optimal
control, network design and chemical equilibrium. We observe that the separate and
joint schemes lead to problems with different computational complexity for certain
distributions. We provide computational results to support this assertion. Section 6
contains concluding remarks.

2. Loss Function and Risk. Consider the stochastic program (1). Assume
that variables x have a joint distribution g(x|@), where parameters 6 are unknown.
Throughout this paper, we assume that a single observation sampled from this dis-
tribution is available, i.e., T'= 1. This will simplify our notation while preserving the
richness of the setting. We denote the vector of random variables corresponding to
this single observation by &.

Since the true optimal solution y*(0) is unknown (as € is unknown), we estimate
it with a solution estimator y(€) € ) as a vector function of the observation .
There are many choices for a solution estimator, hence we need a suitable criterion to
evaluate its performance. We use risk as a popular criterion in evaluating the perfor-
mance of estimators in statistical inference. To this end, we define a loss function that
measures the difference or distance between solutions we intend to compare. In the
next two subsections, we define two natural loss functions for optimization problems,
one based on the difference in objective values and the other based on the distance
between solutions.

2.1. Loss as the difference in objective values. The quality of solution
estimators is measured by a loss function. In this section, the loss function is defined
as the difference between the objective values of the solution estimator g(Z) and the
true optimal solution y*(8).

where the expectations are taken with respect to the distribution g(x|0) of x given
the true 8. The superscript represents that the loss is linear in objective values. Note
that £ (y*(0),y*(0)) = 0 and that L£F (y*(0),9(x)) > 0 for any §(z) € Y as it is
feasible to (1) whose optimal solution is y*(0). An estimator with smaller loss has an
objective value closer to that of the true optimal solution.

Throughout this paper, we evaluate the loss under a popular framework in the
Bayesian school, where the unknown parameters 8 are assumed to be random with
a prior distribution 7(8). Since £ (y*(0),§(x)) is a function of both the unknown
parameters 6 and the observation &, it is a random quantity itself due to the ran-
domness in these two elements. To obtain a measure of overall performance for such
a random quantity, a risk is defined as

3) R (y"(8),9(2)) = EoEayp [L" (y*(0), 9(2))] ,

where the outer expectation is taken with respect to the prior distribution 7(8) of 8,
and the inner expectation is taken with respect to the distribution g(&|@) of observa-
tion & given 6.
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With the above definition of risk, a best solution estimator is defined as one that
achieves minimum risk. We refer to such estimators as Bayes solution estimators.

PROPOSITION 2.1. Consider stochastic program (1). Assume that * ~ g(x|0)
and 6 ~ 7(0). Then, any solution estimator §”(x) that solves

(4) max EgzEqo[f (2, y)]

is a Bayes solution estimator under the loss function (2), where the inner expectation
is taken with respect to the distribution g(x|0) of the random variables x given 8, and
the outer expectation is taken with respect to the posterior distribution I1(0|Z) of the
parameters 0 given the observation .

The proofs of the propositions in Sections 2 and 3 are given in Appendix A.
Proposition 2.1 gives a joint estimation and optimization (Joint-EO) scheme that
solves the estimation problem simultaneously with the optimization problem to obtain
a solution estimator with minimum risk for the loss function (2). We denote this Bayes
solution estimator by §” (&), where the superscript represents Joint method with
respect to the Linear loss (2).

While this joint scheme yields the best solution, traditionally, the estimation and
optimization problems are solved separately. The estimation problem in this separate
scheme does not use any information about the structure of the optimization problem,
thus it requires a different loss function to evaluate the risk. The most common loss
function used in statistical point estimation is the squared error loss £2(8, é(:f:)) =
|6 — 6(z)||? which measures the Euclidean distance of the estimator (z) from the
true unknown parameter 6; see [15]. It can be shown that the Bayes estimator of 6
under the squared error loss £2(0,0(x)) is 05 (z) = [Eg|z[0], where the expectation
is taken with respect to the posterior distribution II(@|Z) of the parameters 6 given
the observation . A proof for a more general case is given in Corollary 2.6.

This result sets up the basis for a separate estimation and optimization (Separate-
EO) scheme that solves the estimation problem independently of the optimization
problem. First, a Bayes estimator 08 (z) for 0 is computed with respect to the squared
error loss, then this estimator is used in place of 8 in (1) to obtain an optimal solution
9°(&) that serves as a solution estimator for the true optimal solution y*(8). The
superscript in §°(Z) represents the Separate scheme. It follows that the Separate-
EO solution estimator §°(#) may be suboptimal in risk to the Joint-EO solution
estimator 97X (Z), as the former is a feasible solution of (4) while the latter is an
optimal solution.

Remark 2.2. When the distribution of & belongs to an exponential family, it
admits a conjugate prior, leading to a posterior distribution of the same family as
the prior. Furthermore, for such distributions, the posterior mean (Bayes estimator
of the parameter) is representable as a convex combination between the prior mean
and the observation (MLE for multiple observations); see [13]. Such estimators are
sometimes referred to as shrinkage estimators as they shrink the MLE towards another
vector. For instance, assume that z; ~ N (p;,02) for i € [n] and p; ~ N(\;,67) and
all variables are independent. Then, the Bayes estimator (&) for p is such that

2
2B = pidi + (1 — pi)T; where p; = # for i € [n].

We next show another representation of the Joint-EO problem (4) based on the
expectation with respect to a specific marginal distribution called posterior predictive.
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Definition 2.3. Assume that © ~ g(x|@) and 8 ~ 7(0), and that a single ob-
servation & is sampled from the distribution of . Then, the posterior predictive
distribution of & given & is defined as h(x|Z) = [, g(|0)II(0|€)d6, which is obtained
by marginalizing the distribution of x given 6 over the posterior distribution of 6
given observation . The definition for discrete distributions is similar.

Using Definition 2.3, we obtain an equivalent expression for the Joint-EQO problem (4):

PROPOSITION 2.4. Assume that x ~ g(x|0) and 0 ~ w(0). Then, any solution
estimator §7L(z) that solves

(5) max Egzlf(z, y)],

is a Bayes solution estimator under the loss function (2), where the expectation is
taken with respect to the posterior predictive distribution h(x|x) of the random vari-
ables x given the observation &.

Proposition 2.4 allows for a direct comparison between the problems to solve for
the Separate-EO and the Joint-EO problems. For the Separate-EO, we solve (1) where
the expectation is taken with respect to the distribution g(z|02 (&)) of  given 85 (&),
which is the Bayes estimator for the unknown parameters 6 given the observation &.
For the Joint-EO under the loss (2), we solve (5) where the expectation is taken
with respect to the posterior predictive distribution h(x|&) of @ given observation
Z. Therefore, the difference between these two estimation schemes stems from the
difference between the distributions with respect to which the expectation of the
objective function f(x,y) is computed.

2.2. Loss as the distance between solutions. In the previous section, we
defined the loss function as the difference between objective values of the solution es-
timator and the true optimal solution. Another natural loss function for optimization
problems is the (Euclidean) distance between the solution estimator and the optimal
solution. Since an optimization problem can have multiple optimal solutions, we first
define the distance of a point from a set as follows

D = mi -
(6) (W, ) = min v~ o]l

where W C R™ and v € R™. Using this distance measure, we define the loss function

(7) £9(y*(0).9(2) = D*(y"(6),9(2)),

which measures the Euclidean distance between the solution estimator g(&) and the
set y*(0) of optimal solutions of (1) when 6 is known. The superscript represents that
the loss is quadratic in solutions. We define risk similarly to (3) as the expectation of
(7) with respect to the distribution g(x|@) and the prior 7(8):

(8) R (y*(0),9(2)) = EoEapo [£° (y*(0). 9(2))] -

The goal here is to investigate how this change of the loss function affects the
Separate-EO and Joint-EO methods introduced in Section 2.1. Note that the Separate-
EO method does not incorporate information about the optimization problem in the
estimation step. Hence, the change of the loss function does not affect this method,
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and we obtain the same solution estimator (&) as given in Section 2.1. For the
Joint-EO method, however, the optimization problem to solve is different and there-
fore a different solution estimator is obtained.

PROPOSITION 2.5. Assume that x ~ g(x|0) and @ ~ w(0). Then, any solution
estimator §7% (&) that solves

9 min Egz [D?(y*(0),

(9) min Eqpz [D*(y”(6).9)]

is a Bayes solution estimator under the loss function (7), where the expectation is
taken with respect to the posterior distribution I1(0|x) of the parameters @ given the
observation .

In Proposition 2.5, D?(y* (@), y) is a function of @ which measures the distance of
a point y to the set y*(0) of optimal solutions of (1), and the optimization problem
tries to find the Joint-EO solution estimator 9”@ (z) as a minimizer of the posterior
expectation of this distance. The superscript in QJ’Q(:E) denotes the Joint method
under the Quadratic loss function (7). The distance function D?(y*(0),y) can be
very complicated especially when the set y*(€) of optimal solutions contains several
points. This already implies that solving the Joint-EO problem under the loss (7) can
be much harder than the solution estimators obtained from the Separate-EO problem
or the Joint-EO problem under the loss (2) as discussed in Section 2.1. Note that the
multiplicity of optimal solutions does not create an issue for the loss function (2) as
it only contains the optimal value (which is unique).

To streamline the discussion for the Joint-EO problem (9), we assume that the
optimal solution of (1) is unique and therefore y*(0) is a single point. In this case,
the distance function (6) reduces to the Euclidean norm, yielding the loss function
L2 (y*(0),9(x)) = ||y*(0) — 9(z)||>. Therefore, we can solve (9) in a reduced-form
as follows. In the sequel, the expectation operator E[.] applied on a vector implies
component-wise expectation, i.e., E[v] = w where w; = E[v;] for all i € [n].

COROLLARY 2.6. Assume that (1) has a unique optimal solution y*(0) for any

given 0. Then, the Bayes solution estimator of (9) under the loss function (7) is
obtained as the optimal solution of

(10) min [Ejz[y"(8)] - yl|*.

Further, when Y is convex, the Bayes solution estimator is §79 (&) = Egjz[y*(0)].

Proof. Since y* () is unique, we obtain that D?(y*(0),9(x)) = ||y*(0) — 9(z)||?
by definition (6). To obtain the Bayes solution estimator, we need to find a minimizer
of (9) which reduces to minyey Egz [|ly*(8) — y|[*]. Define w = Egz[y*(8)]. We
write that

Egpz [|ly"(8) = ylI*] = Egjz [[|(y7(8) — w) + (w — )]
= Egpz [[1y"(0) — wl||*] +Egjz [|lw — ylI*] + 2Egpz [(y*(8) — w)T(w — y)]
= Egjz [|ly*(0) — wl]?] + [Jw -y,

where the first equality is obtained by adding and subtracting w, the second equality

follows from decomposition of the norm vector, and the last equality holds because

Egz[y*(0) —w] = 0 by definition, and because ||w — y||? does not depend on 6. Note
in the last relation that the first term Eq|; [||y*(0) — w|[?] does not contain y. This
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gives the desired relation (10). For the next result, when ) is convex, any convex
combination of y*(6) belongs to Y as y*(6) € Y. We conclude that Egz[y*(0)] € ),
and therefore the minimizer of (10) is attained at Eg|z[y*(0)]. O

In Corollary 2.6, the uniqueness of the optimal solution converts the joint estima-
tion problem to a projection problem. In particular, the Bayes solution is the projec-
tion of the expected optimal solution Eg|z[y*(@)] onto the feasible region Y. In this case,
the convexity of ) is sufficient to guarantee that the expected optimal solution belongs
to the feasible region, and therefore this expected solution is the Bayes solution.

3. General Problem Structures. In Sections 2.1 and 2.2, we introduced two
natural loss functions for optimization problems as well as two common estimation-
schemes to obtain solution estimators. Because there is a trade-off between risk per-
formance and calculation effort, two basic questions arise: (i) Under what conditions
do the Separate-EO and Joint-EO methods lead to the same estimator? (ii) When
the two estimators are different, is there a bound on their risk differences?

3.1. When the separate and joint estimators are the same. In this sec-
tion, we identify sufficient conditions under which the solution estimators obtained
from the Separate-EO and Joint-EO methods are equal. First, we present conditions
for the linear loss (2).

PROPOSITION 3.1. Assume that the objective function Eyg[f (x,y)] of (1) is mul-
tilinear in 0, and that for any pair (i,7) € [n] X [n], i # j for which the product 6,0,
appears in Eq o f(2,y)], we have that x; and x;, as well as 0; and ; are independent.
Then, the Bayes solution estimator obtained from the Joint-EO scheme under the loss
(2) is equal to the one obtained from the Separate-EO scheme, i.e., §7F(z) = §°(z).

Next, we present sufficient conditions under which the Separate-EO and the Joint-
EO for the loss (7) yield the same solution estimators.

PROPOSITION 3.2. Assume that (1) has a unique optimal solution y*(0) for any
given 0. Assume also that each component of y*(0) is multilinear in 0, and that for
any pair (i,7) € [n] x [n], © # j for which the product 0;0; appears in a component, we
have that z; and x;, as well as 0; and 0; are independent. Then, the Bayes estimator
obtained from the Joint-EO scheme under the loss (7) is equal to the one obtained
from the Separate-EO scheme, i.c., g% (x) = §°(z).

The result of Proposition 3.2 implies that when the optimal solution of (1) is
unique and multilinear in the parameters, the Bayes solution estimator obtained from
(10) is equal to the expected optimal solution Eg z[y*(8)] as it belongs to the feasible
region even when it is not convex. This can be viewed as another sufficient condition
for the Joint-EO solution estimator to be equal to the expected optimal solution,
beside the convexity sufficient condition given in Corollary 2.6.

While the conditions of Propositions 3.1 and 3.2 are satisfied by many stochastic
optimization problems, there are important classes of stochastic problems that do not
satisfy these conditions. We next present three examples of a portfolio selection model
in finance that illustrate situations where the three solution estimators introduced in
Section 2 are equal and/or different.

In the first case all three solution estimators are the same:

Ezxample 3.3. Consider a set of n assets whose returns, recorded in @, are random
and follow a distribution with joint density function g(x|w,>) where g and ¥ > 0
represent the mean vector and the covariance matrix of the asset returns, respectively.
The goal is to find a portfolio selection strategy y that maximizes the total expected
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return against the risk. This problem can be modeled as (1), where f(x,y) = Ty —
Z[(x—p)Ty)? for some nonnegative risk aversion factor 7. This reduces to the classical
Markowitz (mean-variance) model ([25])

Ty — LT
(11) max uly — 54" Zy.
where ) = R™ under the assumptions that (i) both long and short portfolio are
allowed and (ii) a riskless asset is available.

Assume now that p is unknown and has a prior distribution 7(w), while ¥ is
known. The unconstrained problem (11) is convex and has a unique optimal solution
y*(p) = 171 p. Since the objective function of (11) is linear in p, it follows from
Proposition 3.1 that the solution estimators of the Separate-EO and the Joint-EO
under the loss (2) are equal. Similarly, since y*(u) is linear in p, it follows from
Proposition 3.2 that the solution estimators of the Separate-EO and the Joint-EO
under the loss (7) are equal. Therefore, all three solution estimators are equal to
97k (x) = 979%=x) = 9°(x) = Lx7'aP (&) where P (Z) is the Bayes estimator
(posterior mean) of 6, which is a shrinkage vector under exponential distributions. Wl

Next, we give an example where the solution estimators of the Separate-EO and
the Joint-EO under the loss (2) are equal, but different from that of the Joint-EO
under the loss (7).

Ezxample 3.4. Consider the setting of Example 3.3. The goal is to find weights y
that maximize the expected return of the portfolio subject to bounding the portfolio
risk by a constant 2. This problem can be modeled as (1), where f(x,y) = Ty, and
Y = {y € R*"|y"Sy < r?}. We obtain that

12 max ply.

(12) max p'y
Assume now that p is unknown and has a prior distribution 7(p). Since the objec-
tive function of (12) is linear in p, it follows from Proposition 3.1 that the solution

estimators of the Separate-EO and the Joint-EO under the loss (2) are equal, i.e.,

oL
Yy

is obtained as y*(u) = %r, which is not a linear function of . As a result,

() =9°(z) = % On the other hand, the unique optimal solution of (12)

the conditions of Proposition 3.2 are not satisfied, and therefore the solution estima-
tors of the Separate-EO and the Joint-EO under the loss (7) can be different. This

1

yields 79 (z) = E,z [”22:17/52”7"} a quantity that can be very difficult to compute
depending on the distributions. H

Finally, we illustrate the converse of Example 3.4, where the solution estimators
of the Separate-EO and the Joint-EO under the loss (7) are equal, but different from
that of the Joint-EO under the loss (2).

Ezxample 3.5. Consider the setting of Example 3.3, where the mean and covariance
matrix of the asset returns are known, but the risk aversion factor 7 is random with
exponential distribution 7 ~ Exp(A). This problem can be modeled as (1), where
f(T,y) = uTy — Sy"3y, and Y = R™. We obtain that

1
13 Ty — —yTYy.
(13) max ply — 5 yToy

Assume now that parameter A has a prior w(\). The unique optimal solution of the
problem is y*(\) = AX "' u. Since y*()) is linear in A, it follows from Proposition 3.2
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that the solution estimators of the Separate-EO and the Joint-EO under the loss (7)
are equal, ie., §79(x) = §5(&) = A\P(z)2~'u where AB(Z) is the Bayes estimator
(posterior mean) of A, which is a shrinkage vector under exponential distributions.
On the other hand, since the objective function of (13) is not linear in A, it does
not satisfy the conditions of Proposition 3.1, and therefore the solution estimators of
the Separate-EO and the Joint-EO under the loss (2) can be different. In particular,
97 (z) is the maximizer of maxycy pTy — Eyz[55x]y™Sy. This yields §7%(z) =
Z—l
Ex\i[;}
3.2. Different separate and joint estimators. In this section, we address
the question of how the risk of the Separate-EO method compares to that of the
Joint-EO method when their estimators are different. The next two examples show
that the Separate-EQO solution can yield arbitrarily poor solutions for general problem
structures under the linear loss (2) and the quadratic loss (7), respectively.

, which may be computable only numerically depending on the distributions. B

Ezample 3.6. Assume that random variables z; for ¢ € [n] are independent and
follow a normal distribution N (p1;, 02) where j; is unknown and o2 is known. Assume
also that the parameters u; for i € [n] follow a normal distribution A'();,§?) where
Ai and 67 are known. It follows from Appendix B.1 that the posterior u;|Z; has a

o262
U?l-i-:Sf :
an instance of stochastic program (1) where the objective function is E,,[f(z,y)] =
S iy and Y is an n-simplex, i.e.,

(14) max{Zp?yi Zyl =1y, >0,Vi e [n]} .
i=1

i=1
To obtain the Bayes solution estimator for the Joint-EO method under the linear loss
(2), we solve (14) by computing the posterior expectation of its objective function,
see (4). We obtain the objective function Y1 | (n? 4 &)y since By z(pZ] = nf + &7
It is easy to verify that the optimal solution (Bayes solution estimator) is attained at
y’L(x) = e’ where j is the index of the maximum value among {n? + &2 }icn) while

Consider

2 2
normal distribution N (n;, £2) where 1; = ﬁ)‘i+ 0257-%2‘@ and £ =

the minimizer (worst solution) of the above problem is attained at y = e* where k is
the index of the minimum value among {n? —N—é?}ie[n]. Now we calculate the estimator
obtained from the Separate-EO method. To this end, we compute the Bayes estimator
of the unknown parameter p under the squared error loss and use it in (14). As
discussed before, this estimator is the posterior mean n and therefore the resulting
objective function is Y- ; n?y;. Using similar arguments as above, we obtain that the
optimal solution of this problem is y*(x) = €' where [ is the index of the maximum
value among {ng}ie[n]. In order to compare the quality of the estimators obtained
from the Joint-EO and Separate-EO methods, we need to evaluate the objective value
of ! in the Joint-EO problem given above. For any values of the parameters o, § and
data & that satisfy I = k, the optimal solution of the Separate-EO method matches the
worst solution in the Joint-EO problem. This shows that the Separate-EO estimator
can be arbitrary weak compared to the Joint-EO estimator.

For a numerical illustration of this result, assume that n = 2, z; = 2, Ty = 1,
AM=X=0,01=09=1,60 =1 and d = 3. Wecomputem:l,ngz%,ﬁ:%
and & = 2. It follows that nf > 73 and nf + & < 13 +¢&3. This shows that the Bayes
solution estimator for the Joint-EO is y”*(&) = (0,1) and the solution estimator for
the Separate-EQO is y*(z) = (1,0). B
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Ezample 3.7. Assume the setting of Example 3.6. Consider an instance of stochas-

tic program (1) where the objective function is E,,[f(x,y)] = D1, piy; and YV is a
unit-ball in R™, i.e.,

(15) max{iﬂiyi Zn:y? < 1}-
i=1 i=1

For any g € R™\ {0}, the unique optimal solution of the problem is y*(u) = ”—ZH As

a result, the Separate-EO method yields the solution estimator y° (&) = HZ—H Now we
calculate the estimator obtained from the Joint-EO method under the quadratic loss.
Since the optimal solution of (15) is unique and its feasible region is convex, it follows

from Corollary 2.6 that §7%(z) = E,,z[y*(1)] = Eyz [ﬁ} . In particular, the Joint-

EO solution is a convex combination of normalized vectors £ for all possible values of

[Tae]]
p taken according to the posterior distribution of p|@. When this distribution is non-

degenerate (can assume multiple distinct values), the expected vector §7:9 (&) belongs
to the interior of the unit-ball. On the other hand, the Separate-EO solution y*°(Z) is
always on the boundary of the unit-ball. We conclude that the two solution estimators
can never be equal. Moreover, they can achieve a maximum distance in the unit-ball.
For instance, assume that the parameters A, o, § and the observation & are such that
Ini| = 0;77;2)\1 + 0257_;2;?1 < e for all i € [n] and a sufficiently small but positive e.
Due to the symmetry of the feasible region and the posterior distribution of w|z
around the origin, the Joint-EO solution estimator is sufficiently close to the origin,
while the Separate-EO solution estimator is always on the boundary. This yields the
maximum distance of the Separate-EO solution from the Joint-EO solution.

For a numerical illustration of this result, assume that n = 2, z; = 1.001, o = —1,
)\1 = —1,)\2 = 1, g1 = 02 = 51 = 52 =1. We compute m = 00005, 2 = 0 and
¢ = & = L. It follows that the Bayes solution estimator for the Joint-EO is very
close to the origin and the solution estimator for the Separate-EO is y = (1,0). B

Examples 3.3-3.5 show that a combination of objective function, constraints and
probability distributions can lead to different solution estimators in form and com-
plexity. Examples 3.6 and 3.7 show that these factors can even affect the quality of
the solution estimators. For instance, if the parameters of the distributions in Exam-
ple 3.6 are such that the addition of the posterior variance ¢ does not change the
ranking of the components of 1, the Separate-EO and the Joint-EO give the same
solution. Similarly, if the constraint set of (15) in Example 3.7 is replaced with the
unit-ball surface, i.e., Y ., y? = 1, it can be verified from directional statistics that
the Separate-EO and the Joint-EO always give the same solution.

Inspired by these results, we next formalize the roles of problem structures and
distributions by providing a closer comparison between the solution estimators for
certain optimization models.

4. Piecewise Linear Structures. As given in Proposition 3.1 (resp. Proposi-
tions 3.2), the solution estimators obtained from the Joint-EO and Separate-EO are
equal when the objective function (resp. optimal solution) is multilinear in the un-
known parameters under the suitable independence criteria. Many optimization prob-
lems satisfy these conditions and hence provide identical results for both estimation
methods. In this section, we explore other problem structures that do not satisfy the
multilinearity conditions. Our goal is to compare the risk quality and computational
complexity of different solution estimators for several classes and distributions.
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4.1. Piecewise Linear Objective Functions. In this section, we study a class
of stochastic program (1) that has a univariate piecewise linear objective function with
a single breakpoint. Define f(z,y) : R xR — R as

~J fay), itz <y
1o f(m’y)‘{ﬂx,y), o>y

where f(z,y) = ax + by + ¢, and f(x,y) = azx + by + ¢. We assume that fla,y) is
continuous over its domain including the breakpoint, which yields f(y,y) = f(y,y). In
the above relation, y is a decision variable, and x is a random variable with distribution
function g(x|0), and 6 is a random parameter with the prior distribution 7 ().

The piecewise linear function as described in (16) is commonly used to model in-
ventory control and pricing problems. For instance, consider a single-stage newsven-
dor problem where the purchase cost per unit of a product is ¢ and the selling price
per unit is s. The random demand z follows a distribution g(x|6) with a random
parameter 6 that has a prior 7(68). Let y be the decision variable representing the
order quantity. Then, the profit is f(z,y) = smin{y, } — cy which is of the form (16)
where f(z,y) = sz — cy and f(x,y) = (s — c)y.

Other areas of application for piecewise linear functions with uncertain breakpoint
(knot) emerge in modeling two-phase linear-linear processes such as latent growth
behaviors [19]. These models are widely used to describe developmental processes in
education and psychology. For instance, the acquisition of foundational vocabulary
knowledge may progress in two phases where the functional form in each phase may
well be different. The time at which the trajectory for behavior transitions from
one phase to the other (i.e., the knot) is important scientifically and often marks
a substantive watershed moment (e.g., a level of proficiency has been attained) or
suggests when an intervention may be most beneficial.

Assume that lim;_, o, tG(t|0) = 0, a property that holds for most of the standard
probability distributions. Then, using an integration by part, the expectation of the
function (16) is computed as

Ememm,y)]:[ _Fnatelds + f(z,mg(zw)dz}

= aEyg[r] + by + ¢+ (a—a) G(z|0)dz.
z2<y
It follows from (17) that the function Ege[f(z,y)], (i) is infinitely differentiable
in y, (ii) is strictly convex if @ —a > 0, strictly concave if a — a < 0 and linear if
a—a =0, and (iii) has a unique stationary point y* () = G~* (d—fa ‘9) when it is not
linear, i.e., a — a # 0.
Next, we consider the univariate unconstrained stochastic program

(18) Iggﬁ(Ez\G[f($>y)L

where f(x,y) is a piecewise linear objective function as defined in (16), and where a —
a > 0 so that (18) is convex. Assume that the random variable x follows distribution
g(x]6) and the parameter § is random with a prior m(#). Given an observation Z from
the distribution g(z|¢), Corollary 4.1 presents the Separate-EO estimator §°(z) and
the Joint-EO estimators g7 (z) and §”%(Z) under the linear and quadratic loss. This
result is obtained as a direct consequence of Proposition 2.4 and Corollary 2.6.
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COROLLARY 4.1. Consider the piecewise linear problem (18), and assume that an
observation T from the distribution g(Z|0) is available. Then,
(i) 9°(z) = G~1 #‘93@))} where 0B (z) is the Bayes estimator of the unknown
parameter 0 under the squared error loss.
(ii) 97 (z) = H™! ( b_ ‘:E), where H(x|Z) is the cdf of the posterior predictive

a—a

distribution of x given the observation T.

a—a

(iii) 979 (z) = Eg)z [G*l ( b_ ’9)} , where the expectation is taken with respect to
the posterior distribution I1(0|Z).

It is clear from the result of Corollary 4.1 that the solution estimators depend on
the distribution of x and its corresponding prior. Below, we consider three common
conjugate families of likelihood-prior pairs and discuss the complexity of obtaining
the solutions estimators together with approximation results on their risk differences.
We refer the reader to Appendix B for a review of relevant conjugate distributions
and the corresponding posterior and predictive distributions.

4.1.1. Normal Likelihood with Normal Prior.

PROPOSITION 4.2. Consider the stochastic problem (18). Assume that the like-
lihood distribution is normal with x ~ N(u,0?) and the prior distribution is normal
with p ~ N(po,82). Assume further that the parameters o2, po and 6% are known,
and an observation T is drawn from the likelihood distribution. Then, we have

(i) 35(2) = §79@) = lppo + (1= p)a] + 071 (25) 0.

(ii) §H(2) = [puo + (1 = p)a] + @7 (2 ) o2 .
Here, p := 02"7_;2 and ®~1(.) is the inverse cdf of a standard normal random variable.

Proof. (i): Due to Corollary 4.1(i), we have
58 [~ -1 b | 5. ~B (= -1 b
) =G| o (@) | =7 @) + 7 —— | o,

a—a
where G(z) is the cdf of a normal random variable with mean 47 (z) := pug+ (1 —p)z
and variance o2. Hence, we obtain °(Z) as stated. We also observe that §*(u) is
linear in u. Therefore, by Proposition 3.2, we conclude that §°(z) = 779 (7).

(ii): Due to Corollary 4.1(ii), we have

:E):ﬂB(ai)—i-(I)_l( b )0‘\/2—/)7

a—a

a—a

where H is the cdf of a normal random variable with mean 47 (z) = puo + (1 — p)z
and variance 0%(2 — p). Hence, the result follows. 0

The computational complexity of obtaining the Separate-EO and Joint-EO estimators
is similar as they both require an inverse normal cdf computation. We next discuss
the risk performance guarantee between the two solution estimators by computing the
difference in their risk values. To this end, we first give some properties of a particular
function that will be used later to derive the results.

Remark 4.3. Consider d(k) = k (\/1 +1/(1+K2) — 1). Then,

(1) d(0) =0, (i) lim d(k) =0, (i5) d* := m>a())<d(/£) < 0.22575.

K—00
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PROPOSITION 4.4. Let 2b > a — a. Under the assumptions of Proposition 4.2,

RY (v (1), 9° (2))—R" (y* (), 9" (z)) < &~ (f ) bo(\/2—p—1) < @~ (f ) bod* .

a a

Proof. We first compute an upper bound on the difference in the loss values of
the estimators. Define F(y) := E,[f(z,y)] as the objective function of (18). Then,

LE(y*(0), 57" (x) — Ly (0),5° (@) = F(g""(2) - F(3°(@))

< P55 @) ") - 15(@) < b6~ <

= pPp! < b >6d(n) < o1 <b> bod*,
a — a—a

where the first equality follows from the definition of the linear loss (2), the first
inequality is obtained from the first order Taylor expansion of the concave function
F(y) at point §7*(z) about §°(z), the second inequality follows from (i) §*%(z) —

7°(z) = @71 (%a) o(v/2 = p — 1) because of Proposition 4.2, (ii) &1 ( b~> >0

a a—a

N

because of the assumption 2b > @ — @, and (iii) F'(y) < b for all y € R which
is deduced from (17), the second equality holds due to the definition of d(x) with

Kk = /4 given in Remark 4.3 and p = 02”7_;2, and the last inequality follows from
Remark 4.3(iii). Since the difference in the loss of the two estimators in the above
expression is independent of both p and Z, the risk difference obtained by taking the
expectations E,Ez, as given in (3) remains unchanged, yielding the result. ]

The following results is obtained similarly to that of Proposition 4.4.

PROPOSITION 4.5. Let 2b < a — a. Under the assumptions of Proposition 4.2,
b s
— (b+a—a)o(\/2—p—1)

<o} <b> (b+a—a)dd*.

l

RY (v (1), 9°(2)) = R" (y* (), 9" (1)) < @' (

a—a
4.1.2. Exponential Likelihood with Gamma Prior.

PROPOSITION 4.6. Consider the stochastic problem (18). Assume that the likeli-
hood distribution is exponential with x ~ Exp()\) and the prior distribution is gamma
with A ~ Gamma(a, 8). Assume further that the shape and rate hyperparameters «
and B are known, and a realization T is observed. Then,

(i) °(2) = 25 n (3255
(i) 975 (z) = (B + ) [(aiaig)l/(aﬂ) - 1} )
(iii) §79(z) = B2 (2207,
Proof. (i): Due to Corollary 4.1(i), we have

As-_fliABf o b _ 1 (. a-a
@) =G ( AU) ;\3(1—7)1 <1 a—a> 5\3(9_3)1 <aa5>’

a—a
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where G(z) is the cdf of an exponential random variable with parameter A8 (z) = 5

Hence, we obtain §°(z) as stated.
(ii): Due to Corollary 4.1(ii), we have

~ —1/(,!/ _ N 1/a/
x)zﬁ’ <1—_b~> ~1 =6’[<“fa~) —1]7
a—a a—a—2>b

where H(z) is the cdf of a Lomax random variable with the scale and shape parameters
B := B+ and o/ = a + 1. Hence, the result follows.
(iii): We write that

b

a—a

@) = H (

C_L* —
g aa N [TLBEDT L (g
hl(ddé)/o N Tlat D) A% d\
- a—a . Na) T (BHE)Y a1 _(pran
(55 et [ e e

where the first equality follows from Corollaries 2.6 and 4.1(iii), the second equality
holds since the posterior distribution II(A|Z) is gamma with the shape and rate param-
eters a+ 1 and 3 4 T respectively, the third equality is obtained by factoring suitable
terms out of the integral and the last equality follows from the facts that F{cﬁ)m = é
and that the integral is equal to 1 as it represents a gamma distribution.

We note that the complexity of obtaining the Separate-EO and Joint-EO estima-
tors is the same as they all admit closed form solutions. Next, we discuss the risk
difference between §°(z) and §”%(z) as well as §79(z).

PROPOSITION 4.7. Let a > 1. Under the assumptions of Proposition 4.6,

bR a—a \Yer 1
RL * ~S = —RL * ~J,L(~ < _ — 1| =
(" (1), 5 (2)) ()™ @) < 5y (-5 3 o
Proof. We first compute an upper bound on the difference in the loss values of
the estimators. Define F(y) := E),[f(x,y)] as the objective function of (18).
We first observe that /% > > due to the relationship

where the first equality follows from the definition of the linear loss (2), the first
inequality is obtained from the first order Taylor expansion of the concave function
F(y) at point §7*(z) about §°(z), the second inequality follows from (i) §*%(z) —

-\ Y(eFD) - .
7°(z) = (B+7) {( a—d ) — 1] — srEyy ( “*a~) due to Proposition 4.6, (ii)

a—a—b a+1 a—a—b
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97t () > §° () since k1/* —1 > @ for all k,a > 1, and (iii) F’(y) < b for ally € R
which is deduced from (17). To obtain the risk difference, we take the expectations

ExEz|» from the last term, which yields the desired result using ExEz\[2] = (x% d

PROPOSITION 4.8. Let a > 2. Under the assumptions of Proposition 4.0,
ﬂQ

R (y* (1), 5°(x)) = R? (y* (),

Proof. We write that

r _ ~ 12 _\ 2
Q (y* 09 = | (42— E\E- l_ﬁ—i—x
R (y* (1), 9°) _n<a—d—b)_ M (Y~ a1
- _ - 12 _ _
B a—a 1 28+z  (B+2)?
_hl(a_gl_g)_ EAE“{AQ Xa+1 ' (a+1)?
:—ln a—a _2]E>\ i—gﬁ—’_% 52—’_2?—’_%
| \a—a—1b/] A da+l (a+1)2
- _ ~ 12
a—a 1 2 g 1 1 9
S P (T g 5 R R S N A T - 9F
(5] B ] e ) e (e

where the first equality follows from Proposition 4.6 and the definition (7)
risk under quadratic loss, and the second equality holds because E, Alz]
Em‘ )\[.’172]

%. Using similar arguments, we can compute

D

_ 2
- 17 2.8 1
R (y* (1), 97 9(7)) = |In [ ———2~ Ey|—| - ZEy |2 + =
(v"(w), 5% (2)) = |In —— S Sy
Note that A ~ Gamma(c, 3) which implies that + ~ Inverse-Gamma(c, 3). There-
fore, we obtain that E,[}] = % and Ex[55] = , which yields ]EA[g +52] =
5—22. Combining the above results, we obtain

(z))
52

a—2

(2

4.1.3. Geometric Likelihood with Beta Prior.

PROPOSITION 4.9. Consider the stochastic problem (18). Assume that the likeli-
hood distribution is geometric with x ~ Geo(p) and the prior distribution is beta with
p ~ Beta(a, §). Assume further that the shape parameters o and 8 are known, and a
realization T is observed from the likelihood. Then,

(i) 7°(2)

B
(a—1)(a—2)

), 5% (9?”)_) - R (y* (1), 57
l {2<i a-1|—1>
2 5 2
] {a(a+1)a_2
—a—?))_ k

ala+1)(a—2)
from which the result follows.

a
Q
—~
<
*

TRy (R
(a+1)2 a2

—20—-1
a?(a+1)2a—2

200+ 1
a+1 )’

)(#+5))

ln( P

~ Wl(B+i-1)/(a+B+7)]°

}+O}2<B2+2EA[

B
Tt

B

S+

A

)\2

1

A2

Dii

o)}
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) AL B+i+ Bt+atz—1 b
(it) 7" (z) ~ {y 2a—0 a+ﬁ+m+z+2 a+6+i+a;+1 a+;+i+w = afa}‘
ln(a,%a*b> Btz —2
S 1Q () z p*(1-p)
(iii) 9 Q(x) ~ Bla+1,8+z-1) fO ln(ﬁfp) dp.
Proof. (i): Due to Corollary 4.1(i), we have

a+1
at+p+z”

where G(x) is the cdf of a geometric random variable with parameter p?(z) =

Hence, we obtain 7 (%) as stated.
(ii): Due to Corollary 4.1(ii), we have

where H is the cdf of posterior predictive distribution. The results follows due to the
relationship between the cdf H and its pmf h given in (30) in Appendix B.
(iii): We write that

1 ln(ajf?i)) =~ 75 1 1 af1 _ o \B+T—2
50 i—a v fa-a p*(1—p)
4 (x)”/o n(1— p) H(p|x)dp_ln< )/0 m(i—p)Bla+LA+i-DP

where the first relation follows from Corollaries 2.6 and 4.1(iii) and the second relation
holds since the posterior distribution II(p|Z) is beta with parameters o + 1 and 8 +
z—1. O

We note that §°(Z) can be approximated by a closed form expression while the
approximations of §7-(z) and §”9(Z) require an algorithm and numerical integration,
in general. This is an instance where computing the Joint-EO solutions is harder than

computing the Separate-EO solutions.
In Table 1, we summarize the conclusions drawn for the stochastic problem (18).

Likelihood Prior Separate-EO Joint-EO (Linear Loss) Joint-EO (Quadratic Loss)
Normal Normal inverse normal cdf inverse normal cdf inverse normal cdf
Exponential Gamma closed form closed form closed form
Geometric Beta closed form need algorithm need numerical integration
TABLE 1

Summary of the computational effort required to obtain the Separate-EO and Joint-EO solution
estimators for the univariate piecewise linear stochastic problem with different likelihood-prior pairs.

4.2. Sum of Piecewise Linear Functions. In this section, we study the
stochastic program

(19) max X Eqlo [Z filxs,y ] ,

i=1

where f;(z;,y) is a piecewise linear objective function of the form (16), i.e., fi(zi,y) =
a;x; + by + ¢; for x; <y, and fi(z;,y) = a;x; + by + & for x; > y. We assume that
a; — a; > 0 for each ¢ € [n], so that (19) is convex. In this problem, y is the single
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decision variable and z; is a random variable with probability distribution g;(z;|6;)
and the random parameter 6; has prior distribution 7;(6;). In this setting, variables
x; are not required to be independent. We further assume that an observation Z;
drawn from g;(Z;|6;) for i € [n] is available.

Stochastic problems of the form (19) have applications in median and location-
allocation problems in facility planning. For instance, consider the one-dimensional
stochastic median problem, where the position x; of n points on the line is random
and each comes from a distribution g;(x;|6;) for ¢ € [n]. Let y be the decision variable
representing the location of the median. The goal is to find y that minimizes the total
distance from the random points, i.e., Y . |#; —y|. This problem can be formulated
as (19) where fi(wi,y) = [z —yl, fi(zi,y) =y — @i and fi(zi,y) = 2 —y.

Using (17), the objective function of (19) can be computed as

n n

(20) Egpold_ filziy)l = [aiEmei[xi]+Biy+ai+<ai — ;) / Gi(ziwi)dzi},
i=1 i=1 2 <y

Since this is a concave function under the assumption a; — a; > 0 for ¢ € [n], its

maximizer is obtained as the root of the following equation

n

(21) > (@ — a:)Gilylo:) ZE =

i=1

We next give the Separate-EO estimator §°(z) and the Joint-EO estimator §”*(z)
via univariate root finding using (21). We note that the Joint-EO estimator §”%(z)
is not presented since the explicit solution for (21) is not computable in general.

PROPOSITION 4.10. Consider problem (19). Assume that, for each i € [n], the
likelihood distribution has the pdf g;(x;|0;) and the prior distribution has the pdf 7;(0;).
Assume further that an observation T; is available for i € [n]. Then,

(i) §°(9) is the solution of

Z(ai—) (y|0F (& +Zb_0

where ézB(g’cZ) is the Bayes estimator of 0; under the squared error loss, given
observation T;.
(ii) 97 is the solution of

> (@ —a)Hi(ylz,) + ) b =0,
i=1

i=1

where H;(x) is the cdf of the posterior predictive distribution of x; given obser-
vation x;.

Next, we give a generic method to compute an upper bound on the risk difference

between the Separate-EQ estimator §° (%) and the Joint-EO estimator §”-£(%). This

bound is obtained in terms of the individual Separate and Joint solution estimators
for each random variable x; independently, as studied in Section 4.1.

ProrosITION 4.11. Consider the setting in Proposition /.10. Assume that the
likelihood g;(x;]0;) and the posterior predictive h;(x;|T;) are positive at all points in



18 D. DAVARNIA, B. KOCUK, AND G. CORNUEJOLS

the domain. Then,

RY (y°(0),5°(2)) — R" (y"(6),5""(2))

< KEg [ max { max{g;"" (7:)} — min{g (7:)}, max{g7 (z:)} — min{g"" (z:)}}].
where the expectation Eg is taken with respect to the marginal distribution of z, K =
max{| S0 bl, | S0, b + @i — ail}, 9°(zi) and 9" (z;) are the Separate-EO and

Joint-EO estimators if there was only a single random wvariable x;, as computed in
Corollary 4.1.

Proof. We will first obtain intervals which contain the solution estimators §°(z)
and §7F(z). Since g;(x;]0;) and h;(z;|Z;) are positive over the domain, their cdfs are
strictly increasing. Therefore, we have that

G; (y
Gi (Z/

for each i € [n]. Multiplying each of the above relations by a; — a; > 0 and then sum-
‘93(331))} , max; {G;l (_L;

a; —a;

56,) } ,max; {H{l (ai)fa
We now give an upper bound on the loss values of these estimators. Let F(y) =
Exjo [D iy fi(2zi,y)] as the objective function of (19). Since F' is concave, we have

LH(0),67E (@) - L4 (0),6° () = P @) - F5(@)
< P @)@"H @) - 95) < [P @5 @)I @) - 55 @)
< K ma { max{§" (7)) — min{g (7)), max{55 ()} — min{g" ()},

where the last inequality holds because (i) |F'(§%)| < K as F'(§°) € [Yr_, b; —I— a; —

@i, i, b;] due to (20), and (i) the previously derived intervals for §° () and g% (%),
and the fact that: if w € [wy, we] and v € [v1, v2], then |w—v| < max{ws—v1,v2—w1 }.
To compute an upper bound on the risk difference, we take the expectation EgEz g
or equivalently EzEgz of both sides of the above expression. Since this expression is
independent of 6 the desired result is obtained by only taking the expectation Ez. O

. . ) .
Z(:z:,))<7‘_~‘ ory <G (a» -

. . L .
Z(x))>,_~_ ory > G (a» -

ming them over i, we deduce that §°(Z) € [mini {G;l (

7))
)

az*az

A similar argument shows that §/*(z) € [mini {H.*l (%

2 a;—aq

The result of Proposition 4.11 requires an additional expectation with respect to
the marginal distribution of Z, over the maximum of random variables. The following
result can be useful to obtain closed-form bounds for such quantities.

PROPOSITION 4.12 ([1]). Let z1, ..., 2z, be random variables. Then,
(i) Elmax;{z}] < max;{E[z]} + \/”T_l Sory Var(z).

(ii) Elmin;{zi}] > min {E[=]} — /251 S0, Var(z:).

The bound given in Proposition 4.11 can be hard to compute in closed-form for
general classes of the stochastic program (19). However, it can be computed explicitly
for certain objective functions and probability distributions. We next present two
instances of a certain class. In particular, we consider the one-dimensional stochastic
median problem where f;(x;,y) = |z; — y| for i € [n], and compute the bound on the
risk of the Separate-EO and Joint-EO solution estimators for two conjugate pairs.
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4.2.1. Normal Likelihood with Normal Prior.

PRrROPOSITION 4.13. Consider the one-dimensional stochastic median problem. As-
sume that, for each i € [n], the likelihood distribution is normal with x; ~ N(u;,0?)

and the prior distribution is normal with p; ~ N(u?,82). Assume further that the pa-

2

rameters o2, Y, 62 are known, and a realization of locations Z; is observed. Then,

R (y* (), 5°(@) — R" (" (w), 57" (2)) <n (mgX{u?} — min{y}} + 2\/nn ! i ggi;:sg ) :

Proof. Proposition 4.2 implies that v; = §5(z;) = 9" (z;) = pip + (1 — pi)
5 A
i, for i € [n]. This result follows from the facts that —%— = 1 for the

a;—a;

o
352
07407

where p; :=

median objective function, and therefore ®~1 (%) = 0. Next, we use Proposition

4.11 to obtain
(22) R¥ (" (1), 9%(2)) = R" (y™ (1), () < nEzlmax{v;} — min{,}].

Now, we compute an upper bound on the right-hand-side using Proposition 4.12.
5!
o2+462°

Since z; ~ N(ul, 02 + 62) for each i € [n], we have E[i;] = p and Var(y;) =
Using these relations in the result of Proposition 4.12, we obtain

n—1 n

Emax{v;}] < max{u?}—#\/ Doiet 02574?52 and E[min{y;}] > mjn{u?}—\/

Plugging in these bounds for into (22) gives the desired conclusion.

-1 n 6?
n 2zt of+67
O

4.2.2. Exponential Likelihood with Gamma Prior.

PROPOSITION 4.14. Consider the one-dimensional stochastic median problem. As-
sume that, for each i € [n], the likelihood distribution is exponential with x; ~ Exp(\;)
and the prior distribution is gamma with A; ~ Gamma(ay, 5;). Assume further that
the parameters a; and B; are known with a; > 2, and that a realization of locations
Z; is observed for i € [n]. Then, we have

R (y™(N), 9% (@) = R* (" (A), 57(2)) < n(mgx {W}

ozi—l

I 1 Xn: BZa;( “i/2 1) _ min a;f;1n2 I 1 — B2a;(In 2)? .
n = (o —1)*(a; — 2) i a; —1 n = (o —1)*(a; — 2)(ci +1)?
Proof. Proposition~ 4.6 implies that §7(z;) = %hﬂ and g% (z;) = (Bi +
) (V2 —1) as 224 =2 for i € [n]. Since n2 < /2 —1 for a; > 0, we have

97 (7)) < Q;]L(i‘z) for each i € [n]. Applying Proposition 4.11, we obtain
(23)
RE (" (3,35 (@) = R (4" (V). 5"5(2) < nBalmax {3 (2,)} - min{3 )}

Now, we compute an upper bound on the right-hand-side using Proposition 4.12.
Since Z; ~ Lomax(f;, ;) for i € [n], we have

Elz;] = aiﬁi : and Var(z;) = (i = 5;20([;1' 5y
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Since both §7(Z;) and gjg L(z;) are affine transformations of z;, we can easily ob-
tain their mean and variance as well. Finally, plugging in the resulting bounds for
E[min; {57 (:)}] and E[max,{g;""(%;)}] into (23) gives the desired result. O

We conclude this section by a remark on a generalization of univariate stochastic
programs with a piecewise linear objective function to a certain multivariate case
where the previously derived results can apply.

Remark 4.15. Stochastic problem (19) can be generalized in a straightforward
manner to the case where there are several decision variables as follows. Consider
the objective function Y7 | 37" | f/ (i,y7) where f](xi,47) is equal to f (zi,y7) =
dga:i—l—ggyj—i—ég for 2; < 7 and equal to ff(mz,yj) = dgxi—&—l;gyj—&—ég for 2; > y7. Under
the assumption that each x; has a distinct distribution g;(x;|6;) and its parameter
0; has a distinct prior 7;(6;), it is easy to verify that the objective function can be
separated as a summation of univariate objective functions appearing in (19). Since
the feasible region is unrestricted, the resulting problem reduces to m individual
problems of the form (19) and therefore the results of Section 4.2 applies accordingly.
This generalization models an m-dimensional stochastic median problem that has
extensive applications in facility planning and assignment problems.

5. Geometric Structures. Another class of stochastic programs where the ran-
dom element in the objective function does not appear in a multilinear form is the
stochastic geometric programs (GP). GPs have applications in a wide variety of prob-
lems including circuit design, optimal control, nonlinear network design and chemical
equilibrium problems; see [7] for a tutorial on geometric programming and for a full
list of applications. Due to developments in designing effective algorithms for convex
programs, the state-of-the-art software packages can solve large-size GPs efficiently
for practical applications. For this reason, the tendency to model complicated prob-
lems as GPs either exactly or approximately has rapidly increased in the past decade
[11]. This rise in the application of GPs has also lead to incorporating the stochastic
nature of real-world problems into these models.

The objective and constraints of GPs are described by posynomial functions of
the form f(z) = >, cx [[; 2", where ¢, > 0 is a constant, z; > 0 is a decision
variable and a;; € R is an exponent. The trick to solve these nonconvex programs
is to use the transformation z; = e¥ for all ¢ and replace f(z) with log f(e¥) in the
model. Such problems can be formulated as

. T .
(24) min {zk: cre™ Y |log fi(e?) <0,Vj=1,... ,m} ,

where f;(z) is a posynomial function, and Y is a polyhedron.

In a stochastic variant of (24), we assume that the exponents «; are random with
distribution g;x(x;x|0:r). Including all constraints in ), we write the general form of
the stochastic geometric program as

25 inkE
(25) min ;o

.
E ckemky] .
k

Under the assumption that the random exponents z;; are independent, the ob-
jective function of (25) decomposes into separable terms as E, [Zk ckewzy} =

D ik I Egppjose [€7%Y7]. The unique property of such decomposition is that the
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term E,,, 9, [e7*¥?] is equal to the moment generating function M, g, (yi) of the
distribution g (zix|0ir). As a result, the stochastic geometric problem (25) reduces to

(26) gneli}l Ck H beqk 10ik (yi)
k i

Assume now that the parameter 6, is random with prior 7(6;%). Then, using the
results of Section 2, the Separate-EO and Joint-EO solution estimators for (26) under
the linear loss (2) are obtained as follows.

COROLLARY 5.1. Consider the stochastic geometric program (26). Assume that
X has distribution g (x:x|0ix) and its parameter 0;, has prior w(0;;). Further, as-
sume that an observation T;i is available. Then,
(i) y5(z) = argming ey > ek [ [; Mwikléﬁ (yi), where éﬁc is the Bayes estimator of
0ir under the squared error loss.
(it) y”2(z) = argmingcy >, ¢k [1; My, (i), where My, |z, is the moment gen-
erating function of the posterior predictive distribution h(x;k|ZT).

Even though the result of Corollary 5.1 implies that both the Separate-EO and
Joint-EO estimators can be obtained by solving a product of moment generating
functions, their computational complexity can be different. In particular, for most of
the standard likelihood functions, the moment generating function is readily computed
in closed-form which makes the problem of obtaining the Separate-EQO deterministic.
On the other hand, for the posterior predictive distributions, the moment generating
functions are hard to compute in closed-form even when the distributions belong to the
conjugate family. For instance, for the exponential-gamma conjugate pair, it is known
that the moment generating function of the posterior predictive distribution, Lomax,
is mathematically intractable. This makes the computation of the Joint-EO estimator
much harder, as it requires the employment of numerical algorithms to approximate
the optimal solution. This class of stochastic programs contains problems where the
trade-off between the computational efficiency and the risk quality of the Separate-EO
and Joint-EO estimators becomes more noticeable. Below, we present a preliminary
computation study, which illustrates this intuition.

Consider the stochastic geometric program (26) for the exponential-gamma conju-
gate pair with prior hyperparameters o and 5. We assume that a set of observations
Zk, k € [K], is available. According to Corollary 5.1, obtaining the Separate-EO so-
lution estimator amounts to solving the convex program

o~ (@)
27 2% := min E cp—mA k) ,
( ) yGy{ - k)\k(ff'k) _yk}
_ o+l

where A\, (Zy) = Borar Here, we implicitly use the fact that the moment generating
function of the exponential distribution is available in closed-form. However, this is
not possible for the Lomax distribution, thereby making the use of sampling-based
methods (such as SAA) necessary to obtain the Joint-EO solution estimator. In
particular, let &, be a Lomax random variable! with parameters i, + Zj and oy, + 1,
for k € [K] and r € [R], where R denotes the sample size. Then applying the SAA
method to (24) for the Lomax distribution, we can approximate the Joint-EO solution

1Using the inverse transformation technique, we can generate such random variables as Bg[(1 —
w)~ /(@& +1) _ 1] where u is a uniform [0, 1] random variable
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estimator with the solution of the following convex program:

K R
1 -
28 JL R) := mi E —_ E ZreYk \
( ) ’ ( ) Lneg;l{k_lck]%r—le }

We will now discuss an experimental setting. We define the feasible region )
as the intersection of the standard simplex Ax = {y € RE : Zszl yr = 1} with
a polyhedron P := {y € RX : Ay = b} where A € RM*K and b € RM. Such
linear constraints are common in geometric programs when the original posynomial
function f;(z) contains a single summation, i.e., f;(z) = c¢[[; 2. In this case, the
above-mentioned geometric transformation yields f;(e¥) = ce®'¥ . and hence the log
constraint as presented in (24) becomes linear in y, i.e, aTy < —log c. We randomly
generate the parameters according to the following rules:

cp =1 ay ~ Unif(5,10) By ~ Unif(5, 10)

. . _ g
Api ~ Unif(1,10)  b,,~ Unif(10,50) Zy 00 —1)

In Table 2, we compare the Separate-EO (represented in columns with label SEO)
and the Joint-EO (represented in columns with label JEO(R)) solution estimators
with R = 100, 1000 and 10000 for five randomly generated instances in dimension
K = 1000 with M = 10 linear constraints. The common characteristic of this family
of instances is that the objective values z/L'(R) for the Joint-EO method exhibit a
slow convergence behavior. This causes a serious concern for determining a reliable
stopping criterion for the SAA algorithms, as not only the objective values but also
the optimal solutions are unstable for different sampling sizes. We also observe that
obtaining the JEO(R) solution estimators becomes increasingly demanding with larger
R values in terms of the computational effort. For example, for a moderate-sized
instance considered here, it typically takes more than 2 minutes to obtain a solution
estimator when a sample size of 10000 is used. For this problem instance, we ran into
memory issues with 100000 replications. The SEO estimators, on the other hand, do
not suffer from these issues since they are obtained as a solution to a deterministic
convex program, which scales reasonably well with the instance size.

SEO JEO (100) JEO (1000) JEO (10000)

ins. | obj. val. time || obj. val. time | obj. val. time | obj. val. time
1005.17  0.51 1012.74 1.12 | 1018.61 13.19 | 1025.29 140.77
1007.61  0.32 1009.93 1.25 | 1014.52 11.50 | 1019.54 145.72
1009.79  0.34 1012.65 1.02 | 1020.80 12.93 | 1047.55 102.43
1009.87  0.47 1027.26  1.20 | 1041.79 10.95 | 1097.27 169.69
1032.39  0.40 1018.28 1.47 | 1038.84 9.69 | 1068.64 135.85

TABLE 2
Computational results for randomly generated stochastic geometric programs with exponential-
gamma pair (K = 1000, M = 5). Five problem instances (ins.) are solved, and the corresponding
objective values (obj. val.) and computational times in seconds are recorded.

TR W N =

These obstacles for the computation of the Joint-EO solution estimators stem
from the slow convergence result of the SAA method for certain problem structures.
In particular, [5] argues that despite asymptotic convergence of the SAA method
with the growth of the sample size, the optimization problem is still prone to severe
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estimation errors when the number of uncertain elements (often linked to the problem
scale) is large. In contrast, the Separate-EO solution estimators, despite being sub-
optimal, enjoy a fast and stable solution process. This trade-off between the two
schemes should be considered carefully when modeling stochastic problems of certain
classes such as geometric programs.

6. Conclusion. In the presence of uncertainty in optimization, random data is
used to estimate the unknown elements of the underlying stochastic programs. Several
techniques can be employed to find such estimators. Under a Bayesian framework, two
of the most common estimation rules solve the estimation and optimization problems
either separately or jointly. While it is intuitively obvious that the joint scheme
provides better results in quality, analytical and computational studies on the trade-
offs between the quality and complexity of these schemes are lacking. In this paper,
we explore this direction to provide insight on the advantages and disadvantages
of these two schemes. We use risk as an averaging measure for the quality of the
solutions based on two optimization criteria: the gap between the objective values,
and the distance between the solutions. We show conditions under which the two
schemes yield equal solutions, and give examples when the risk difference between the
solutions of the two schemes can be very large. We further study two popular classes
of nonlinear stochastic programs with piecewise linear and geometric structure. We
give theoretical and computational evidence for an in-depth comparison between the
risk value and complexity of different schemes for these problem classes.

Appendix A. Proofs.

Proof of Proposition 2.1. We write that

R (y*(6),9(2)) = EoEspo [L5(y*(0),9(2))] = EsEgpz [LF(y7(0), 9(2))] ,

where the first equality follows from the definition of the linear risk, and the second
equality follows from exchanging the order of sequential expectations. According to
the definition of Bayes solution estimator, we seek among all §(Z) € Y an estima-
tor that minimizes the risk RE(y*(0),9(x)). First, we claim that any minimizer
g5 () of Egiz [L%(y*(0),y(®))] is also a minimizer of the risk R*(y*(0),y(x)).
To prove this claim, consider any estimator §(&) # ¢’ (&). It follows from the
assumption that Eg; [£X(y*(0), 972 (2))] < Egz [L*(y*(0),y(x))]. Taking the ex-
pectation Ez[.] with respect to the marginal distribution of Z from both sides, we ob-
tain that EzEqz [L5(y*(0), §71(®))] < EzEqz (L5 (y*(6),9(x))]. Hence, the claim
follows from the chain relation in the first line. As a result, a Bayes solution es-
timator is a minimizer §7*(Z) of Egz [L*(y*(0),y(x))] = EguExw[f(m y*(0))] —
EgzEz 0 f (2, y(2))]. Recall that y* () is independent of (&), i.e., the term Eg |z E J5‘9[ (z,y*(0))]
is fixed regardless of the value of y(&). Therefore, any minimizer of Eg‘w [LE(y*(0),9(x))]
is also a maximizer of EgzE,g[f(x,y(2))]. O

Proof of Proposition 2./. Using the result of Proposition 2.1, it suffices to show
that the objective function of (4) matches that of (5). We show the result for con-
tinuous distributions, as that of the discrete distribution follows similarly. Under the
assumption that the objective function f(a,y) and all distribution of variables admit



24 D. DAVARNIA, B. KOCUK, AND G. CORNUEJOLS

the interchange of integration order, we have that
BosBaolf@.w)] = [ [ f@v)alaloNi6imieds

- /wf(:w) (/eg(we)n(m;a)de) da::/wf(:v,y)h(iv\fl_:)dwZEx\f[f(w>y)]7

where the second equality is obtained by the interchange of integration order, and
the third equality follows from the definition of posterior predictive distribution in
Definition 2.3. d

Proof of Proposition 2.5. We have that R (y*(0), §(x)) = EoEzo[L%(y*(9),9(T))] =
EzEgz[L9(y*(0),9(&))], where the first equality holds because of (8), and the sec-
ond equality follows from changing the order of sequential expectations. Accord-
ing to the definition of Bayes estimator, we seek among all g(Z) € Y an estimator
that minimizes the risk R%(y*(0),9(x)). We claim that any minimizer §/9(&) of
mingey Egjz [£9(y*(0), y)] is also a minimizer of the risk R?(y*(6),(z)). To prove
this claim, consider any estimator §(x) # §79(&). It follows from the assumption
that Egz[L9(y*(0), 979 (2))] < Egz[L°(y*(0),9(®))]. Taking the expectation E;[.]
with respect to the marginal distribution of & from both sides we obtain the desired
result due to the chain relation in the first line. |

Proof of Proposition 3.1. 1t follows from the assumptions that E,s[f (2, y)] can
be written as Zle hi(y) gk (0) where hy(y) : R™ — R and g (0) = [[;¢;, ¢ for some
I, C [n]. For this function, the assumption also implies that for any k& € {1,..., K},
all variables x; for [ € I, are independent, and so are all variables 6; for | € I},. We
compute the objective of the Joint-EO method as given in (4)

K K
(29) EgzBopolf(@,y)] = > he(¥)Boizloe(0)] = > hi(y) [ Eoyja. [0,
k=1 k=1

i€y,

where the first equality follows from linearity of the expectation operator and the
second equality holds because random variables and parameters are independent. As
discussed before, the Bayes estimator for a parameter under the squared error loss is
the posterior mean. Therefore for the Separate-EO method, each 6; is replaced by its
posterior mean Eg, 5, [0;] in (1). The resulting objective function is (29). This shows
that the objective of the Joint-EO and Separate-EO methods are equal. Since both
have the same constraint set ), their optimal solutions are the same. 0

Proof of Proposition 3.2. Under the assumption that y*(€) is unique for any
given @, the Separate-EO solution estimator can be expressed as §°(z) = y* (67 (&))
where 8 (x) is the Bayes estimator of the unknown parameter 8 under the squared
error loss. It follows from the discussion in Section 2.1 that §5(Z) = Eg|[0].
Therefore, the Separate-EO method yields g°(x) = y*(Egz[0]). We obtain that
Egz[y*(0)] = y*(Egz[0]) because of the linearity of the expectation operator and
because of the independence of variables appearing in the products. As a result,
Egz[y*(0)] € Y. Tt follows from (10) in Corollary 2.6 that the Joint-EO method
yvields §72(z) = Egyz[y* (6)]. D

Appendix B. Some Conjugate Distributions.

B.1. Normal likelihood with normal prior.
e Likelihood: |y ~ N(u,0?), assuming that o2 is known
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e Prior: p ~ N(ug,6?)
e Posterior: u|Z ~ N(puo + (1 — p)Z,0%(1 — p)) with p := 02‘77_552
e Posterior predictive: x|z ~ N(puo + (1 — p)z,02(2 — p))

B.2. Exponential likelihood with gamma prior.
e Likelihood: x|\ ~ Exp(\)
e Prior: A ~ Gamma(aq, ), where the order of the parameters is shape and
rate, respectively
e Posterior: A\|Z ~ Gamma(a + 1,8+ %)
e Posterior predictive: x| ~ Lomax(8 + Z,a + 1), where the order of the
parameters is scale and shape, respectively

B.3. Geometric likelihood with beta prior.
e Likelihood: z|p ~ Geo(p)
e Prior: p ~ Beta(a, )
e Posterior: p|Z ~ Beta(a+ 1,8+ — 1)
e Posterior predictive: For x =0,1,..., we have

a+1 B+T+x B+z4+z—1
a+pf+i+2+2 a+f+i+zr+1 a+B+z+a

(30)  h(zlz) =
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