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Abstract

Many applications involve reasoning about time durations before a critical event happens—
also called time-to-event outcomes. When will a customer cancel a subscription, a coma patient
wake up, or a convicted criminal reoffend? Accurate predictions of such time durations could
help downstream decision-making tasks. A key challenge is censoring: commonly, when we col-
lect training data, we do not get to observe the time-to-event outcome for every data point. For
example, a coma patient has not woken up yet, so we do not know the patient’s time until awak-
ening. However, these data points should not be excluded from analysis as they could have
characteristics that explain why they have yet to or might never experience the event.

Time-to-event outcomes have been studied extensively within the field of survival analysis pri-
marily by the statistical, medical, and reliability engineering communities, with textbooks already
available in the 1970s and ’80s. Recently, the machine learning community has made significant
methodological advances in survival analysis that take advantage of the representation learning
ability of deep neural networks. At this point, there is a proliferation of deep survival analysis
models. How do these models work? Why? What are the overarching principles in how these
models are generally developed? How are different models related?

This monograph aims to provide a reasonably self-contained modern introduction to survival
analysis. We focus on predicting time-to-event outcomes at the individual data point level with
the help of neural networks. Our goal is to provide the reader with a working understanding of
precisely what the basic time-to-event prediction problem is, how it differs from standard regres-
sion and classification, and how key “design patterns” have been used time after time to derive
new time-to-event prediction models, from classical methods like the Cox proportional hazards
model to modern deep learning approaches such as deep kernel Kaplan-Meier estimators and
neural ordinary differential equation models. We further delve into two extensions of the basic
time-to-event prediction setup: predicting which of several critical events will happen first along
with the time until this earliest event happens (the competing risks setting), and predicting time-
to-event outcomes given a time series that grows in length over time (the dynamic setting). We
conclude with a discussion of a variety of topics such as fairness, causal reasoning, interpretabil-
ity, and statistical guarantees.

Our monograph comes with an accompanying code repository that implements every model
and evaluation metric that we cover in detail: https://github.com/georgehc/survival-intro

1

https://github.com/georgehc/survival-intro


Contents

1 Introduction 4
1.1 Survival Analysis and Time-to-Event Outcomes: Some History and Commentary on

Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Machine Learning Models for Survival Analysis . . . . . . . . . . . . . . . . . . . . . 5
1.3 The Motivation for This Monograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Monograph Overview and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Examples of Topics Beyond the Scope of Our Monograph . . . . . . . . . . . . . . . . 9
1.6 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.2 How We View Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.4 Software Packages and Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Basic Time-to-Event Prediction Setup 13
2.1 Standard Right-Censored Statistical Framework . . . . . . . . . . . . . . . . . . . . . 14
2.2 Time-to-Event Prediction in Continuous Time . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Prediction Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Likelihood and Example Models (Parametric Proportional Hazards and Ac-

celerated Failure Time Models) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Time-to-Event Prediction in Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Prediction Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Time Discretization and Interpolation . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Likelihood, Connection to Classification, and
Example Models (DeepHit, Nnet-survival,
Kaplan-Meier, Nelson-Aalen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Evaluation Metrics for Time-to-Event Prediction . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Ranking-Based Accuracy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Squared Error of the Predicted Survival Function . . . . . . . . . . . . . . . . 37
2.5.3 Distribution Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.4 Error Metrics for Survival Time Point Estimates . . . . . . . . . . . . . . . . . 40

2.6 Additional Remarks on Classification and Regression . . . . . . . . . . . . . . . . . . 41
2.7 Survival Stacking: Converting Time-to-Event

Prediction to Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.1 Connection to Regression: Conditional CDF Estimation . . . . . . . . . . . . . 44

2.A Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.A.1 Definition of the Raw Input Space . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.A.2 Proof of Proposition 2.1: H[ℓ|x] as a First-Order Taylor Approximation of

− log S[ℓ|x] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.A.3 Hazard Function Maximum Likelihood Derivation for the Kaplan-Meier and

Nelson-Aalen Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Deep Proportional Hazards Models 46
3.1 Constraint on Survival Function Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Parametric Proportional Hazards Models . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Semi-Parametric Proportional Hazards Models: DeepSurv . . . . . . . . . . . . . . . 51
3.4 Removing the Proportional Hazards Assumption: Cox-Time . . . . . . . . . . . . . . 53
3.A Technical Details: Derivation of the Cox Model’s Two-Step Maximum Likelihood

Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2



4 Deep Conditional Kaplan-Meier Estimators 56
4.1 Conditional Kaplan-Meier Estimators: k Nearest Neighbor and Kernel Variants . . . 57
4.2 Learning the Kernel Function: Deep Kernel Survival Analysis . . . . . . . . . . . . . 58
4.3 Scalable Deep Kernel Survival Analysis: Survival Kernets . . . . . . . . . . . . . . . . 61

5 Neural Ordinary Differential Equation Formulation of Time-to-Event Prediction 63
5.1 General ODE Formulation: SODEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Special Case: Deep Proportional Hazards Models . . . . . . . . . . . . . . . . 67
5.1.2 Special Case: Deep Accelerated Failure Time Models . . . . . . . . . . . . . . 68
5.1.3 Special Case: Deep Extended Hazard Models . . . . . . . . . . . . . . . . . . . 68

5.2 Special Case: Converting Discrete Time Models to Continuous Time . . . . . . . . . 69
5.3 Prediction and Training with a SODEN Model . . . . . . . . . . . . . . . . . . . . . . 70
5.4 An Alternative to ODEs via Monotonic Networks: SuMo-net . . . . . . . . . . . . . . 71
5.A Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.A.1 Solving the Weibull Time-to-Event Prediction Model’s ODE From Example 5.1 71
5.A.2 Deriving the Hazard Function of Deep AFT Models . . . . . . . . . . . . . . . 72

6 Beyond the Basic Time-to-Event Prediction Setup: Multiple Critical Events and Time Se-
ries as Raw Inputs 73
6.1 Time-to-Event Prediction with Multiple Critical Events: The Competing Risks Setup 73

6.1.1 Statistical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.2 Prediction Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.3 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.4 Example Model: the Full Version of DeepHit . . . . . . . . . . . . . . . . . . . 75
6.1.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Dynamic Time-to-Event Prediction with Competing Risks . . . . . . . . . . . . . . . 78
6.2.1 Variable-length Time Series as Training Data . . . . . . . . . . . . . . . . . . . 79
6.2.2 Prediction Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Example Model: Dynamic-DeepHit . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.4 Sequences of Critical Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Discussion 85
7.1 More Variants of the Basic Time-to-Event Prediction Setup: Left and Interval Censor-

ing, Truncation, and Cure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Causal Reasoning and Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.5 Statistical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.7 Large Language Models and Foundation Models . . . . . . . . . . . . . . . . . . . . . 94

3



1 Introduction

Predicting time durations before a critical event happens arises in numerous applications. These
durations are called time-to-event outcomes. For example, an e-commerce company may be inter-
ested in predicting a user’s time until making a purchase (e.g., Chapelle 2014). A video streaming
service may be interested in predicting when a customer will stop watching a show (e.g., Hubbard
et al. 2021). In healthcare, hospitals may be interested in predicting when a patient’s disease will
relapse (e.g., Zupan et al. 2000). In criminology, courts may be interested in predicting the time until
a convicted criminal reoffends (e.g., Chung et al. 1991). Accurate predictions for these time-to-event
outcomes could help in decision-making tasks such as showing targeted advertisements or promo-
tions in the e-commerce or video streaming examples, planning treatments to reduce a patient’s
risk of disease relapse in the healthcare example, and making bail decisions in the criminology
example.

A defining feature of time-to-event prediction problems is that commonly, when we collect
training data to learn a model from, we do not get to see the true time-to-event outcome for ev-
ery data point, i.e., their time-to-event outcome is censored. As an example, some training points
(e.g., a coma patient) might not have experienced the critical event of interest yet (e.g., waking up).
Discarding the points that have not experienced the event would be unwise: they could have char-
acteristics that make them much less likely to experience the event (e.g., the patient’s brain activity
is highly abnormal).

1.1 Survival Analysis and Time-to-Event Outcomes: Some History and Com-
mentary on Naming

Time-to-event outcomes have been studied for hundreds of years if not longer, where the initial fo-
cus was on predicting time until death. Early analyses introduced the use of “life tables”, which in
a nutshell contain counts such as numbers of births and deaths over time. Graunt [1662] published
what might be the first life table and looked at the chance of survival for different age groups.1

This particular dataset from London was challenging since the survival times (age at the time of
death) were not actually recorded, corresponding to a censoring problem. Instead, Graunt largely
guessed survival times based on causes of death, which were recorded (albeit they were not neces-
sarily accurate). A few decades later, Halley [1693] analyzed a life table collected from modern day
Wrocław and computed the probability of dying within the next year. Halley used these probabili-
ties to determine how to price an annuity (roughly, an expected payout over a person’s remaining
lifetime). For a historical account of life tables and more generally reasoning about survival times,
see for instance the book by Bacaër [2011] and the bibliographical notes accompanying the different
chapters of Namboodiri and Suchindran [2013]—these readings altogether walk through highlights
from hundreds of years of research on survival times leading up to modern time.

So much of the pioneering research on time-to-event outcomes was on time until death that the
enterprise of modeling time-to-event outcomes is now commonly called survival analysis, with text-
books already available decades ago (e.g., Mann et al. 1974, Kalbfleisch and Prentice 1980, Cox and
Oakes 1984, Fleming and Harrington 1991). Countless other (text)books on survival analysis have
since been written and have mainly originated from statistical, medical, and reliability engineer-
ing communities (e.g., Klein and Moeschberger 2003, Machin et al. 2006, Selvin 2008, Kleinbaum
and Klein 2012, Li and Ma 2013, Harrell 2015, Klein et al. 2016, Ebeling 2019, Prentice and Zhao
2019, Gerds and Kattan 2021, Collett 2023), and at this point, there is also a book tailored to social
scientists [Box-Steffensmeier and Jones, 2004].

We want to emphasize though that as the examples we opened the monograph with showed, the
critical event need not be death, meaning that we might not be reasoning about “survival” literally.
In fact, some researchers work on survival analysis but in titling their papers choose to opt for
more general phrasing such as “time-to-event modeling” (e.g., Chapfuwa et al. 2018). We further

1As noted by Glass [1963] and Bacaër [2011] among others, there has been some debate as to whether Graunt or his friend
William Petty wrote the book but regardless, Graunt’s book had five editions published between 1662 and 1676 (for which
our citation just uses the earliest year).
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emphasize that the “time” in “time-to-event outcome” does not literally have to measure time.
For example, a survival analysis model could be used to predict how many units of an inventory
item (e.g., a newspaper) to stock the next day given past days’ sales counts, so that the “time-to-
event outcome” here measures an integer number of items [Huh et al., 2011]. Ultimately, “survival”
analysis or “time-to-event” models have been broadly applied to numerous applications far beyond
reasoning about either “survival” or “time-to-event” outcomes in a literal sense.

1.2 Machine Learning Models for Survival Analysis

The phrase “machine learning” was only coined in 1959 [Samuel, 1959], the year after the highly
influential paper by Kaplan and Meier [1958] came out that analyzed a survival model based on
life tables using what is called the “product-limit” estimator [Böhmer, 1912]. (Kaplan and Meier’s
estimator remains one of the major workhorses of modern time-to-event data analysis; we will see
it and deep learning versions of it later in this monograph.) Suffice it to say, machine learning as
a field is young compared to survival analysis. Precisely when the first machine learning survival
analysis model came about is perhaps not entirely straightforward to trace, in part because nowa-
days, what is considered a “machine learning model” depends on who one asks. While we may
consider k nearest neighbor and kernel survival analysis [Beran, 1981] and survival trees [Ciampi
et al., 1981, Gordon and Olshen, 1985] to be machine learning models, would the authors of these
original papers?

Fast-forwarding to present time, there is now an explosion in the number of machine learning
survival analysis models available. For much larger lists of models than what we cover in this
monograph, see the excellent surveys by Wang et al. [2019] and Wiegrebe et al. [2023]. As part
of their survey, Wiegrebe et al. provide an online catalog of over 60 deep-learning-based survival
models (which we will just abbreviate throughout this monograph as deep survival models).2 This
catalog is not exhaustive!

With so many machine learning models for survival analysis, what exactly are the major inno-
vations? When and why do different models work? How do they relate to each other? What are
overarching patterns in model development? In answering these questions, we think that it is ex-
tremely important to distinguish between innovations that are specific to time-to-event prediction
vs ones that are not. For the purposes of this monograph, we want to focus on the former as they
could help us better understand what is special about time-to-event prediction that helps us build
better models.

1.3 The Motivation for This Monograph

We set out to write this monograph for two key reasons:

• First, we wanted to provide a reasonably self-contained introductory text that covers the key
concepts of survival analysis with a focus on time-to-event prediction at the individual data
point level and that also exploits the availability of now standard neural network software.
We focus on neural network survival models (i.e., deep survival models) because these mod-
els are easy to modify (e.g., to accommodate different data modalities, add loss terms, set a
custom learning rate schedule, etc). Note that every model that we present in detail has pub-
licly available source code (we discuss software shortly in Section 1.6.4). For readers who
are new to survival analysis but are already very comfortable working with standard neural
network software at the level of writing custom models and loss functions, we hope that our
monograph provides enough survival analysis background to make implementing deep sur-
vival models from “scratch” using standard neural network software fairly straightforward.

• Second, we wanted to clearly convey how several major categories of deep survival models
are related, and how in deriving these different survival models, we use some of the same
key design patterns or derivation techniques over and over again. We hope that by leading
the reader through many examples, these patterns will become apparent.

2https://survival-org.github.io/DL4Survival/
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To the best of our knowledge, no existing text provides the sort of introduction to survival analysis
that our monograph aims to be. The surveys of machine learning survival models [Wang et al.,
2019, Wiegrebe et al., 2023] are not written nor intended for the purpose of giving the reader a
working knowledge of how to actually derive survival models from first principles. Meanwhile,
the vast majority of survival analysis (text)books do not cover neural networks or deep learning due
to how new these are (an example of a textbook that covers neural networks for survival analysis
can be found in Chapter 11 of Dybowski and Gant [2001], but this book pre-dates the invention of
nearly all the deep survival models we cover).

Overall, we hope that our introduction to survival analysis provides the reader with a solid un-
derstanding of what precisely the time-to-event problem setup is, why it is different from standard
regression and classification, and how to build survival models with the help of neural networks.
We also hope that the reader learns a little bit about where the state-of-the-art is in terms of a variety
of other topics that we mention but do not discuss in detail, such as how fairness, causal reasoning,
and interpretability play into survival models, and what progress has been made on theoretically
analyzing some of these models.

1.4 Monograph Overview and Outline

Our coverage is not meant to remotely be exhaustive in showcasing how deep survival models
have been used for time-to-event prediction. We specifically cover the following:

• Basic Time-to-Event Prediction Setup (Section 2). We first go over the standard time-to-
event prediction problem setup. We state its statistical framework, its prediction task, com-
mon ways of writing a likelihood function to be maximized (maximum likelihood is the stan-
dard way of learning time-to-event prediction models), and how to evaluate prediction ac-
curacy. Along the way, we lead the reader through various example models to help solid-
ify concepts, all of which could be related to maximizing likelihood functions: exponential
and Weibull time-to-event prediction models, DeepHit [Lee et al., 2018], Nnet-survival [Gen-
sheimer and Narasimhan, 2019], the Kaplan-Meier estimator [Kaplan and Meier, 1958], and
the Nelson-Aalen estimator [Nelson, 1969, Aalen, 1978]. Importantly, we distinguish between
modeling time as continuous vs discrete since the math involved is a bit different. This section
also discusses how time-to-event prediction relates to classification and regression.

• Deep Proportional Hazards Models (Section 3). We next cover perhaps the most widely
used family of time-to-event prediction models in practice, which are called proportional haz-
ards models. We define proportional hazards models in a general manner in terms of neural
networks. Special cases include the exponential and Weibull models from Section 2, the clas-
sical Cox model [Cox, 1972], and DeepSurv [Faraggi and Simon, 1995, Katzman et al., 2018].
Proportional hazards models make a strong assumption that, in some sense, decouples how
time contributes to a prediction and how a data point’s features contribute to a prediction.
This assumption often does not hold in practice. We present a generalization of the Deep-
Surv model called Cox-Time [Kvamme et al., 2019] that removes this proportional hazards
assumption.

• Deep Conditional Kaplan-Meier Estimators (Section 4). One of the standard models we en-
counter in Section 2 is the Kaplan-Meier estimator, which is extremely popular in practice and
also different from deep proportional hazards models because it is nonparametric (i.e., it does
not assume the time-to-event outcome’s distribution has a parametric form). However, it only
works to describe a population and does not provide predictions for individual data points.
We present deep learning versions of the Kaplan-Meier estimator that can make predictions
at the individual level. Namely, we cover deep kernel survival analysis [Chen, 2020] and its
generalization called survival kernets [Chen, 2024]; the latter can scale to large datasets, can
in some sense be interpreted in terms of clusters, and has a statistical guarantee on accuracy
for a special case of the model.
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• Neural Ordinary Differential Equation Formulation of Time-to-Event Prediction (Sec-
tion 5). We then present a model that can encode all the models we presented in preceding
sections, where we phrase the standard time-to-event prediction problem in terms of a neural
ordinary differential equation model. We specifically go over the neural ODE time-to-event pre-
diction model by Tang et al. [2022b] called SODEN. In presenting SODEN, we also mention
some model classes that we did not previously point out, such as deep accelerated failure
time models and deep extended hazard models [Zhong et al., 2021].

• Beyond the Basic Time-to-Event Prediction Setup: Multiple Critical Events and Time Se-
ries as Raw Inputs (Section 6). Whereas all the previous sections used the basic time-to-event
prediction setup from Section 2, we now consider two generalizations. First we consider the
so-called competing risks setting where there are multiple critical events of interest (e.g., for a
coma patient, we consider the patient waking up and the patient dying as two different crit-
ical events; note that censoring could still happen but is not considered as one of the critical
events). We aim to predict which critical event will happen first and also the time until this earliest
critical event happens. The example model we use here is DeepHit [Lee et al., 2018]. Note that
the special case of there being one critical event reduces the problem to the one from Section 2.
We then generalize the competing risks setting further by considering what happens when
we want to make predictions as we see more and more of a given a time series (the dynamic
setting). The example model we use here is Dynamic-DeepHit [Lee et al., 2019].

• Discussion (Section 7). We end the monograph by discussing a variety of topics that we
either only briefly glossed over or that we did not mention at all. For example, we discuss
different kinds of censoring, ways to encourage a survival model to be “fair”, causal rea-
soning with survival models, interpretability of deep survival models, issues of statistical
guarantees, and more.

Specifically for the example models we cover in Sections 2 to 5, we show how these models relate
in Figure 1. When one model is a child of another in this figure, it means that the child model
could be represented (possibly with a known approximation) by the parent model. Note that in the
figure, just because two models do not overlap does not mean that they cannot represent the same
underlying true time-to-event outcome distribution. For example, even though deep extended
hazard models [Zhong et al., 2021] and survival kernets [Chen, 2024] do not overlap in the figure,
they can represent many of the same time-to-event outcome distributions.

We emphasize that just because SODEN [Tang et al., 2022b] can in principle represent all the
other models we cover in Sections 2 to 4 (possibly with an approximation), that does not mean that
one is best off just using SODEN. An important point is that many of these models are trained in
different ways. SODEN’s training procedure may not work the best for some of the simpler model
classes that it can represent. In particular, it invokes calls to an ordinary differential equation (ODE)
solver, which could be overkill if we just want to use one of the simpler models (that has its own
simpler training procedure which typically is faster to run). By relying on an ODE solver, we could
also run into numerical stability issues that occasionally arise with ODE solvers.

Separately, it is good to keep in mind that deep survival models that we cover allow the mod-
eler to flexibly choose a “base” neural network to use with the model. For example, when working
with tabular data, the modeler could choose the base neural network to be a multilayer perceptron.
When working with images, the modeler could choose the base neural network to be a convolu-
tional neural network or a vision transformer. And so forth. Such base neural networks could
be chosen to be arbitrarily complicated (e.g., we could use as many layers and as many hidden
nodes as we would like). Consequently, many deep survival models could in theory be considered
equally expressive in what sorts of time-to-event outcomes they can model. However, in practice,
training these deep models often requires using standard neural network tricks such as using early
stopping, weight decay, dropout, etc. Roughly, we would train these models with some regulariza-
tion to prevent overfitting, and how this regularization impacts different models then depends on
their different modeling assumptions.

We remark that the example models we chose to present in this monograph are not necessarily
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Section 5.1.2
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(Zhong et al., 2021)

Section 5.1.3
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Sections 5.1 & 5.2
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using the strategy in Section 5.1.4)

DeepHit
(Lee et al., 2018)
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Section 4.1

Deep kernel 
survival 
analysis

(Chen, 2020)
Section 4.2
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Section 4.3
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Section 3
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Section 3.3
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Kalbfleisch, 

1979)
Section 5.1.2

Figure 1: An overview of the models we cover in detail in Sections 2 to 5. One model being the
child of another means that the child model could be represented (possibly with a known approx-
imation) by the parent model. Note that when interpreting this diagram, two non-overlapping
models could still possibly represent the same underlying time-to-event outcome distribution. For
example, deep extended hazard models [Zhong et al., 2021] and survival kernets [Chen, 2024] are
capable of modeling many of the same time-to-event outcome distributions. Note that we also
cover Cox-Time [Kvamme et al., 2019], which does not easily fit in the diagram; Cox-Time is a gen-
eralization of the semiparametric model called DeepSurv [Faraggi and Simon, 1995, Katzman et al.,
2018], but Cox-Time can also represent models that are not deep extended hazard models.
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the “best”. Instead, they were chosen largely for pedagogical considerations and also to show-
case some classes of models that are quite different from one another. There are plenty of other
time-to-event prediction models (deep-learning-based or not) that work well! By understanding
the fundamental concepts in our monograph, the reader should be well-equipped to understand
many of these other models. As a reminder, the surveys by Wang et al. [2019] and Wiegrebe et al.
[2023] provide fairly extensive listings of many existing machine learning models for time-to-event
prediction.

1.5 Examples of Topics Beyond the Scope of Our Monograph

To elaborate a bit more on our scope of coverage, our monograph focuses on survival models for
prediction that are estimated via maximum likelihood estimation in a neural network framework. We ac-
knowledge that many survival analysis methods were originally derived for the purpose of statis-
tical inference (e.g., reasoning about population-level quantities and constructing confidence inter-
vals for these quantities) rather than for prediction, including the classical Kaplan-Meier estimator
[Kaplan and Meier, 1958] and the Cox model [Cox, 1972]. Our emphasis in this monograph, how-
ever, is on learning survival models for prediction, as this is what neural survival models currently
are well-suited for. As such, we typically will not cover how to address questions of statistical in-
ference. For readers interested in learning more about statistical inference with survival models,
we point out that the various (text)books mentioned in Section 1.1 cover statistical inference results
for classical models.3

Next, many survival models are learned in a manner that is fundamentally not based on maxi-
mum likelihood estimation. For example, countdown regression [Avati et al., 2020] defines a score
function to optimize that does not correspond to the usual survival likelihood used in the litera-
ture. Meanwhile, Chapfuwa et al. [2018] train a survival model using adversarial learning (with
a generative adversarial network [Goodfellow et al., 2014]) rather than maximum likelihood. As
another example, random survival forests [Ishwaran et al., 2008] are trained in a greedy manner,
where one cannot easily write down a global objective function that is being optimized.

In fact, many decision tree survival models are not optimized in a neural network framework at
all, such as the aforementioned random survival forests [Ishwaran et al., 2008] as well as XGBoost
[Chen and Guestrin, 2016] (note that the official implementation of XGBoost supports survival
analysis), optimal survival trees [Bertsimas et al., 2022], or optimal sparse survival trees [Zhang
et al., 2024]. While it is possible to set up learning a decision tree survival model in a neural network
framework [Sun and Qiu, 2023], at the time of writing, this line of research appears to still be in
early development.

For ease of exposition, we do not cover latent variable models for survival analysis (e.g., Nagpal
et al. 2021a,b, Manduchi et al. 2022, Moon et al. 2022, Chen et al. 2024). These particular models
build on the ideas we present in this monograph and further use tools not covered in this mono-
graph, notably that of variational inference (e.g., Blei et al. 2017). We think that a reader who un-
derstands the fundamentals of our monograph and of variational inference should be well-versed
in understanding latent variable models for survival analysis.

1.6 Preliminaries

Before we move onto other sections, we go over some prerequisite knowledge that we will assume
that the reader is familiar with. We then explain how we view neural networks and the notation
that we use throughout the rest of the monograph. At the end of this section, we provide links to
some available software packages and to our companion code repository for this monograph.

3As a concrete example, the textbook by Klein and Moeschberger [2003] routinely explains how to construct confidence
intervals for various estimated quantities, such as confidence intervals for survival functions obtained from the Kaplan-
Meier estimator (see Section 4.3 of their book) and the Cox model (see Section 8.8 of their book).
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1.6.1 Prerequisites

We assume that the reader knows calculus, introductory probability and statistics, and the basics of
machine learning, especially neural networks, including how to code them up and optimize them
in standard neural network software (e.g., PyTorch [Paszke et al., 2019], TensorFlow [Abadi et al.,
2015], JAX [Bradbury et al., 2018]). For example, we assume that the reader knows how to run
minibatch gradient descent using a standard neural network optimizer (e.g., Adam [Kingma and
Ba, 2015]). For a primer on neural networks, see, for instance, the interactive textbook Dive into
Deep Learning by Zhang et al. [2023].4

In terms of neural network architectures that the reader should already know to understand
our monograph, we have intentionally tried to keep this listing short:

• (Sections 2 to 5 and the first half of Section 6) The reader should know multilayer perceptrons
for classification and regression (corresponding to the case where raw input data are fixed-
length feature vectors). For example, the reader should know that softmax activation yields
a probability distribution, and that the function defined by an inner product f(x; θ) := x⊤θ
for x, θ ∈ Rd is a special case of a multilayer perceptron. (Note that we present the material
in a general manner where the raw inputs need not be fixed-length feature vectors.)

• (Second half of Section 6) In the latter half of Section 6, in addition to multilayer perceptrons,
the reader should also know recurrent neural networks (RNNs). RNNs enable us to work
with variable-length time series as raw inputs.5

1.6.2 How We View Neural Networks

As we mentioned in Section 1.4, deep survival models that we cover all depend on a base neural
network. By analogy, if we were tackling a classification problem with k classes using deep learning,
then the standard strategy is to specify a base neural network (such as a multilayer perceptron) and
then we feed the output of the base neural network to a linear layer (also called a full-connected
layer or a dense layer) with k output nodes and softmax activation (so that the output of the overall
network consists of predicted probabilities of the k classes).6 Then when we learn the network, we
use a classification loss function (e.g., cross entropy loss). The final linear layer added with k output
nodes and softmax activation is referred to as a “prediction head”. If instead of classification,
we were looking at a regression problem (predicting a single real number), then we could set the
prediction head to be a linear layer with 1 output node and no nonlinear activation.

When working with deep survival models for time-to-event prediction, the idea is the same.
We first specify a base neural network. Afterward, to get the overall network to predict a time-to-
event outcome, it is as simple as choosing a “survival layer” at the end (to serve as the prediction
head) and using an appropriate survival loss. Depending on the survival layer chosen, there are
restrictions on what the output of the base neural network is. For example, when we cover the Cox
proportional hazards model, we will see that the base neural network should be set to output a
single real number (which could be interpreted as a risk score), and there is actually no additional
layer to add. The loss function is then specified a particular way for model training using these
“risk scores”.

Every survival model we cover could be thought of as a different possible survival layer to use as the
prediction head. Each model comes with a loss function. For the models we cover, the loss function will
always be a negative log likelihood loss with possibly some other loss terms added, depending on the model.

Extremely importantly, we will typically not spell out details of how to set the base neural
network aside from what we require of its output, meaning that we usually intentionally leave the
specific architecture choices up to the modeler. We do this precisely because standard tricks can
be used for how to choose the base neural network (as we mentioned above, we could choose a

4https://D2L.ai
5While we do not explicitly cover nor assume that the reader knows transformers, we point out that transformers can

also handle variable-length inputs (so that in our coverage, RNNs can actually be replaced by transformers).
6This strategy would require the base neural network to output some number of nodes that should be at least k (if it is

less than k, then we would have trouble representing all k classes).
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multilayer perceptron when working with tabular data, a convolutional neural network or a vision
transformer when working with images, etc). This also means that advances in neural network
technology that are not specific to time-to-event prediction could also trivially be incorporated. For
example, if we were to work with multimodal data such as the raw inputs being both images and
text, then we could choose the base neural network to be based off a model such as CLIP [Radford
et al., 2021]. An important implication is that when we cover an existing deep survival model in detail,
even if the original authors of the model provided architecture details in their paper, we omit the architecture
details that are not essential to understanding the design of their overall model.

Another reason why we do not state very specific neural network architectures to use is because
the technology has rapidly been changing! The latest trends in neural network architectures today
might be out of fashion tomorrow. To complicate matters, depending on the dataset used in a time-
to-event prediction task, which specific architecture works the best might vary, and also which
neural network optimizer we should use and with what learning schedule might also vary. Our
monograph does not dwell on these engineering details, which are important in practice but are
not needed in understanding the core high-level concepts.

1.6.3 Notation

We typically use uppercase letters (e.g., X) to denote random variables and lowercase letters (e.g., x)
to denote deterministic quantities such as constants or specific realized values of random variables.
Functions could either be uppercase or lowercase, where we have tried to stick to common conven-
tions used in survival analysis literature (e.g., the so-called conditional survival function is repre-
sented by uppercase S). Bold letters (e.g., f) are usually used to represent parametric functions such
as neural networks. We also frequently use the notation [m] := {1, 2, . . . , m}, where m is a positive
integer. When we use the “log” function, we always mean natural log.

Optimization problems regularly appear in the monograph. When we write θ̂ := arg minθ L(θ),
where L is a loss function with parameter variable θ, this minimization would be carried out using
(some variant of) minibatch gradient descent and, technically, we are usually not finding a solution
that achieves the global minimum.

1.6.4 Software Packages and Datasets

As our exposition assumes that the reader is familiar with standard neural network software that
have developer communities that primarily work in Python, we list some Python survival analysis
packages in Table 1. This list is not exhaustive. We list packages for both deep and non-deep
survival models since we think that trying both is important in practice. Per package, we list
some (not all) of the models and evaluation metrics implemented. We anticipate that over time,
many of these packages will add functionality. Overall, the current state of software packages that
support deep survival models is a bit scattered: no single package is—in our opinion—sufficiently
comprehensive, and at the time of writing, some packages have not been regularly maintained.

Currently, the packages in Table 1 do not implement all the models that we cover in detail.
SODEN [Tang et al., 2022b], deep kernel survival analysis [Chen, 2020], survival kernets [Chen,
2024], and Dynamic-DeepHit [Lee et al., 2019] are not currently included in the software packages
in Table 1, but their code is available from the original authors; see the links in Table 2.

In terms of publicly available survival datasets, the pycox software package comes with datasets
that are all sufficiently large for learning neural network models (mostly in the thousands of data
points along with one dataset with roughly 3 million points). The scikit-survival and lifelines
packages also come with datasets; some are a bit small though (a few hundred or fewer points).
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Table 1: Some software packages used for survival analysis/time-to-event prediction. Models in
blue and evaluation metrics in red are ones that we cover in detail in this monograph.

Package Link Some supported methods (not exhaustive)

scikit-survival [Pölsterl, 2020] https://github.com/sebp/scikit-survival Kaplan-Meier estimator1, Nelson-Aalen estimator2, Cox model3, var-
ious survival tree ensemble methods including random survival
forests4, concordance index5, time-dependent concordance index
(truncated)6, time-dependent AUC7, Brier score8

lifelines [Davidson-Pilon, 2019] https://github.com/CamDavidsonPilon/lifelines Kaplan-Meier estimator1, Nelson-Aalen estimator2, Cox model3 and
regularized variants, accelerated failure time (AFT) models9, concor-
dance index5

xgboost
[Chen and Guestrin, 2016]

https://github.com/dmlc/xgboost XGBoost supports using Cox and accelerated failure time loss func-
tions

glmnet_python
[Simon et al., 2011]

https://github.com/bbalasub1/glmnet_python Cox model3 and regularized variants; this is the official port of glmnet
from R

pycox
[Kvamme et al., 2019]

https://github.com/havakv/pycox unified PyTorch implementations of DeepSurv10, Cox-Time11, Nnet-
survival12, DeepHit13, N-MTLR14, time-dependent concordance in-
dex (not truncated)15, Brier score8

pysurvival
[Fotso et al., 2019]

https://github.com/square/pysurvival N-MTLR implementation by original author14, random survival
forests4

auton-survival
[Nagpal et al., 2022b]

https://github.com/autonlab/auton-survival DeepSurv10, Deep Survival Machines16, Deep Cox Mixtures17

SurvivalEVAL
[Qi et al., 2024a]

https://github.com/shi-ang/SurvivalEVAL concordance index5, Brier score8, D-calibration18, margin18 and
pseudo-observation19 MAE scores

torchsurv
[Monod et al., 2024]

https://github.com/Novartis/torchsurv Cox model3, Weibull AFT model9, concordance index5, time-
dependent AUC7, Brier score8

1Kaplan and Meier [1958] 2Nelson [1969], Aalen [1978] 3Cox [1972]
4Ishwaran et al. [2008] 5Harrell et al. [1982] 6Uno et al. [2011]

7Uno et al. [2007], Hung and Chiang [2010] 8Graf et al. [1999] 9Prentice and Kalbfleisch [1979]
10Faraggi and Simon [1995], Katzman et al. [2018] 11Kvamme et al. [2019]

12Gensheimer and Narasimhan [2019] 13Lee et al. [2018] 14Fotso [2018]
15Antolini et al. [2005] 16Nagpal et al. [2021a] 17Nagpal et al. [2021b]

18Haider et al. [2020] 19Qi et al. [2023]

Table 2: Some models that we cover that are not currently implemented in the packages in Table 1.

Model Link

Deep kernel survival analysis [Chen, 2020] https://github.com/georgehc/dksa

Survival kernets [Chen, 2024] https://github.com/georgehc/survival-kernets

SODEN [Tang et al., 2022b] https://github.com/jiaqima/SODEN

Dynamic-DeepHit [Lee et al., 2019] https://github.com/chl8856/Dynamic-DeepHit

Companion code repository. To help readers with starting to work with deep survival analysis
models in Python, we provide Python code that accompanies our monograph in the following
code repository:

https://github.com/georgehc/survival-intro

This repository includes sample code for every model and every evaluation metric that we discuss
in detail. Our code shows how to train different deep survival models, use them to predict time-
to-event outcomes, and evaluate the quality of the predictions using some standard evaluation
metrics. Our code is primarily in the form of Jupyter notebooks, which include a mix of code cells
and explanations for different parts of the code. As we progress through the monograph, we point
to specific Jupyter notebooks in our code repository for readers interested in seeing how concepts
we cover get translated into code.

Our code has been written with pedagogy in mind. We stick to using standard PyTorch conven-
tions, and we have written our notebooks at a level that exposes the main neural net optimization
loop (minibatch gradient descent) and highlights where base neural networks appear in various
deep survival models. Our code aims to make various preprocessing and model training steps
more transparent, so that if one wants to modify any part of these, doing so should be straightfor-
ward.

Moreover, for ease of exposition, our notebooks that accompany Sections 2 through 5 all use the
same standard dataset SUPPORT [Knaus et al., 1995], for which we predict the time until death of
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severely ill hospitalized patients with various diseases.7 Our notebooks that accompany Section 6
use the PBC dataset [Fleming and Harrington, 1991], which is on predicting the time until death and
the time until transplantation of patients with primary biliary cirrhosis of the liver; here, death and
transplantation are viewed as competing events where we only observe whichever one happens
first for a training patient (or alternatively, if neither has happened for a training patient, then we
at least know the last check-up time with the patient).

Importantly, in our Jupyter notebooks, we do not extensively optimize hyperparameters for any
particular deep survival model to try to push the prediction performance of the model to be as good
as possible. Thus, the final evaluation scores obtained in our notebooks should not be interpreted as
the best possible scores achievable by the different models we implement. Furthermore, our code
is not written to be “production-grade” with, for instance, extensive sanity checks or unit tests.

Lastly, we anticipate occasionally updating our code notebooks to accommodate updates to
software packages, to improve exposition or clarity, or to fix bugs that are discovered. The latest
version will be available at the GitHub link provided above.

2 Basic Time-to-Event Prediction Setup

We now describe the standard problem setup in time-to-event prediction. We use this problem
setup for much of the rest of the monograph. Our goal in this section is to give a reasonably self-
contained introduction to the math involved for time-to-event prediction. By the end of this section,
the reader should have an understanding of what the standard problem setup is, how prediction
tasks are defined, what the general strategy is for learning many time-to-event prediction models
(maximum likelihood), how to measure prediction accuracy, and how the time-to-event prediction
setup relates to the more mainstream prediction tasks in machine learning of classification and
regression.

This section is organized as follows:

• (Section 2.1) We first go over the statistical framework for the standard time-to-event predic-
tion problem setup.

• (Section 2.2) We then go over time-to-event prediction when modeling time as continuous.
Note that we separate our coverage of continuous vs discrete time as the math involved is
a bit different. Beginning by modeling time as continuous, we go over common prediction
tasks that correspond to estimating a few different “target” functions. By relating the statis-
tical framework from Section 2.1 to these target functions, we can state a general likelihood
function. This likelihood function is important because most time-to-event prediction mod-
els we know of can be stated as maximizing a likelihood function, possibly accounting for
additional regularization or loss terms, or constraints. Along the way, we provide a couple
illustrative examples of simple parametric time-to-event prediction models (special cases of
what are called proportional hazards models [Cox, 1972] and accelerated failure time models
[Prentice and Kalbfleisch, 1979]).

• (Section 2.3) Turning to modeling time as discrete, we again go over prediction tasks in terms
of target functions, followed by going over the standard likelihood function used. The ex-
ample models we showcase are DeepHit [Lee et al., 2018], Nnet-survival [Gensheimer and
Narasimhan, 2019], the Kaplan-Meier estimator [Kaplan and Meier, 1958], and the Nelson-
Aalen estimator [Nelson, 1969, Aalen, 1978]. In the discrete time setting (unlike in continuous
time), the likelihood function relates to classification at different discretized time points.

• (Section 2.5) Next, we discuss some approaches to evaluating the quality of predictions.
Specifically, we go over ranking-based accuracy metrics, various mean absolute error and
mean squared error metrics, and a calibration metric.

7For these particular code notebooks, we also provide an example of how to modify the code to work with different data,
with the concrete example being training on the Rotterdam tumor bank dataset [Foekens et al., 2000] and then testing on the
German Breast Cancer Study Group dataset [Schumacher et al., 1994]; these two datasets are on predicting survival times
of breast cancer patients.
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• (Section 2.6) We provide additional commentary on how the standard time-to-event predic-
tion setup relates to classification and regression. Notably, there is an approach called survival
stacking [Craig et al., 2021] that enables one to use existing probabilistic binary classifiers for
time-to-event prediction, but this reduction comes at a potentially steep computational cost.

We occasionally mention technicalities with details that we defer to Section 2.A. Understanding
these details is not essential for understanding the rest of the monograph.

For ease of exposition, we phrase terminology in terms of time until death. Of course, as we
already pointed out in Section 1, the critical event of interest in real applications need not be death.

2.1 Standard Right-Censored Statistical Framework

We assume that we have n training points (X1, Y1, ∆1), . . . , (Xn, Yn, ∆n), where training point i ∈ [n]
has raw input Xi ∈ X (such as a fixed-length feature vector, an image, a text document, etc),
observed time Yi ∈ [0, ∞), and “event indicator” ∆i ∈ {0, 1}: if ∆i = 1 (the critical event happened
for the i-th point), then Yi is the true survival time; otherwise, Yi is the “censoring” time (which
could be thought of as the last time we checked on the i-th point, when it was still alive). Classically,
each data point corresponds to a different person.

We use X to denote the random variable corresponding to a generic raw input, T to denote the
random variable corresponding to the true (possibly unobserved) survival time corresponding to
raw input X, and C to denote the random variable corresponding to the true (possibly unobserved)
censoring time corresponding to raw input X. For these three random variables, we assume that
there are the following three probability distributions that are unknown:

• PX is the probability distribution for random raw input X, where we assume that the support
of this distribution is the raw input space X (we formally define the support in Section 2.A.1).
In this monograph, we take X to be any input space that standard neural network software
can work with.

• PT|X(·|x) is the conditional probability distribution of survival time T given X = x.

• PC|X(·|x) is the conditional probability distribution of censoring time C given X = x.

The training points (X1, Y1, ∆1), . . . , (Xn, Yn, ∆n) are assumed to be independent and identically
distributed (i.i.d.), where each point (Xi, Yi, ∆i) for i ∈ [n] is generated as follows:

1. Sample raw input Xi from PX .

2. Sample true survival time Ti from PT|X(·|Xi).

3. Sample true censoring time Ci from PC|X(·|Xi).

4. If Ti ≤ Ci (death happens before censoring): output Yi = Ti and ∆i = 1 (no censoring).

Otherwise: output Yi = Ci and ∆i = 0 (the true survival time is censored).

Note that conditioned on Xi, the two random variables Ti and Ci are independent (this assumption
is commonly referred to as “independent censoring”). Moreover, even though Ti and Ci show up in
the generative procedure, we do not observe both of them. Instead, we observe exactly one of them.
The one we observe is stored in the variable Yi, and the variable ∆i tells us whether we observed
the survival time (when ∆i = 1) or the censoring time (when ∆i = 0) for the i-th training point.

We point out that step 4 of the generative procedure above could equivalently be written in a
more concise manner: we set the observed time to be Yi = min{Ti, Ci} and the event indicator to be
∆i = 1{Ti ≤ Ci}, where 1{·} is the indicator function which is equal to 1 if its argument is true and
is equal to 0 otherwise. Notationally, for a generic random raw input X with true survival time T
and true censoring time C, we denote the observed time as Y = min{T, C} and the event indicator
∆ = 1{T ≤ C}. In other words, each training point (Xi, Yi, ∆i) is i.i.d. with the same distribution
as (X, Y, ∆).
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Technically, the statistical framework that we have described is referred to as right-censored,
which just means that for the censored data (the data for which ∆i = 0), the true survival time is
after the observed censoring time. We discuss other types of censored data in Section 7.1 (namely,
where the survival time is some time before the observed censoring time or, separately, where the
survival time is known to be within an interval).

Remark 2.1 (Defining time 0). Extremely importantly, we have to be precise what we mean
by time 0 across the training data (sometimes, this time is referred to as the “time of ori-
gin”). Put another way, for the i-th point, exactly what time is Yi measured starting from?
For example, for a video streaming service that wants to predict the time until a customer
stops watching a show, time 0 could be defined to mean when each the customer first starts
streaming the show. Thus, for different customers, their time 0 could correspond to differ-
ent actual world times. In a healthcare example, if we are looking at coma patients in an
intensive care unit (ICU) and we want to predict the time until they awaken, then we may
want to define each patient’s time 0 to mean when they were first admitted to the ICU. In
general, time 0 is typically defined to correspond to what is called a “synchronization event”
(in the two aforementioned examples, this synchronization event would be a user starting
to stream a show, and a patient getting admitted to the ICU).

2.2 Time-to-Event Prediction in Continuous Time

Modeling time as continuous, we formally define a few common time-to-event prediction tasks,
which could be thought of as estimating specific prediction target functions (Section 2.2.1). Using
the statistical framework from Section 2.1, we can then derive a likelihood function that we can
maximize to learn a time-to-event prediction model (Section 2.2.2).

Key assumptions. For test raw input x ∈ X , we assume that the survival time T conditioned on
X = x is a continuous random variable with probability density function (PDF) f (t|x) and a cumu-
lative distribution function (CDF) F(t|x) =

∫ t
0 f (u|x)du; either of these functions fully characterizes

the distribution PT|X(·|x).

2.2.1 Prediction Targets

Survival function. The first prediction target (also called an estimand in statistics terminology) that
we present is called the conditional survival function, given by

S(t|x) := P(survive beyond time t | raw input is x)
= P(T > t|X = x)
= 1−P(T ≤ t|X = x)
= 1− F(t|x), (1)

where t ≥ 0 and x ∈ X . In this monograph, we refer to the conditional survival function S(·|x) sim-
ply as the survival function since our notation already indicates that we are conditioning on x. Pre-
dicting S(·|x) means estimating an entire function (i.e., a curve)—not just a single number (survival
time)—for test raw input x. In literature, this function is sometimes called the survivor function (e.g.,
Kalbfleisch and Prentice 1980), the reliability function (e.g., Ebeling 2019), or the complementary CDF
(e.g., Downey 2011).

As equation (1) indicates, the true survival function S(·|x) is 1 minus the CDF F(·|x). A few
implications are as follows:

(a) S(·|x) = 1 − F(·|x) monotonically decreases from 1 to 0 since any CDF monotonically in-
creases from 0 to 1.

(b) Estimating the function S(·|x) is equivalent to estimating the CDF F(·|x), which means that
we aim to estimate the conditional survival time distribution PT|X(·|x).
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Figure 2: Example of a survival function and its median and mean survival times.

(c) If we want a single number survival time estimate for raw input x, we can back one out if we
know (an estimate of) S(·|x). We give two ways of doing this:

• Median survival time. Where a CDF crosses 1/2 corresponds to a median of a distribution,
so finding a time t for which S(t|x) = 1− F(t|x) = 1/2 gives a median survival time of
raw input x. In practice, we only have an estimate Ŝ(·|x) of S(·|x) so we find t such that
Ŝ(t|x) ≈ 1/2.

• Mean survival time. For any nonnegative random variable A, recall that E[A] =∫ ∞
0 P(A > u)du. Thus, the mean survival time of raw input x is E[T|X = x] =∫ ∞
0 P(T > u|X = x)du =

∫ ∞
0 S(u|x)du, the area under the survival function. In prac-

tice, we numerically integrate the survival function estimate Ŝ(·|x).
See Figure 2 for an example survival function and its corresponding median and mean sur-
vival times.8

Different time-to-event prediction models make different assumptions on S(·|x) and often predict
transformed variants of S(·|x) rather than predicting S(·|x) directly. The next two prediction targets
we discuss are both transformed versions of S(·|x).
Hazard function. A transformed version of S(·|x) that is commonly predicted is the so-called
hazard function:

h(t|x) := − d
dt

log S(t|x) = −
d
dt S(t|x)
S(t|x) = −

d
dt [1− F(t|x)]

S(t|x) =
f (t|x)
S(t|x) , (2)

where, as a reminder, f (·|x) is the PDF of distribution PT|X(·|x). The right-most expression of equa-
tion (2) says that the hazard function is the instantaneous rate of death conditioned on surviving up to time t
for raw input x. Importantly, for the same reason why PDFs are nonnegative but could otherwise
have arbitrarily large positive values, the hazard function is also only nonnegative and could have
arbitrarily large positive values. Perhaps the most widely used time-to-event prediction model, the
Cox proportional hazards model [Cox, 1972], is stated in terms of the hazard function.

8In practice, we may only know or have an estimate of S(t|x) when t is not too large. For instance, we might only know
S(t|x) for all t ∈ [0, tmax] where tmax is some finite time horizon. In this case, it is possible that S(tmax|x) > 1/2, so that we
would only know that the median survival time is some time after tmax. In this scenario, if we would still like a median
survival time estimate that is a single number, then we would need some extrapolation strategy (which could mean having
some parametric model for what S(t|x) looks like for t > tmax). Similarly, if we only know S(t|x) up to some time horizon
tmax, then we would not be able to exactly compute the integral

∫ ∞
0 S(t|x)dt to come up with a mean survival time estimate;

we would need some way to extrapolate S(t|x) for t > tmax to assist us in computing the integral.
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Figure 3: The survival function S(·|x) from Figure 2 along with its hazard h(·|x) and cumulative
hazard H(·|x) functions.

If we know h(·|x), then we can recover S(·|x) since

h(t|x) = − d
dt

log S(t|x) ⇐⇒
∫ t

0
h(u|x)du = − log S(t|x)

⇐⇒ S(t|x) = exp
(
−
∫ t

0
h(u|x)du

)
. (3)

Cumulative hazard function. Another commonly predicted transformed version of S(·|x) is the
cumulative hazard function:

H(t|x) :=
∫ t

0
h(u|x)du. (4)

From equation (3), we see that S(t|x) = exp(−H(t|x)), so if we know H(·|x), then we can recover
S(·|x). Meanwhile, equation (4) implies that h(t|x) = d

dt H(t|x), so if we know H(·|x), then we
can recover h(·|x). Some time-to-event prediction models directly estimate the cumulative hazard
function such as random survival forests [Ishwaran et al., 2008].

An example survival function S(·|x) and its corresponding hazard function h(·|x) and cumu-
lative hazard function H(·|x) are shown in Figure 3. Note that whereas S(·|x) and H(·|x) are
monotonic functions, h(·|x) need not be monotonic.

Because we will often convert between f (·|x), F(·|x), S(·|x), h(·|x), and H(·|x) later in the
monograph, we summarize the relationship between these functions below.

Summary 2.1 (Continuous time prediction targets). Suppose that the key assumptions
stated at the start of Section 2.2 hold. Let x ∈ X . The following equations show how
the PDF f (·|x), the CDF F(·|x), the survival function S(·|x), the hazard function h(·|x), and
the cumulative hazard function H(·|x) are related (where we have time t ≥ 0):

f (t|x) = d
dt

F(t|x) = d
dt

(1− S(t|x)) = h(t|x)S(t|x),

F(t|x) =
∫ t

0
f (u|x)du = 1− S(t|x),

S(t|x) = 1− F(t|x) =
∫ ∞

t
f (u|x)du = e−H(t|x) = e−

∫ t
0 h(u|x)du,

h(t|x) = dH(t|x)
dt

= − d
dt

log S(t|x) = f (t|x)
S(t|x) ,

H(t|x) = − log S(t|x) =
∫ t

0
h(u|x)du.

Importantly, any of these functions fully specifies the conditional survival time distribution
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PT|X(·|x).

2.2.2 Likelihood and Example Models (Parametric Proportional Hazards and Accelerated Fail-
ure Time Models)

Now that we have presented the standard right-censored statistical framework and defined some
common prediction targets, we state the likelihood function commonly used in deriving many
time-to-event prediction models. Specifically, across the n i.i.d. training data, we define the follow-
ing likelihood that does not depend on the censoring distribution:

L :=
n

∏
i=1

{
f (Yi|Xi)

∆i S(Yi|Xi)
1−∆i

}
. (5)

This likelihood could be parsed in an intuitive manner: for the i-th point, if ∆i = 1 (so the time-
to-event outcome is not censored), then the contribution to the product is the PDF of PT|X(·|Xi)
evaluated at the observed time Yi. Otherwise if ∆i = 0, the contribution to the product is the
probability of seeing a true survival time larger than Yi given raw input Xi. This latter case crucially
uses the observation that, under the statistical framework of Section 2.1, conditioned on ∆i = 0 and
on Xi, the only information we know about the true survival time Ti is that it is after Yi.

In practice, many time-to-event prediction models are derived by setting one of the conditional
functions in Summary 2.1 to have some parametric form. For instance, we could parameterize
the hazard function by setting h(t|x) = h(t|x; θ) for some user-specified function h (such as a
multilayer perceptron where the final output is a single number constrained to be nonnegative)
with parameter θ. In general, the variable θ could consist of multiple parameters, as we see in the
following example.

Example 2.1 (Exponential time-to-event prediction model). Suppose that the raw input
space is X = Rd, and we set h(t|x) to be equal to

h(t|x; θ) := eβ⊤x+ψ for t ≥ 0, x ∈ X , (6)

where β ∈ Rd and ψ ∈ R are parameters, and β⊤x = ∑d
j=1 β jxj is the Euclidean dot

product between β and x. Here, θ (which includes all the parameters) would be given by
θ = (β, ψ) ∈ Rd ×R. In this toy example, the model for the hazard does not depend on the
input time t.

We point out that for this toy example, the survival function corresponds to an expo-
nential distribution, which is why we refer to this model as an exponential time-to-event
prediction model. In particular, to show why the survival function is for an exponential
distribution, we calculate the cumulative hazard function H(t|x) from h(t|x) and then we
calculate S(t|x) from H(t|x) (using the conversions from Summary 2.1):

H(t|x) =
∫ t

0
h(u|x; θ)du =

∫ t

0
eβ⊤x+ψdu = teβ⊤x+ψ, (7)

S(t|x) = exp(−H(t|x)) = exp(−teβ⊤x+ψ). (8)

Here, S(t|x) corresponds to an exponential distribution with rate parameter eβ⊤x+ψ.

Before we can plug in a parametric form of h(t|x) (such as equation (6)) into the likelihood
function (equation (5)), we first rewrite equation (5) in terms of the hazard function. Recall from

Summary 2.1 that: (i) f (t|x) = h(t|x)S(t|x)), and (ii) S(t|x) = e−
∫ t

0 h(u|x)du. Using (i) and (ii), we
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rewrite equation (5) as

L =
n

∏
i=1

{
f (Yi|Xi)

∆i S(Yi|Xi)
1−∆i

}

(i)
=

n

∏
i=1

{
h(Yi|Xi)

∆i S(Yi|Xi)
}

(ii)
=

n

∏
i=1

{
h(Yi|Xi)

∆i exp
(
−
∫ Yi

0
h(u|Xi)du

)}
. (9)

Next, we plug in h(t|x) = h(t|x; θ) to get the following likelihood function (that we now emphasize
to be a function of θ):

L(θ) =
n

∏
i=1

{
h(Yi|Xi; θ)∆i exp

(
−
∫ Yi

0
h(u|Xi; θ)du

)}
.

We then estimate θ by solving the maximum likelihood optimization problem θ̂ := arg maxθ L(θ)
using, for instance, some variant of gradient ascent. Commonly, the log likelihood is used in the
optimization instead, which of course yields the same solution, i.e., θ̂ = arg maxθ logL(θ), where

logL(θ) = log
n

∏
i=1

{
h(Yi|Xi; θ)∆i exp

(
−
∫ Yi

0
h(u|Xi; θ)du

)}

=
n

∑
i=1

{
∆i log h(Yi|Xi; θ)−

∫ Yi

0
h(u|Xi; θ)du

}
. (10)

Especially as our monograph emphasizes deep time-to-event prediction models, we point out that
usually when working with standard neural network software, we phrase learning a neural net-
work in terms of minimizing a loss function. Specifically, we commonly set the loss function to be
the negative log likelihood (NLL), averaged across training data:

LHazard-NLL(θ) := − 1
n

logL(θ)

= − 1
n

n

∑
i=1

{
∆i log h(Yi|Xi; θ)−

∫ Yi

0
h(u|Xi; θ)du

}
. (11)

The averaging helps normalize the resulting loss function’s values as we vary the number of train-
ing points n.9 We use a standard neural network optimizer to minimize this loss in minibatches.

Example 2.2 (Exponential time-to-event prediction model, continued). Continuing with Ex-
ample 2.1, where X = Rd, θ = (β, ψ) ∈ Rd × R, and h(t|x; θ) = eβ⊤x+ψ, we plug this
parametric form of h(t|x; θ) into equation (11) to get

LHazard-NLL(β, ψ) = − 1
n

n

∑
i=1

{
∆i(β⊤Xi + ψ)−

∫ Yi

0
eβ⊤Xi+ψdu

}

= − 1
n

n

∑
i=1

{
∆i(β⊤Xi + ψ)−Yieβ⊤Xi+ψ

}
.

We then numerically minimize the loss LHazard-NLL(β, ψ) with respect to β and ψ using a

9For example, commonly, the training data are split into minibatches for minibatch gradient descent, where we can tune
how large these minibatches are (i.e., the batch size). We can look at how the loss function values change as we increase the
number of optimization steps and as we vary the batch size. Normalizing helps make sure that the loss function values are
comparable across different batch sizes.
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neural network optimizer:

(β̂, ψ̂) := arg min
(β,ψ)∈Rd×R

LHazard-NLL(β, ψ).

For any test raw input x ∈ X , we can predict the survival, hazard, or cumulative functions
by just plugging in the estimates β̂ and ψ̂ into equations (8), (6), and (7) respectively.

Our companion code repository includes a Jupyter notebook that implements this ex-
ponential time-to-event prediction model applied to the SUPPORT dataset [Knaus et al.,
1995].a Note that this is the first Jupyter notebook of the monograph and includes an expla-
nation of the basic experimental setup used for all of our Jupyter notebooks from Sections 2
to 5. The notebooks accompanying Section 6 also largely build off this first Jupyter note-
book. Thus, for the reader interested in learning how to code with deep survival models,
we highly recommend going over this first Jupyter notebook in detail prior to looking at the
later notebooks. The overall structure of the notebooks is the same: we load and preprocess
data, we learn a survival model using training data (typically using minibatch gradient de-
scent), we predict survival functions of test data, and finally we compute evaluation metrics
(discussed later in Section 2.5) on test data.

We also provide a modified version of the first notebook that, instead of using the SUP-
PORT dataset, trains on the Rotterdam tumor bank dataset [Foekens et al., 2000] and tests
on the German Breast Cancer Study Group dataset [Schumacher et al., 1994].b This second
notebook aims to show what code changes are needed to work with different data but is
otherwise the same as the first notebook. The rest of the code notebooks for Sections 2 to 5
use the SUPPORT dataset.

ahttps://github.com/georgehc/survival-intro/blob/main/S2.2.2_Exponential.ipynb
bhttps://github.com/georgehc/survival-intro/blob/main/S2.2.2_Exponential_RotterdamGBSG.ipynb

Example 2.3 (Weibull time-to-event prediction model). Suppose that X = Rd, and we set
h(t|x) to be

h(t|x; θ) := teϕ−1e(β⊤x)eϕ+ψ+ϕ for t ≥ 0, x ∈ X . (12)

This is a generalization of the exponential time-to-event prediction model (from Exam-
ples 2.1 and 2.2), which corresponds to the special case where ϕ = 0. In this more general
case, the collection of parameters is θ = (β, ψ, ϕ) ∈ Rd ×R×R, and the survival function
corresponds to a Weibull distribution. To see this, we calculate the cumulative hazard and
survival functions:

H(t|x) =
∫ t

0
h(u|x; θ)du

=
∫ t

0
teϕ−1e(β⊤x)eϕ+ψ+ϕdu = teϕ

e(β⊤x)eϕ+ψ, (13)

S(t|x) = exp(−H(t|x)) = exp(−teϕ
e(β⊤x)eϕ+ψ)

= exp

(
−
(

t
exp(−β⊤x− ψe−ϕ)

)eϕ)
. (14)

Here, S(t|x) corresponds to a Weibull distribution with shape parameter eϕ and scale pa-
rameter exp(−β⊤x − ψe−ϕ). In particular, S(t|x) is of the form exp

(
− ( t

scale )
shape). Note

that we use the definition of the Weibull scale parameter found in standard software pack-
ages such as SciPy [Virtanen et al., 2020] and R [R Core Team, 2021, “stats” package]. Some
texts define the Weibull scale parameter differently (e.g., Collett 2023) although typically the
Weibull shape parameter is defined the same way.a
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In terms of learning model parameters, we can use a neural network optimizer to mini-
mize the loss from equation (11), which in this case is equal to

LHazard-NLL(β, ψ, ϕ)

= − 1
n

n

∑
i=1
{∆i log(Yeϕ−1

i e(β⊤Xi)eϕ+ψ+ϕ)− (Yi)
eϕ

e(β⊤Xi)eϕ+ψ}

= − 1
n

n

∑
i=1
{∆i[(eϕ − 1) log Yi + (β⊤Xi)eϕ + ψ + ϕ]

− (Yi)
eϕ

e(β⊤Xi)eϕ+ψ}.

Similar to how we proceeded in Example 2.2, we would obtain the estimates (β̂, ψ̂, ϕ̂) :=
arg min(β,ψ,ϕ)∈Rd×R×R LHazard-NLL(β, ψ, ϕ), and plug the estimates β̂, ψ̂, ϕ̂ into equa-
tions (14), (12), and (13) to predict survival, hazard, and cumulative hazard functions. We
provide a Jupyter notebook that implements this Weibull time-to-event prediction model.b

aAs a technical remark, we point out that our exposition of the Weibull model is not standard compared to
what is in existing literature (see, for instance, Section 12.2 of Klein and Moeschberger [2003]) in that we have
intentionally stated the model so that the parameters β, ψ, and ϕ are unconstrained. We use this unconstrained pa-
rameterization because commonly neural network optimizers treat parameters as unconstrained. Standard tricks
are used to constrain parameters. For example, to constrain a scalar parameter λ ∈ R to be nonnegative, we could
define λ = exp(φ), treating φ ∈ R to be an unconstrained parameter that we optimize over (instead of optimizing
over λ). More generally, we could set λ = g(φ), where g : R → [0, ∞) is any activation function that outputs a
nonnegative value (such as softplus or ReLU). To constrain a parameter to be between 0 and 1, a sigmoid activation
could be used. To constrain a collection of parameters to form a probability distribution, the softmax activation
function could be used. Etc.

bhttps://github.com/georgehc/survival-intro/blob/main/S2.2.2_Weibull.ipynb

The exponential and Weibull time-to-event prediction models are special cases of what are
called proportional hazards models, the main topic of Section 3. As a preview, proportional hazards
models assume that the hazard function has the factorization

h(t|x) = h0(t; θ)ef(x;θ) for t ≥ 0, x ∈ X ,

for some functions (e.g., neural networks) h0(·; θ) : [0, ∞) → [0, ∞) and f(·; θ) : X → R with
parameter variable θ. This factorization makes it clear that time t and raw input x contribute to
different multiplicative factors of h(t|x). Regardless of what x is, h(·|x) must be proportional to
h0(·; θ). Meanwhile, f(x; θ) ∈ R could be interpreted as a “risk score” for raw input x. When f(x; θ)
is larger, then this corresponds to the hazard h(t|x) being larger, which in turn corresponds to x
tending to have a shorter survival time.

In the exponential time-to-event prediction model, we have X = Rd, h0(t; θ) = eψ and f(x; θ) =
β⊤x, where θ = (β, ψ) ∈ Rd ×R. In the Weibull time-to-event prediction model, we have X = Rd,
h0(t; θ) = teϕ−1eψ+ϕ and f(x; θ) = (β⊤x)eϕ, where θ = (β, ψ, ϕ) ∈ Rd ×R×R.

As it turns out, the exponential and Weibull time-to-event prediction models are also special
cases of what are called accelerated failure time (AFT) models, which we discuss more in Section 5.1.2.
In a nutshell, AFT models assume that the survival function S(·|x) has the same shape across dif-
ferent raw inputs x except that for different x, this basic shape of the survival function could be
stretched along the time axis as to either accelerate or decelerate when death is likely to occur.
The neural ordinary differential equation model in Section 5 encompasses both deep proportional
hazards and deep AFT models.10

10This monograph does not cover classical (i.e., non-neural-network-based) AFT models in much detail, largely because
the deep survival models that we cover do not require the reader to know results regarding classical AFT models. However,
we would like to mention that classical AFT models are very commonly used (for example, the survival analysis losses
supported by XGBoost [Chen and Guestrin, 2016] include proportional hazards and AFT losses). For the reader interested
in learning more about classical AFT models that do not use neural networks, please see, for instance, Chapter 12 of the
textbook by Klein and Moeschberger [2003] or Chapter 3 of the textbook by Box-Steffensmeier and Jones [2004].
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2.3 Time-to-Event Prediction in Discrete Time

A key challenge of working in continuous time is that computing the (log) likelihood requires
evaluating integrals. Earlier, when we parameterized the continuous time likelihood in terms of
the hazard function h(·|x; θ), the likelihood involved terms of the form

∫ Yi
0 h(u|Xi; θ)du. For the

exponential and Weibull models, this integral could be evaluated in closed-form. However, to
model time-to-event outcomes in as flexible of a manner as possible, there would in general not be
a closed-form expression. To this end, many time-to-event prediction models discretize time into a
finite grid, converting integrals into easier-to-compute finite sums. Of course, some time-to-event
prediction problems are stated in discrete time to begin with (e.g., Huh et al. 2011).

In this section, we state the discrete time versions of the survival, hazard, and cumulative haz-
ard functions (Section 2.3.1). These discrete time versions do not behave quite the same way as
their continuous time analogues. In the case where time actually is continuous but we are discretiz-
ing it, we explain some common discretization approaches and also point out some interpolation
strategies (Section 2.3.2). Afterward, we state the standard discrete time likelihood function used in
practice, provide some example time-to-event prediction models, and relate the likelihood function
to classification (Section 2.4).

Key assumptions. Suppose that we discretize time into a user-specified grid of L time points
τ(1), τ(2), . . . , τ(L) ∈ [0, ∞) such that τ(1) < τ(2) < · · · < τ(L) (we point out how time can be dis-
cretized in Section 2.3.2). We assume that all training Yi values have been discretized to take on
values among τ(1), . . . , τ(L). In terms of notation, we use uppercase L since as we point out later, in
practice, the maximum number of time steps could be chosen in a way that depends on the training
data (which we view as random), in which case L would be a random variable.

2.3.1 Prediction Targets

We denote the survival, hazard, and cumulative hazard functions as S[·|x], h[·|x], and H[·|x] respec-
tively (throughout the monograph, we use functions with square brackets to indicate that time is
discrete). The CDF of distribution PT|X(·|x) is denoted as F[·|x] and its corresponding probability
mass function (PMF) is denoted as f [·|x]. Namely,

f [ℓ|x] := P(T = τ(ℓ)|X = x) for ℓ ∈ [L],

and

F[ℓ|x] := P(T ≤ τ(ℓ)|X = x) =
ℓ

∑
m=1

f [m|x].

Since f [·|x] is a PMF, this means that f [ℓ|x] ≥ 0 for each ℓ ∈ [L], and ∑L
ℓ=1 f [ℓ|x] = 1. Moreover,

we have f [ℓ|x] = F[ℓ|x]− F[ℓ− 1|x] with the convention that F[0|x] := 0.

Survival function. For x ∈ X , we define the discrete time survival function evaluated at time index
ℓ ∈ [L] to be

S[ℓ|x] := P(T > τ(ℓ)|X = x) = 1− F[ℓ|x] = 1−
ℓ

∑
m=1

f [m|x]. (15)

Thus, if we know either F[·|x] or f [·|x], then we can readily compute S[·|x] using the above equa-
tion. Meanwhile, if we know S[·|x], then we can easily compute F[·|x] = 1− S[·|x].

To compute f [·|x] given S[·|x], note that

f [ℓ|x] = F[ℓ|x]− F[ℓ− 1|x]
= (1− S[ℓ|x])− (1− S[ℓ− 1|x])
= S[ℓ− 1|x]− S[ℓ|x] for ℓ ∈ [L], (16)

where we use the convention S[0|x] := 1.
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Hazard function. Next, for time index ℓ ∈ [L], we define the discrete time hazard function h[ℓ|x] in
a similar manner as the continuous time version in equation (2). Namely, h[ℓ|x] is the probability
of dying at time τ(ℓ) conditioned on still being alive at time τ(ℓ) for raw input x:

h[ℓ|x] := P(T = τ(ℓ)|X = x,

still alive at time τ(ℓ)︷ ︸︸ ︷
T ≥ τ(ℓ) )

=
P(T = τ(ℓ), T ≥ τ(ℓ)|X = x)

P(T > τ(ℓ−1)|X = x)

=
P(T = τ(ℓ)|X = x)
P(T ≥ τ(ℓ)|X = x)

=
P(T = τ(ℓ)|X = x)

P(T > τ(ℓ−1)|X = x)

=
f [ℓ|x]

S[ℓ− 1|x] . (17)

Importantly, whereas the continuous time version h(t|x) is constrained to be nonnegative and could
possibly be larger than 1, in discrete time, h[ℓ|x] is a probability so it cannot be larger than 1.

Equation (17) tells us how to compute h[·|x] given both f [·|x] and S[·|x]. To compute h[·|x] only
using S[·|x], we note that by plugging equation (16) into equation (17), we obtain

h[ℓ|x] = S[ℓ− 1|x]− S[ℓ|x]
S[ℓ− 1|x] . (18)

This tells us how to convert from S[·|x] to h[·|x].
To convert from h[·|x] to S[·|x], we first derive the following recurrence relation:

S[ℓ|x] = P(T > τ(ℓ)|X = x)

= P(T > τ(ℓ−1)|X = x)P(T ̸= τ(ℓ)|X = x, T > τ(ℓ−1))

= P(T > τ(ℓ−1)|X = x)
︸ ︷︷ ︸

S[ℓ−1|x]

[
1−P(T = τ(ℓ)|X = x, T > τ(ℓ−1))︸ ︷︷ ︸

h[ℓ|x] using the initial line of equation (17)

]

= S[ℓ− 1|x](1− h[ℓ|x]).

By plugging in ℓ = 1, 2, . . . , we get that:

• S[1|x] = 1− h[1|x],
• S[2|x] = (1− h[1|x])(1− h[2|x]),
• S[3|x] = (1− h[1|x])(1− h[2|x])(1− h[3|x]),

and so forth. In general, the pattern that emerges is that

S[ℓ|x] =
ℓ

∏
m=1

(1− h[m|x]) for ℓ ∈ [L], (19)

which tells us how to convert an estimate of h[·|x] into one of S[·|x].
Equation (19) has the following interpretation: h[1|x] is the probability of dying at time index 1

for raw input x, so surviving beyond time index 1 happens with probability 1 − h[1|x]. Condi-
tioned on surviving time index 1, then the probability of dying at time index 2 is h[2|x]. Thus, the
probability of surviving beyond time index 2 conditioned on surviving past time index 1 for raw
input x is 1− h[2|x]; to get the probability without conditioning, we multiply by the probability
of the event we conditioned on: (1− h[1|x])(1− h[2|x]). The m-th term in the right-hand side of
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equation (19) is the probability that we survive beyond time index m conditioned on surviving all
previous time indices.

Cumulative hazard function. We define the discrete time cumulative hazard function as

H[ℓ|x] :=
ℓ

∑
m=1

h[m|x]. (20)

Thus, equation (20) tells us how to convert from h[·|x] to H[·|x]. Converting from H[·|x] to h[·|x]
can be done in a straightforward manner:

h[ℓ|x] = H[ℓ|x]− H[ℓ− 1|x] (21)

where H[0|x] := 0.
However, whereas in continuous time, we had H(t|x) = − log S(t|x), using the definition of

H[ℓ|x] in equation (20), it turns out that H[ℓ|x] is not equal to − log S[ℓ|x].

Proposition 2.1. Let x ∈ X . Suppose that h[ℓ|x] ∈ [0, 1) for all ℓ ∈ [L]. Then H[·|x] is a first-
order Taylor approximation of − log S[·|x]. In particular, from using a Taylor expansion, we
get

− log S[ℓ|x] = H[j|x] +
ℓ

∑
m=1

∞

∑
p=2

(h[m|x])p

p
︸ ︷︷ ︸

second and higher order
Taylor expansion terms

for ℓ ∈ [L].

We defer the proof of Proposition 2.1 to Section 2.A.2.
Instead, we can directly relate H[·|x] and S[·|x] in an exact manner by combining equations (20)

and (18) to get

H[ℓ|x] =
ℓ

∑
m=1

h[m|x] =
ℓ

∑
m=1

S[m− 1|x]− S[m|x]
S[m− 1|x] ,

which tells us how to convert from S[·|x] to H[·|x]. Converting from H[·|x] to S[·|x] can be done in
a two-step procedure: first compute h[·|x] based on H[·|x] using equation (21), and then compute
S[·|x] based on h[·|x] using equation (19).

We summarize the relationship between f [·|x], F[·|x], S[·|x], h[·|x], and H[·|x] below.

Summary 2.2 (Discrete time prediction targets). Suppose that the key assumptions stated at
the start of Section 2.3 hold, where we discretize time into the grid τ(1) < τ(2) < · · · < τ(L).
Let x ∈ X . The following equations show how the PMF f [·|x], the CDF F[·|x], the survival
function S[·|x], the cumulative hazard function H[·|x], and the hazard function h[·|x] are
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related (where time index ℓ ∈ [L]):

f [ℓ|x] = F[ℓ|x]− F[ℓ− 1|x] = S[ℓ− 1|x]− S[ℓ|x]
= h[ℓ|x]S[ℓ− 1|x],

F[ℓ|x] =
ℓ

∑
m=1

f [m|x] = 1− S[ℓ|x],

S[ℓ|x] = 1− F[ℓ|x] =
L

∑
m=ℓ+1

f [m|x] =
ℓ

∏
m=1

(1− h[m|x]),

h[ℓ|x] = H[ℓ|x]− H[ℓ− 1|x] = S[ℓ− 1|x]− S[ℓ|x]
S[ℓ− 1|x]

=
f [ℓ|x]

S[ℓ− 1|x] ,

H[ℓ|x] =
ℓ

∑
m=1

S[m− 1|x]− S[m|x]
S[m− 1|x] =

ℓ

∑
m=1

h[m|x].

We use the convention that F[0|x] = 0, S[0|x] = 1, and H[0|x] = 0. Importantly, any of the
above functions fully specifies the conditional survival time distribution PT|X(·|x).

2.3.2 Time Discretization and Interpolation

Time discretization. Assuming that time is not already discretized, then we have to decide on a
discretization method. There are many ways to do this. We begin with the classical example used
by the Kaplan-Meier estimator [Kaplan and Meier, 1958]: set τ(1) < τ(2) < · · · < τ(L) to be the
unique observed times among the Yi variables for which death happened. In other words, take the
set of times {Yi : i ∈ [n] such that ∆i = 1} and sort them (keeping only the unique values) to get
τ(1) < τ(2) < · · · < τ(L).

Importantly, discretizing time can be done with the help of the training data. As another ex-
ample, we could specify the number of time steps L that we want to use (e.g., 100) and then set
τ(1) to be the smallest (i.e., earliest) time seen among the Yi variables for which death happened,
and then set τ(L) to be the largest (i.e., latest) time seen among the Yi variables for which death
happened. Then, we could define the rest of the grid points so that they are evenly spaced apart
(i.e., τ(ℓ+1) = τ(ℓ) +

τ(L)−τ(1)
L−1 for ℓ ∈ [L− 1]). Alternatively, we could use even spacing on a log scale

(i.e., log τ(1), log τ(2), . . . , log τ(L) are evenly spaced), or even spacing in terms of percentiles (e.g., if
L = 5, we use the 0%, 25%, 50%, 75%, and 100% percentile values among observed times of death).
Of course, the time grid need not be set based on training data if the user has good intuition for
how to manually choose it.

As a technical remark, in equation (15), since we stated that f [·|x] is a PMF, this implies that
S(τ(L)) = 0. This is not a stringent assumption in that we could easily have set the time grid so that
time step L− 1 is the “last” time step and time step L is a placeholder time step for times that are
“too large”. For instance, if we discretize time using the Kaplan-Meier approach stated above, we
could instead set L− 1 to be the unique number of times of death (and so τ(L−1) is the largest time
of death encountered in the training data), and we then add a final time step L, where any Yi value
larger than the largest time of death gets discretized to be of the final time step L. During training
of many discrete time models, we do not actually need to specify a precise time for the last time
step (so that its time could just be considered “> τ(L−1)”), but if for whatever reason an actual time
is needed, some maximum time could be specified by the user.

Time interpolation. Sometimes a discrete time model is used, but when making predictions, we
may want to switch to using a different time grid from what was used during training (such as a
more fine-grain time grid). Naturally, the issue of how to interpolate (or even extrapolate) arises.
While a basic strategy like linear interpolation can be used, we point out that Kvamme and Borgan
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[2021] discuss more sophisticated interpolation strategies that assume either constant probability
density or constant hazard values in between time grid points. Which one works best depends on
the dataset at hand.

Importantly, if one wants to use some other interpolation strategy aside from the ones we men-
tioned already, we suggest checking that the interpolation method appropriately retains the mono-
tonicity of S(·|x) (i.e., the interpolated version should also monotonically decrease). Also, we point
out that commonly the earliest time grid point τ(1) is larger than 0, in which case a standard as-
sumption is that S(0|x) = 1 and S(·|x) decays from time 0 to time τ(1) (how it decays depends on
the choice of interpolation method).

2.4 Likelihood, Connection to Classification, and Example Models (DeepHit,
Nnet-survival, Kaplan-Meier, Nelson-Aalen)

We now cover the discrete time log likelihood and also relate it to classification. Along the way, we
present some example models. We introduce the notation κ(Yi) to denote the specific time index
(from 1, 2, . . . , L) that time Yi corresponds to (as a reminder, we assume that we have discretized all
Yi values to the values in τ(1), . . . , τ(L)). Then the likelihood function that does not depend on the
censoring distribution is

L :=
n

∏
i=1

{
f [κ(Yi)|Xi]

∆i S[κ(Yi)|Xi]
1−∆i

}
,

which is similar to the continuous time version from equation (5).

Example 2.4 (DeepHit). The DeepHit model [Lee et al., 2018] specifies the survival time
PMF f [·|x] in terms of a user-specified neural network f(·; θ) : X → [0, 1]L with parameter
variable θ so that: 



f [1|x]
f [2|x]

...
f [L|x]


 =




f1(x; θ)
f2(x; θ)

...
fL(x; θ)


 =: f(x; θ).

Note that the output of f(·; θ) needs to be a valid probability distribution (so that f [·|x] is a
valid PMF). As an example of how to enforce this, if f(·; θ) is a multilayer perceptron, then
we could set the last linear layer to output L numbers and have softmax activation.

We could learn θ by maximizing the likelihood function

L(θ) =
n

∏
i=1

{
f [κ(Yi)|Xi]

∆i S[κ(Yi)|Xi]
1−∆i

}

=
n

∏
i=1

{
f [κ(Yi)|Xi]

∆i

[ L

∑
m=κ(Yi)+1

f [m|Xi]

]1−∆i}

=
n

∏
i=1

{
[fκ(Yi)

(Xi; θ)]∆i

[ L

∑
m=κ(Yi)+1

fm(Xi; θ)

]1−∆i}
,

where the second equality uses Summary 2.2 (namely that S[ℓ|x] = 1 − F[ℓ|x] = 1 −
∑ℓ

m=1 f [m|x] = ∑L
m=ℓ+1 f [m|x]). In practice, to maximize L(θ), we could use a standard

neural network optimizer to numerically minimize the negative log likelihood averaged
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across training data:

LPMF-NLL(θ)

:= − 1
n

logL(θ)

= − 1
n

log
n

∏
i=1

{
[fκ(Yi)

(Xi; θ)]∆i

[ L

∑
m=κ(Yi)+1

fm(Xi; θ)

]1−∆i}

= − 1
n

n

∑
i=1

{
∆i log(fκ(Yi)

(Xi; θ))

+ (1− ∆i) log
( L

∑
m=κ(Yi)+1

fm(Xi; θ)

)}
.

Specifically, we compute
θ̂ := arg min

θ
LPMF-NLL(θ).

After obtaining estimate θ̂ for θ, we could predict the survival time PMF for any test raw
input x ∈ X using

f̂ [ℓ|x] := fℓ(x; θ̂ ),

from which we could back out estimates of the survival function S[ℓ|x], hazard function
h[ℓ|x], or cumulative hazard function H[ℓ|x] using the conversions from Summary 2.2. In
particular, we have:

ŜDeepHit[ℓ|x] =
L

∑
m=ℓ+1

f̂ [m|x] =
L

∑
m=ℓ+1

fm(x; θ̂ ),

ĥDeepHit[ℓ|x] =
f̂ [ℓ|x]

Ŝ[ℓ− 1|x]
=

fℓ(x; θ̂ )

∑L
m=ℓ fm(x; θ̂ )

,

ĤDeepHit[ℓ|x] =
ℓ

∑
m=1

ĥ[m|x] =
ℓ

∑
m=1

fm(x; θ̂ )

∑L
p=m fp(x; θ̂ )

.

To see DeepHit in code, please see our accompanying Jupyter notebook.a This is the first
Jupyter notebook of the monograph that goes over discretizing time prior to learning the
model. The same discretization code shows up in a number of our later Jupyter notebooks
that involve discrete time survival models.

We remark that the full DeepHit model is more general than the special case of it that we
present in this example. In particular, the full DeepHit model adds a second loss term re-
lated to ranking (the user has to tune a hyperparameter that trades off between the negative
log likelihood loss and the ranking loss) and, furthermore, the full model can keep track of
multiple kinds of critical events rather than only a single one such as death (this is referred
to as the “competing risks” setup). We present the full DeepHit model in Section 6.1.4 dur-
ing our coverage of competing risks.

A special case of how to specify the neural network f(·; θ) results in a time-to-event
prediction model called Multi-Task Logistic Regression [Yu et al., 2011, Fotso, 2018]. Details
on this connection are provided by Kvamme and Borgan [2021, Appendix C].

ahttps://github.com/georgehc/survival-intro/blob/main/S2.3.3_DeepHit_single.ipynb

Parameterizing the hazard function and connection to classification. In the continuous case, we
showed how we can parameterize the hazard function h(·|x) and minimize a negative log like-
lihood loss in terms of the hazard function. In discrete time, we could also choose to directly
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work with the hazard function h[·|x] (instead of working with the PMF f [·|x] as done by Deep-
Hit). The resulting hazard-function-based likelihood function looks a bit different from that of
continuous time (equation (9)) and relates to classification. Using Summary 2.2, we have: (i)
f [ℓ|x] = h[ℓ|x]S[ℓ− 1|x], and (ii) S[ℓ|x] = ∏ℓ

m=1(1− h[m|x]). Then using (i) and (ii), we obtain:

L =
n

∏
i=1

{
f [κ(Yi)|Xi]

∆i S[κ(Yi)|Xi]
1−∆i

}

(i)
=

n

∏
i=1

{
(h[κ(Yi)|Xi]S[κ(Yi)− 1|Xi])

∆i S[κ(Yi)|Xi]
1−∆i

}

(ii)
=

n

∏
i=1

{[
h[κ(Yi)|Xi]

κ(Yi)−1

∏
m=1

(1− h[m|Xi])

]∆i[ κ(Yi)

∏
m=1

(1− h[m|Xi])

]1−∆i}

=
n

∏
i=1

{
h[κ(Yi)|Xi]

∆i (1− h[κ(Yi)|Xi])
1−∆i

[ κ(Yi)−1

∏
m=1

(1− h[m|Xi])

]}
.

Take the log of both sides to get

logL =
n

∑
i=1

{
Bernoulli log likelihood (the negative of the so-called

binary cross entropy loss) at time index κ(Yi)︷ ︸︸ ︷
∆i log(h[κ(Yi)|Xi]) + (1− ∆i) log(1− h[κ(Yi)|Xi])

+
κ(Yi)−1

∑
m=1

log(1− h[m|Xi])

︸ ︷︷ ︸
death not encountered before time index κ(Yi)

}
. (22)

In particular, h[·|Xi] could be viewed as a probabilistic binary classifier for the i-th point where at
each time index ℓ ∈ [L], the classifier has a different predicted probability of death conditioned on
the i-th point still being alive at time index ℓ. Ideally, h[·|Xi] should be low for all time indices prior
to κ(Yi). Then at time index κ(Yi), if death happened, then we want h[·|Xi] to be high; otherwise,
we want h[·|Xi] to be low.

Notice that h[·|Xi] could be thought of as a multi-time-horizon classifier: regardless of what
time index we make a prediction for, we always condition on the same raw input Xi. In practice,
we could think of Xi as information collected prior to time index 1. Using this information, we
predict hazard probabilities for all time indices (or time horizons) 1, 2, . . . , L.

Example 2.5 (Nnet-survival). The Nnet-survival model [Gensheimer and Narasimhan,
2019] specifies the hazard function h[·|x] in terms of a user-specified neural network g(·; θ) :
X → RL with parameter variable θ. In particular,

g(x; θ) :=




g1(x; θ)
g2(x; θ)

...
gL(x; θ)


 ,

so each output of g(·; θ) corresponds to a different time index. Then Nnet-survival sets the
hazard function h[ℓ|x] equal to

h[ℓ|x; θ] :=
1

1 + e−gℓ(x;θ)
for ℓ ∈ [L], x ∈ X , (23)

which corresponds to applying the logistic function to each of the L outputs of g(·; θ), en-
suring that h[ℓ|x; θ] ∈ [0, 1] for every ℓ ∈ [L].
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To learn θ, we maximize the log likelihood in equation (22), which we instead state as
minimizing the negative log likelihood loss, averaged across training data:

LNnet-survival(θ) = −
1
n

n

∑
i=1

{
∆i log(h[κ(Yi)|Xi; θ])

+ (1− ∆i) log(1− h[κ(Yi)|Xi; θ])

+
κ(Yi)−1

∑
m=1

log(1− h[m|Xi; θ])

}
. (24)

Plugging equation (23) into equation (24) and using the fact that 1− h[ℓ|x; θ] = 1
1+egℓ(x;θ) , we

get

LNnet-survival(θ) =
1
n

n

∑
i=1

{
∆i log

(
1

1 + e−gκ(Yi)
(Xi ;θ)

)

+ (1− ∆i) log
(

1

1 + egκ(Yi)
(Xi ;θ)

)

+
κ(Yi)−1

∑
m=1

log
(

1
1 + egm(Xi ;θ)

)}

=
1
n

n

∑
i=1

{
∆i log(1 + e−gκ(Yi)

(Xi ;θ))

+ (1− ∆i) log(1 + egκ(Yi)
(Xi ;θ))

+
κ(Yi)−1

∑
m=1

log(1 + egm(Xi ;θ))

}
.

Thus, we numerically compute the estimate

θ̂ := arg min
θ

LNnet-survival(θ),

using a standard neural network optimizer.
Afterward, we can predict the hazard function and from that back out the cumulative

hazard and survival functions:

ĥNnet-survival[ℓ|x] := h[ℓ|x; θ̂] =
1

1 + e−gℓ(x;θ̂ )
,

ĤNnet-survival[ℓ|x] :=
ℓ

∑
m=1

ĥNnet-survival[m|x] =
ℓ

∑
m=1

1

1 + e−gm(x;θ̂ )
,

ŜNnet-survival[ℓ|x] :=
ℓ

∏
m=1

(1− ĥNnet-survival[m|x])

=
ℓ

∏
m=1

(
1− 1

1 + e−gm(x;θ̂ )

)
=

ℓ

∏
m=1

1

1 + egm(x;θ̂ )
.
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As discussed by Kvamme and Borgan [2021, Section 2.2], if the function g(·; θ) is a general
parametric function that is not restricted to be a neural network, then a number of authors
have discussed variants of this same model (e.g., Cox 1972, Brown 1975, Allison 1982, Tutz
and Schmid 2016). Our companion code repository includes a Jupyter notebook that covers
Nnet-survival.a

ahttps://github.com/georgehc/survival-intro/blob/main/S2.3.3_Nnet-survival.ipynb

An alternative way to write the same log likelihood. We now point out an equivalent way of
writing the log likelihood equation (22) that is useful for a few reasons: first, this alternative way of
writing the log likelihood more clearly shows how the log likelihood could be written as the sum
of log likelihood terms from different time indices. In fact, this way of writing the log likelihood
leads to a straightforward derivation of a method called the Kaplan-Meier estimator. Second, this
alternative way of writing the log likelihood is what is implemented in the now-standard software
package pycox [Kvamme et al., 2019].

We proceed by defining the matrix B ∈ {0, 1}n×L, where the i-th row, ℓ-th column entry is

Bi,ℓ := 1{Yi = τ(ℓ), ∆i = 1}
= 1{κ(Yi) = ℓ, ∆i = 1}
= ∆i1{κ(Yi) = ℓ}.

In other words, if the i-th data point’s survival time is censored, then the i-th row of B would be all
zeros. Otherwise, the i-th row of B would consist of all zeros except for a 1 at column κ(Yi). Note
that the matrix B in can readily be computed from (Y1, ∆1), . . . , (Yn, ∆n).11

Then equation (22) can be written as

logL =
n

∑
i=1

{
∆i log(h[κ(Yi)|Xi]) + (1− ∆i) log(1− h[κ(Yi)|Xi])

+
κ(Yi)−1

∑
m=1

log(1− h[m|Xi])

}

=
n

∑
i=1

κ(Yi)

∑
ℓ=1

{
Bi,ℓ log h[ℓ|Xi] + (1− Bi,ℓ) log(1− h[ℓ|Xi])

}
︸ ︷︷ ︸

Bernoulli log likelihood

, (25)

where we see that every term being added can be thought of as another classification problem. For
each data point i ∈ [n], at each time index ℓ ∈ [κ(Yi)], we check how well the probabilistic classifier
h[ℓ|Xi] agrees with the data Bi,ℓ.

We can further rearrange equation (25) by exchanging the inner and outer summations to show
that each time index can be viewed as having its own loss term:

logL

=
n

∑
i=1

κ(Yi)

∑
ℓ=1

{
Bi,ℓ log h[ℓ|Xi] + (1− Bi,ℓ) log(1− h[ℓ|Xi])

}

=
L

∑
ℓ=1

n

∑
i=1

1{ℓ ≤ κ(Yi)}
{

Bi,ℓ log h[ℓ|Xi] + (1− Bi,ℓ) log(1− h[ℓ|Xi])
}

︸ ︷︷ ︸
likelihood term for time index ℓ

. (26)

This way of writing the log likelihood makes it clear that we could view the problem as doing
classification at each of the L time indices (so that it is a multi-time-horizon classification problem).

11However, we cannot in general recover (Y1, ∆1), . . . , (Yn, ∆n) from only knowing the matrix B. To see this, note that if
the i-th point is censored, then the i-th row in B would consist of all zeros, from which we cannot recover Yi .
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One could, for example, parameterize h[·|x] so that each time index has its own parameters and
also there could be some parameters shared across time.

Example 2.6 (Kaplan-Meier and Nelson-Aalen estimators). Consider a simple setup where
for each time index ℓ ∈ [L], we predict the hazard probability to be θℓ ∈ [0, 1] (completely
disregarding what the raw input x is). In particular, we use the model

h[ℓ|x] := θℓ for ℓ ∈ [L], x ∈ X . (27)

Because the hazard does not depend on the raw input x, this simple model could be thought
of as specifying a population-level discrete time hazard function rather than one that actu-
ally accounts for raw inputs. Then the log likelihood in this case, using equation (26) and
now emphasizing the dependence on θ := (θ1, . . . , θL) ∈ [0, 1]L, is given by

L(θ) =
L

∑
ℓ=1

n

∑
i=1

1{ℓ ≤ κ(Yi)}
{

Bi,ℓ log θℓ + (1− Bi,ℓ) log(1− θℓ)
}

︸ ︷︷ ︸
=:L(ℓ)(θℓ) (likelihood term for time index ℓ)

.

Because L(θ) = ∑L
ℓ=1 L(ℓ)(θℓ), to maximize L(θ) with respect to θ, it suffices to maximize

each time index’s likelihood term L(ℓ)(θℓ) with respect to θℓ. This maximization has a
closed-form solution (we derive this solution in Section 2.A.3):

θ̂ℓ := arg max
θℓ
L(ℓ)(θℓ) =

D[ℓ]

N[ℓ]
for ℓ ∈ [L], (28)

where D[ℓ] is the number of deaths that occurred at time index ℓ within the training data,
and N[ℓ] is the number of points “at risk” (that could possibly die) at time index ℓ within
the training data. Formally, recalling that τ(ℓ) is the actual time corresponding to time index
ℓ ∈ [L]:

D[ℓ] :=
n

∑
j=1

1{Yj = τ(ℓ)}∆j =
n

∑
j=1

Bj,ℓ, (29)

N[ℓ] :=
n

∑
j=1

1{Yj ≥ τ(ℓ)} =
n

∑
j=1

1{κ(Yj) ≥ ℓ}. (30)

Note that these were classically written out in a table referred to as a “life table”. Of course,
on a computer, we would typically store D[·] and N[·] each in 1D arrays/“tables”.

Using the conversions in Summary 2.2, the estimated hazard, cumulative hazard, and
survival functions are (again, these are population-level estimates that do not depend on
the test raw input x):

ĥ[ℓ] := θ̂ℓ =
D[ℓ]

N[ℓ]
, (31)

Ĥ[ℓ] :=
ℓ

∑
m=1

ĥ[m] =
ℓ

∑
m=1

D[m]

N[m]
,

Ŝ[ℓ] :=
ℓ

∏
m=1

(1− ĥ[m]) =
ℓ

∏
m=1

(
1− D[m]

N[m]

)
.

In fact, Ĥ[ℓ] and Ŝ[ℓ] correspond to the discrete time versions of what are called the Nelson-
Aalen estimator [Nelson, 1969, Aalen, 1978] and the Kaplan-Meier estimator [Kaplan and
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Meier, 1958], respectively. These estimators are typically stated in continuous time, where
the only difference is that we simply interpolate the discrete time estimator so that at any
time t ≥ 0, we output the most recently seen discrete time index’s value (also called forward
filling interpolation).

Specifically, using the convention that τ(0) := 0 and ĤNA[0] := 0, the Nelson-Aalen
estimator is:

ĤNA(t) :=

{
Ĥ[ℓ− 1] if τ(ℓ−1) < t ≤ τ(ℓ) for ℓ ∈ [L],
Ĥ[L] if t > τ(L),

=
L

∑
m=1

1{τ(m) ≤ t}D[m]

N[m]
for t ≥ 0. (32)

Using the convention that τ(0) := 0 (again) and ŜKM[0] := 1, the Kaplan-Meier estimator is:

ŜKM(t) :=

{
Ŝ[ℓ− 1] if τ(ℓ−1) < t ≤ τ(ℓ) for ℓ ∈ [L],
Ŝ[L] if t > τ(L),

=
L

∏
m=1

(
1− D[m]

N[m]

)1{τ(m)≤t}
for t ≥ 0. (33)

To summarize, the Nelson-Aalen and Kaplan-Meier estimators are inherently discrete time
methods for predicting population-level cumulative hazard and survival functions, and
they correspond to using the population-level hazard function (equation (27)) that is es-
timated using maximum likelihood. We provide a Jupyter notebook that covers both the
Nelson-Aalen and Kaplan-Meier estimators, although we mostly focus on the latter.a

ahttps://github.com/georgehc/survival-intro/blob/main/S2.3.3_Kaplan-Meier_Nelson-Aalen.ipynb

The Kaplan-Meier and Nelson-Aalen estimators are considered nonparametric since they do not
impose a parametric form on the survival, cumulative hazard, or hazard functions, and typically
they are used in a manner where the time grid is taken to be all unique times of death (so that the
parameter variable θ ∈ [0, 1]L in Example 2.6 could grow in size since as we collect more training
data, the number of unique times of death L could increase).

In fact, under fairly general settings, as the amount of training data grows to ∞, the Kaplan-
Meier estimator provably converges to Spop(t) := P(T > t) for all times t that are not too large
[Földes and Rejtö, 1981] (after all, we cannot expect the Kaplan-Meier estimator to predict survival
probabilities well when t is close to or exceeds the maximum observed time of death). This theory
could be extended to the Nelson-Aalen estimator as well using the fact that the latter is a first-order
Taylor series approximation of the former (using the same argument as in Proposition 2.1).

In practice, the Kaplan-Meier estimator is extremely popular because it can easily be used to
compare groups. For example, suppose that we have a group of patients who received a treatment
and another group of patients who did not receive the treatment (the control group). We could
collect the ground truth labels (the Yi and ∆i variables) for all these patients and then compute
a Kaplan-Meier survival function just for those who received treatment and, separately, another
Kaplan-Meier survival function just for those in the control group. Plotting the two survival func-
tions overlaid over each other could be informative. In fact, there are also statistical tests for com-
paring the two groups (e.g., testing whether they are the “same”) such as the log-rank test [Mantel,
1966]. Of course, we can use this same idea provided that we have any approach for partition-
ing the complete collection of training data into different groups or clusters and, per cluster, fit a
Kaplan-Meier survival function. We will revisit this idea in Section 4.3.
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2.5 Evaluation Metrics for Time-to-Event Prediction

The fundamental challenge in measuring accuracy in time-to-event prediction problems is censor-
ing. Consider a training point Xi with observed time Yi and event indicator ∆i = 0. This means
that Yi is the censoring time Ci and not the true unobserved survival time Ti. Thus, even if a time-
to-event prediction model could come up with an estimate T̂i of Ti, we would not have a ground
truth value to compare T̂i with, and there is no guarantee that the observed censoring time Yi is
close to the true unobserved survival time Ti.

We now cover many common evaluation metrics for time-to-event prediction models. Through-
out this section, we define evaluation metrics just using the training data, mainly to avoid introduc-
ing new notation. Very importantly, these evaluation metrics could also be computed on validation
or test data.

We want to emphasize that none of the evaluation metrics we present is perfect for every sit-
uation. In fact, many evaluation metrics we present are known to be “improper” [Gneiting and
Raftery, 2007], meaning that the best score possible is not achieved by the true conditional survival
distribution (i.e., an evaluation metric can assign a better score to an incorrect model compared to
the correct model). With this cautionary note in mind, we generally recommend using multiple
evaluation metrics.

Our Jupyter notebooks that accompany Sections 2 through 5 show how to compute all the eval-
uation metrics that we discuss in detail in this section. Our code specifically computes these eval-
uation metrics on held out test data.

2.5.1 Ranking-Based Accuracy Metrics

We begin with accuracy metrics based on ranking. Sometimes, these ranking metrics are referred
to as “discrimination” metrics.

Harrell’s concordance index. One of the most common accuracy metrics used in survival analysis
is Harrell’s concordance index [Harrell et al., 1982], often abbreviated as “c-index”. The c-index
is the fraction of pairs of data points that are correctly ranked by a prediction procedure among
pairs of data points that can be ranked unambiguously, which as we will see shortly neatly handles
censored data. As it is a fraction, c-index values range from 0 to 1, where 1 means the most accurate.

We first work out a simple example before we more formally state the definition of c-index.

Example 2.7 (C-index calculation). Consider if we have three devices:

• Device A fails after 2 days of use.
• Device B fails after 10 days of use.
• Device C is still working after 6 days of use.

In other words, their respective (Yi, ∆i) values are (2, 1), (10, 1), and (6, 0). (We take time 0
to be when a device first starts being used. For simplicity, our subsequent exposition is
phrased as if we started using the devices at the same time.)

We know for sure that device A failed before device B, and that device A failed before
device C. However, we do not know which of device B or C fails first. Thus, in this example,
only two pairs (A & B, A & C) consist of data points that can be ranked unambiguously. If
a prediction procedure ranks device A as having a shorter survival time than device B, and
device A as having a longer survival time than device C, then only one out of the two pairs
is correctly predicted, so the c-index is 1/2.

From this example, we see that computing c-index values requires that our time-to-event pre-
diction model can rank different data points, which is a different task from what we had previously
presented in predicting survival, hazard, or cumulative hazard functions of different data points.
As we mentioned in Section 2.2.2 and will discuss in detail in Section 3, proportional hazards mod-
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els assign a risk score f(x; θ) ∈ R to each raw input x. Thus, we can rank data points by their risk
scores.

We now formally define the c-index in terms of a risk score function (such as the one from a
proportional hazards model that is learned using training data).

Definition 2.1 (C-index). Suppose that we have a risk score function r : X → R. For any
x, x′ ∈ X , if r(x) > r(x′), then the risk score predicts x to be “worse off” than x′ (e.g., x tends
to have a shorter survival time than x′).

We first define the set of “comparable pairs” (i.e., pairs of points that could be unam-
biguously ordered):

E := {(i, j) ∈ [n]× [n] : ∆i = 1, Yi < Yj}. (34)

Thus, each pair (i, j) ∈ E has data point i unambiguously having shorter survival time than
data point j since data point i died whereas data point j has a higher observed time (and it
does not matter whether data point j died or not). This means that ideally, we should have
r(Xi) > r(Xj).

Then we define
c-index :=

1
|E | ∑

(i,j)∈E
1{r(Xi) > r(Xj)},

which is a fraction between 0 and 1. Higher scores are better.

Note that the c-index as defined above aims to estimate

c-index∗ := P(r(X) > r(X′) | ∆ = 1, Y < Y′),

where the two points (X, Y, ∆) and (X′, Y′, ∆′) are i.i.d. samples from the generative procedure
in Section 2.1 (the random variable ∆′ is not needed though in defining c-index∗). We use the
superscript “∗” to indicate that c-index∗ is a population-level quantity that depends on the true
underlying distributions PX , PT|X and PC|X that we do not know in practice.
Connection to AUC: Similar to the area under the receiver operator characteristic curve (AUC) for
binary classification, a c-index score of 1/2 is considered low and can be achieved via “random
guessing”. As an example, consider the random risk score function rrandom : X → R, where
rrandom(x) just ignores the input x and outputs a random number sampled from a standard Gaus-
sian N (0, 1). One can show that the expected value of the c-index achieved by rrandom is 1/2. In
fact, when there is no censoring, then the population-level quantity c-index∗ is equal to the AUC
for an appropriately defined classification problem (see, for example, Harrell Jr et al. 1996, Koziol
and Jia 2009).
Key limitations: One problem with the c-index metric is that it requires having a risk score function
to rank points with. Many time-to-event prediction models do not explicitly learn such a function.
One workaround is simple: as we mentioned in Section 2.2.1, given any estimated survival func-
tion Ŝ(·|x), we could compute a median (or mean) survival time estimate of x, which would enable
us to rank points based on their estimated median (or mean) survival times. This workaround is
somewhat unsatisfying, as we convert each point’s predicted survival function into a single num-
ber, and we otherwise ignore the shape of the function.

Another problem with the c-index metric is that it is known to be improper for predicting the
risk of a data point dying within a pre-specified time horizon (e.g., 10 years). For details on this
result, see the paper by Blanche et al. [2019].
Handling ties in observed times: As a minor technical remark, we point out that the c-index calculation
is sometimes defined slightly differently to address what happens if there are two points i and j
(with i ̸= j) that have the same observed time Yi = Yj and at least one of them has died. For ease of
exposition, we do not include such pairs of points in the set E .

Time-dependent concordance index. Antolini et al. [2005] proposed a time-dependent concor-
dance index (denoted as Ctd) that aims to make better use of any predicted survival function Ŝ(·|x).
We state how to compute it before providing intuition for its definition.
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Definition 2.2 (Ctd index). Suppose that we have a survival function estimate Ŝ(·|x) for
any x ∈ X . Then using the set of comparable pairs E from equation (34), we define the Ctd

index as
Ctd :=

1
|E | ∑

(i,j)∈E
1{Ŝ(Yi|Xi) < Ŝ(Yi|Xj)},

which again is between 0 and 1. Higher scores are better.

To motivate this definition, consider two points (i, j) ∈ E , so point i died and Yi < Yj. Then at
the earlier time Yi, we would like point i to be predicted as having higher risk of death (in other
words, lower survival probability) than point j. We can use survival probability Ŝ(Yi|·) as a ranking
function in this case that is specific to time Yi, where Ŝ(Yi|x) being lower for x means that x is
predicted to be at higher risk of death at time Yi. Thus, for (i, j) ∈ E , we would like Ŝ(Yi|Xi) <

Ŝ(Yi|Xj).
Importantly, in the case of proportional hazards models (which we previewed at the end of

Section 2.2.2 and cover in detail in Section 3), the Ctd index is the same as the c-index defined
earlier, so that the Ctd index could be viewed as a generalization of the c-index to accommodate
any time-to-event prediction model that predicts Ŝ(·|x).

Lastly, we point out two theoretical properties. First, the Ctd score is an empirical estimate of
the population-level quantity

Ctd ∗ := P(Ŝ(Y|X) < Ŝ(Y|X′) | ∆ = 1, Y < Y′),

where just as before, we assume that the two points (X, Y, ∆) and (X′, Y′, ∆′) are i.i.d. samples from
the generative procedure in Section 2.1. Second, we point out that the Ctd score is known to be
improper [Rindt et al., 2022].

Truncated time-dependent concordance index. The c-index and Ctd-index scores each give only
a single number and do not provide an accuracy score at a specific user-specified time t ∈ [0, ∞).
Uno et al. [2011] presented a “truncated” version of the time-dependent concordance index that
does depend on t. We begin by defining the time-dependent set of comparable pairs:

E(t) := {(i, j) ∈ [n]× [n] : ∆i = 1, Yi < t, Yj > Yi}.
The only change compared to E is that E(t) has the additional constraint that Yi < t. Now for
(i, j) ∈ E(t), we would like Ŝ(t|Xi) < Ŝ(t|Xj). Then Uno et al. defined the following evaluation
metric (following Tang et al. [2022b], we denote this metric as Ctd

t ).

Definition 2.3 (Truncated time-dependent concordance index). Let t ≥ 0. Suppose that we
have a survival function estimate Ŝ(·|x) for any x ∈ X . Then using the time-dependent
set of comparable pairs E(t), we define the truncated time-dependent concordance index at
time t as

Ctd
t :=

∑(i,j)∈E(t) wi1{Ŝ(t|Xi) < Ŝ(t|Xj)}
∑(i,j)∈E(t) wi

,

where w1, w2, . . . , wn ∈ [0, ∞) are so-called inverse probability of censoring weights to be de-
fined in a moment (equation (35)). Values of Ctd

t are between 0 and 1, where higher is better.

If the weights w1, w2, . . . , wn are all set to be 1, then we would have a score function that looks
quite similar to the Ctd index except now looking at a specific time t. By having weights be un-
equal, we are changing how much each pair (i, j) ∈ E(t) contributes to both the numerator and the
denominator of Ctd

t .
We state how Uno et al. set the weights before providing intuition for why. In what fol-

lows, we assume that censoring time C is independent of raw input X, meaning that the
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conditional censoring distribution PC|X(·|x) is equal to a population-level censoring distribu-
tion PC(·). Define Scensor(t) := P(C > t) for t ≥ 0. To estimate this function, the
standard approach is to fit the Kaplan-Meier estimator (equation (33)) on the training labels
(Y1,1{∆1 = 0}), (Y2,1{∆2 = 0}), . . . , (Yn,1{∆n = 0}) (by switching censoring to be the critical
event of interest, we reason about time until censoring instead of time until death); the resulting
estimated Kaplan-Meier “survival” function is denoted Ŝcensor(·). Then we set

wi :=
1

(Ŝcensor(Yi))2
for i ∈ [n]. (35)

The intuition is that the set E(t) is a biased sample of possible pairs: a point (i, j) ∈ E(t) must
have point i not be censored. All else equal, had point i been censored instead (but had the same
true survival time), then its survival time would still be less than that of point j, but this single
change (whether point i was censored or not) would alter the value of Ctd

t . In particular, E(t) “over-
emphasizes” pairs (i, j) where point i is not censored, so we “up-weight” point i if its observed time
Yi is more likely to have been censored. Uno et al. [2011, Appendix A] make this argument precise
by formally showing that Ctd

t converges (as the amount of data goes to infinity) to

Ctd ∗
t := P

(
Ŝ(Y|X) < Ŝ(Y|X′) | Y < t, Y < Y′).

Notice that this true population-level target does not depend on the event indicator ∆. This sort of
weighting could be applied to the c-index and Ctd scores too if one wishes to modify them so that
they estimate population-level quantities that do not depend on ∆.

Remark 2.2 (Using validation or test data with Ctd
t ). As an important implementation detail,

we had mentioned that the evaluation metrics we present can be computed using validation
or test data. In the case of the Ctd

t metric, we would learn both the time-to-event prediction
model (that can predict Ŝ(·|x) for any x ∈ X ) and the censoring distribution’s right tail
probability function Ŝcensor(·) from training data. After learning these functions, we treat
them as fixed and evaluate Ctd

t on validation or test data.

We caution that if Ŝcensor(·) is a poor estimate of the true population-level Scensor(t) = P(C > t)
function, then the Ctd

t score with weights given by equation (35) may be suspect. Note that we
have made the simplifying assumption that censoring time C is independent of raw input X. If this
assumption does not hold, then we should replace Ŝcensor(·) in equation (35) with a version that
conditions on a given raw input (meaning that we instead aim to estimate the true population level
function Scensor(t|x) := P(C > t|X = x)). However, estimating Scensor(·|x) could be as difficult as
estimating the conditional survival function S(·|x), so that it is possible that the weights wi used
with the Ctd

t score in this case are unreliable.

Integrated truncated time-dependent concordance index. We point out that we could integrate
Ctd

t over time t to arrive at a single number. We would have to specify the limits of integration.

Definition 2.4 (Integrated truncated time-dependent concordance index). Suppose that we
have a survival function estimate Ŝ(·|x) for any x ∈ X . Let tmin ≥ 0 and tmax > tmin be user-
specified lower and upper limits of integration. Then we define the integrated truncated
time-dependent concordance index as

Ctd
[tmin,tmax]

:=
1

tmax − tmin

∫ tmax

tmin

Ctd
u du.

This score is also between 0 and 1, where higher is better.
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In practice, we numerically evaluate this integral along a time grid.

Time-dependent AUC. There are also time-dependent AUC scores [Uno et al., 2007, Hung and
Chiang, 2010], which we will only briefly cover since they are very similar to the truncated time-
dependent concordance index Ctd

t . The key idea is that for a fixed time t, we set up a binary clas-
sification problem of distinguishing between points who died no later than time t (the “positive”
class), and points who died after time t (the “negative” class). We take Ŝ(t|·) : X → [0, 1] to be the
probabilistic binary classifier that we aim to compute an AUC for. When this classifier predicts a
lower survival probability for x ∈ X , then this means that x is predicted to have a higher chance of
being in the positive class.

Then to estimate the AUC, Hung and Chiang [2010] showed that we can use the same equation
as the Ctd

t index (equation (71)) except with two small changes. First, we replace E(t) with

Ẽ(t) := {(i, j) ∈ [n]× [n] : ∆i = 1, Yi ≤ t, Yj > t}.

Notice that if (i, j) is in Ẽ(t), then it means that point i is an example point from the “positive” class,
and point j is an example point from the “negative” class. These are points we evaluate the binary
classifier on. The second change is that we set the weight wi := 1/[Ŝcensor(Yi)Ŝcensor(t)] (where we
are simplifying Hung and Chiang’s equation (3) for the case where the censoring distribution does
not depend on the raw input).

Again, this approach uses weights wi that depend on Ŝcensor(t) estimating Scensor(t) = P(C > t)
accurately. If Ŝcensor(·) is a poor estimate of Scensor(·), then the time-dependent AUC score could
be unreliable.

There are many other ways to define a time-dependent AUC evaluation metric though. See the
surveys by Blanche et al. [2013] and Lambert and Chevret [2016] for details.

2.5.2 Squared Error of the Predicted Survival Function

Brier score. There are accuracy metrics that more directly assess error of an estimated survival
function Ŝ(·|x) without ranking. For example, the Brier score [Graf et al., 1999] is defined for a
specific time t ≥ 0 and aims to measure the error

BS∗(t) := E[(1{T > t} − Ŝ(t|X))2],

where the expectation is over sampling X and T using the generative procedure in Section 2.1.
To empirically estimate BS∗(t), we first consider if censoring never happens, so every point

i ∈ [n] has observed time Yi equal to the true survival time Ti. Then we could estimate BS∗(t) with

BSno-censoring(t) :=
1
n

n

∑
i=1

[(1{Yi > t} − Ŝ(t|Xi))
2].

To account for censoring, Graf et al. [1999] proposed the following approach. Similar to how we
had defined the Ctd

t index, we assume that censoring time C is independent of raw input X and
estimate Scensor(·) with the Kaplan-Meier estimator to obtain Ŝcensor(·). Then we define the Brier
score error metric we use is as follows.

Definition 2.5 (Brier score). Suppose that we have a survival function estimate Ŝ(·|x) for
any x ∈ X and also an estimate Ŝcensor(·) of Scensor(·). We define the Brier score at time
t ≥ 0 by

BS(t) :=
1
n

n

∑
i=1

[
Ŝ(t|Xi)

2∆i1{Yi ≤ t}
Ŝcensor(Yi)

+
(1− Ŝ(t|Xi))

21{Yi > t}
Ŝcensor(t)

]
,

which is nonnegative. Lower scores are better.
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Graf [1998] showed that BS(t) converges to BS∗(t) as n → ∞ with the additional assumption that
Scensor(t) > 0. Separately, as a reminder, if we are computing the Brier score on validation or test
data, then Ŝcensor(·) is estimated using training data (as mentioned in Remark 2.2).

Just like with the truncated time-dependent concordance index and time-dependent AUC
scores, Brier scores crucially depend on Ŝcensor(·) estimating Scensor(·) well. As a reminder, we
have assumed that censoring time C is independent of raw input X. If this assumption does not
hold, then Brier scores (as we have defined them in Definition 2.5) are not guaranteed to be proper
[Rindt et al., 2022].

Integrated Brier score. We could of course integrate the Brier score across time to arrive at a single
number.

Definition 2.6 (Integrated Brier score). Suppose that we have a survival function estimate
Ŝ(·|x) for any x ∈ X . Let tmin ≥ 0 and tmax > tmin be user-specified lower and upper limits
of integration. The integrated Brier score is defined as

IBS :=
1

tmax − tmin

∫ tmax

tmin

BS(u)du.

This score is also nonnegative, where lower scores are better.

2.5.3 Distribution Calibration

To assess how well-calibrated a predicted survival function Ŝ(·|x) is, Haider et al. [2020] proposed
a calibration metric called Distribution Calibration (abbreviated “D-Calibration”). To explain how
this works, Haider et al. consider Ŝ(·|x) to be perfectly calibrated if

P
(

Ŝ(T|X) ∈ [a, b]
)
= b− a for all intervals [a, b] ⊆ [0, 1], (36)

where the probability is over randomness in sampling raw input X and its corresponding survival
time T as stated in the generative procedure in Section 2.1.

Note that if we plug in the true survival function S(·|x) in place of the estimate Ŝ(·|x) into
equation (36), then S(·|x) would be perfectly calibrated. This is a consequence of the probability
integral transform result that states that for any continuous real-valued random variable A with
CDF G : R→ [0, 1], the random variable G(A) is uniformly distributed over [0, 1].12

To turn condition (36) into a calibration metric that we can compute, we empirically evaluate
it for some user-specified intervals. We first do this when there is no censoring. Note that the
D-Calibration procedure that we are about to describe is a bit more involved than the previous
evaluation metrics. As we shall see, it ultimately leads to thresholding on a p-value of a statistical
test to decide whether the distribution corresponding to Ŝ(·|x) should be deemed calibrated or not.

The case without censoring. We define the following subset of data points for any interval I ⊆
[0, 1]:

D(I) := {i ∈ [n] : ∆i = 1, Ŝ(Yi|Xi) ∈ I}.
In particular, point i being in D(a, b) means that point i died (so that Yi = Ti) and the predicted
survival probability Ŝ(Yi|Xi) is in the interval I . Then we would like

|D([a, b])|
n

≈ b− a for [a, b] ⊆ [0, 1].

12We are applying the probability integral transform result to the continuous random variable corresponding to T condi-
tioned on X = x, which has CDF F(·|x). Thus, if we evaluate the CDF at random survival time T sampled from PT|X=x ,
i.e., we compute the random variable F(T|x), then this random variable is uniform over [0, 1]. Since S(·|x) = 1− F(·|x), we
conclude that S(T|x) is also uniformly distributed over [0, 1]. This analysis holds for any realization x that could be sampled
from PX so that accounting for randomness in sampling X = x, we still get that S(T|X) is uniform over [0, 1].
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We evaluate this condition for some pre-specified equal-width intervals that cover the whole inter-
val [0, 1]. For example, we could use the 10 bins I1 := [0, 0.1], I2 := (0.1, 0.2], . . . , I10 := (0.9, 1] (the
intervals do not have to be closed on both ends). Here, we would like

|D(Iℓ)|
n

≈ 1
10

for all ℓ ∈ [10],

meaning that we want to check that the 10 probabilities p̂1 := |D(I1)|
n , . . . , p̂10 := |D(I10)|

n are close
to a uniform distribution. Haider et al. suggest using a standard chi-squared test to check for uni-
formity, which in this case corresponds to computing the test statistic

χ2 := 10n
10

∑
ℓ=1

(
p̂ℓ −

1
10

)2
= 10n

10

∑
ℓ=1

( |D(Iℓ)|
n

− 1
10

)2

.

We then compute

p-value := P(chi-squared variable with 9 degrees of freedom ≥ χ2).

If the p-value is at least some user-specified threshold (Haider et al. [2020] use 0.05), then we de-
clare the distribution to be uniform, so the predicted survival function Ŝ is considered calibrated.
Otherwise, we consider Ŝ to not be calibrated. For a continuous version that is not binary, we could,
for instance, use the χ2 test statistic (Goldstein et al. [2020] use what we have written for the χ2 test
statistic but they exclude the 10n scale factor).

Accounting for censoring. By how we have defined the set D(I) above, note that probabilities
p̂1, . . . , p̂10 that we checked against a uniform distribution would not sum to 1 if there are censored
data:

m

∑
ℓ=1

p̂(ℓ) =
m

∑
ℓ=1

|D(Iℓ)|
n

=
1
n

n

∑
i=1

1{∆i = 1} = 1− 1
n

n

∑
i=1

1{∆i = 0}
︸ ︷︷ ︸

fraction of data
that are censored

.

The idea then is that we will modify the estimated probabilities p̂1, . . . , p̂10, increasing them in a
particular way so that they form a valid probability distribution and that they use information
from the censored data.

Prior to doing any modification, remember that for each interval ℓ ∈ [10],

p̂ℓ =
|D(Iℓ)|

n
= ∑

i∈D(Iℓ)

1
n

.

The right-most expression suggests the following interpretation: each training point in D(Iℓ) (i.e.,
each training point that is assigned to interval ℓ) contributes a probability mass of 1/n to interval ℓ.

We now view each censored point to also have probability mass 1/n, but we want to figure out
how to allocate this probability mass to the 10 different intervals. Haider et al. [2020] proposed the
following strategy. For each point i ∈ [n] that is censored (i.e., ∆i = 0), we look at which interval
Ŝ(Yi|Xi) falls into among I1, . . . , I10. Denote the resulting interval’s index as ℓ̃ ∈ [10]. We then
distribute the probability mass 1/n evenly among intervals ℓ̃, ℓ̃ + 1, . . . , 10. In other words, for
censored point i, we update

p̂ℓ ← p̂ℓ +
1
n
·
( 1

10− ℓ̃+ 1

)
for ℓ ∈ {ℓ̃, ℓ̃+ 1, . . . , 10}.

After iterating through all censored points and distributing each of their 1/n probability mass to
the intervals in the above manner, the resulting probabilities p̂1, . . . , p̂10 will indeed sum to 1, and
we proceed with the chi-squared test as before to determine if the distribution is calibrated.
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2.5.4 Error Metrics for Survival Time Point Estimates

Aside from the original c-index evaluation metric, all the other evaluation metrics we covered so
far evaluated predicted survival functions Ŝ(·|·) for different raw inputs at different times. Now
we turn to evaluation metrics specific to when we predict a single survival time number per data
point.

For point i with predicted survival function Ŝ(·|Xi), we denote its predicted survival time as
T̂i, which we could take to be the median survival time estimate (the time at which Ŝ(·|Xi) crosses
probability 1/2) or the mean survival time estimate (area under the function Ŝ(·|Xi)).

If point i is not censored, then we could easily use any standard regression error metric to
compare Yi and T̂i, such as squared error (Yi − T̂i)

2 or absolute error |Yi − T̂i|. If point i is censored,
then we have no ground truth survival time to compare against. A naive solution is to use the
so-called hinge error, for which the squared error version is (Yi − T̂i)

21{Yi > T̂i} and the absolute
error version is (Yi − T̂i)1{Yi > T̂i}; these only give nonzero error when the predicted survival
time T̂i is less than the observed time Yi (which we know to be when the point is still alive since it
is a censoring time).

We state two strategies for dealing with censored data that have been shown to often work well.
Both involve estimating a pseudo “ground truth” survival time to compare the predicted survival
time against for each censored data point (put another way, we are imputing the ground truth
survival times for censored data). Let ŜKM(·) denote the Kaplan-Meier estimate of the population-
level survival function Spop(t) := P(T > t) (as given in equation (33)). Note that this Kaplan-Meier
estimator is fitted to the training data, meaning that even if we are evaluating error on validation or
test data that are not the same as the training data, in the equations that follow, ŜKM(·) is fitted to
the training data (this is similar to what we stated in Remark 2.2 with the difference being that we
are now estimating Spop(t) = P(T > t) and not Scensor(t) = P(C > t)).

The margin [Haider et al., 2020] approach estimates the pseudo ground truth survival time of a
censored point i ∈ [n] to be

Tmargin
i := Yi +

∫ ∞
Yi

ŜKM(u)du

ŜKM(Yi)
,

where we numerically evaluate the integral. The right-hand side aims to estimate E[Ti|Ti > Yi].13

Meanwhile, the pseudo-observation (PO) approach [Qi et al., 2023] instead estimates the ground
truth survival time of a censored point i ∈ [n] to be

TPO
i := (n + 1)

∫ ∞

0
ŜKM+i (u)du

︸ ︷︷ ︸
estimate of mean survival
time including evaluation

point i

−n
∫ ∞

0
ŜKM(u)du

︸ ︷︷ ︸
estimate of mean survival
time excluding evaluation

point i

, (37)

where ŜKM+i (·) refers to the Kaplan-Meier estimator fitted to the training data with evaluation
point i included as an additional training point. Once again, the integrals are numerically evalu-
ated. The first integral is an estimate of the mean survival time of survival function ŜKM+i (·), and
the second integral is an estimate of the mean survival time of survival function ŜKM(·). Taking
this difference is based on the bias-corrected jackknife estimator.14

13Recall from Section 2.2.1 that integrating a survival function from time 0 to time ∞ yields the mean survival time.
Integrating a survival function instead from time Yi to time ∞ and dividing by P(Ti > Yi) yields the mean survival time
conditioned on survival beyond time Yi .

14As a technical remark, our exposition here of the PO approach follows how Qi et al. [2024a] have currently implemented
it in their GitHub repository rather than how they have originally stated it in their paper and in their earlier work [Qi et al.,
2023]. The difference is that originally, Qi et al. [2023] define TPO

i := n
∫ ∞

0 ŜKM(u)du− (n− 1)
∫ ∞

0 ŜKM−i (u)du, where ŜKM

is assumed to be fitted to a dataset that includes evaluation point i, and ŜKM−i is the version of the Kaplan-Meier estimator
fitted to the dataset excluding evaluation point i.
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After computing one of these pseudo ground truth labels, we could treat a censored point’s
pseudo ground truth survival time as if it were a real ground truth survival time and evaluate stan-
dard regression error metrics like squared error or absolute error. For example, the mean absolute
error metric using the PO approach would be given by

MAE-PO :=
1
n

n

∑
i=1

(
∆i |T̂i −Yi|︸ ︷︷ ︸

when uncensored,
use observed time

+(1− ∆i) |T̂i − TPO
i |︸ ︷︷ ︸

when censored, use
pseudo ground truth

)
, (38)

where, as a reminder, T̂i is the predicted survival time of the i-th point using the time-to-event
prediction model that we are evaluating (possibly where we convert a predicted survival function
into a point estimate by backing out a median or mean survival time estimate).

Haider et al. [2020] explained that taking an equally weighted average as in equation (38) may
not be a good idea, as we may be more confident in the (pseudo) ground truth values for some
points vs others. The intuition is as follows. Suppose that we are measuring survival times of
people in years, and that for the population under consideration, no one has a survival time greater
than 130 years. Imagine that a data point (corresponding to a person) was censored at time 0 (and
censoring times are independent of survival times). Then we know very little about what the true
survival time should be, and the pseudo ground truth value computed (whether using the margin,
PO, or some other approach altogether) would likely be unreliable. In contrast, suppose that a data
point was censored at 110 years. For this data point, we would be much more confident about the
pseudo ground truth value being close to the true value. With this intuition, Haider et al. suggested
that for data points that are censored, we should give higher weights to points that are censored
later. They operationalize this intuition by using a weighted mean absolute error metric

weighted-MAE-PO

:=
1

∑n
i=1 wi

n

∑
i=1

wi
(
∆i |T̂i −Yi|︸ ︷︷ ︸

when uncensored,
use observed time

+(1− ∆i) |T̂i − TPO
i |︸ ︷︷ ︸

when censored, use
pseudo ground truth

)
,

where they assign weights as follows:

wi :=

{
1 if ∆i = 1,
1− ŜKM(Yi) if ∆i = 0.

For a thorough experimental evaluation of these pseudo ground truth evaluation metrics, and also
for details on why using (weighted) mean absolute error makes sense in many time-to-event pre-
diction tasks, see the paper by Qi et al. [2023].

Meanwhile, Qi et al. [2023] also showed that MAE with median survival times is a proper scor-
ing rule for uncensored datasets. However, this theoretical result is unsatisfying in that the main
technical hurdle in survival analysis is censoring.

2.6 Additional Remarks on Classification and Regression

Although we already discussed how the time-to-event prediction in discrete time relates to binary
classification at different time indices (Section 2.3), the models we had derived using maximum
likelihood (DeepHit, Nnet-survival, Kaplan-Meier and Nelson Aalen estimators) were not just ex-
isting off-the-shelf binary classifiers. In this section, we discuss an approach called survival stack-
ing [Craig et al., 2021] that converts any time-to-event prediction problem with raw input space
X = Rd into a binary classification problem such that we can use any off-the-shelf probabilis-
tic binary classifier for prediction such as logistic regression or random forests (Section 2.7). This
conversion fundamentally models time to be discrete and can be quite expensive: with n training
points that each have d features, the input training feature matrix (each row is a feature vector)
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could be viewed as a 2D table that is n-by-d. After converting the problem using survival stacking,
the training feature matrix for the binary classifier could have as many asO(n2) rows andO(d+ n)
columns.

Separately, we relate time-to-event prediction to the classical regression setup (Section 2.7.1).
This relationship is more straightforward and considers what happens if censoring did not happen.

2.7 Survival Stacking: Converting Time-to-Event Prediction to Binary Classifi-
cation

To explain survival stacking, we follow Craig et al. [2021] and provide an example of how survival
stacking converts a small toy time-to-event prediction problem with n = 3 and X = Rd with d = 2
into a binary classification problem (we use their same toy example, although we use the notation
that we have introduced in this monograph).

Specifically, suppose that we have three training points (X1, Y1, ∆1), (X2, Y2, ∆2), (X3, Y3, ∆3),
where for ease of exposition, we assume that these points are sorted so that Y1 < Y2 < Y3. Suppose
that ∆1 = 1, ∆2 = 0, and ∆3 = 1. In terms of notation, each Xi is in R2, for which we write
Xi = (Xi,1, Xi,2) ∈ R2. Thus, we could view our training data as follows:

feature 1 feature 2[ ]point 1 X1,1 X1,2
point 2 X2,1 X2,2
point 3 X3,1 X3,2

observed event
time indicator[ ]Y1 1
Y2 0
Y3 1

Enumerate the unique times of death. To begin the survival stacking conversion process, we
enumerate the unique times in which death occurred, which in this case is τ(1) = Y1 and τ(2) = Y3
(we are intentionally reusing our notation from earlier for modeling discrete time, where the time
grid points are denoted τ(1) < · · · < τ(L)). In this case, there are L = 2 unique times of death.

Collect information from time index 1. At time index 1 (corresponding to time τ(1) = Y1), we
list all the data points that are “at risk” (could still possibly die) at that time. In this case, since
Y1 < Y2 < Y3, at time τ(1) = Y1, all three data points are at risk. What we do then is we create the
following 2D table:

X(1) :=

feature 1 feature 2 time index 1 time index 2[ ]point 1 X1,1 X1,2 1 0
point 2 X2,1 X2,2 1 0
point 3 X3,1 X3,2 1 0

In particular, the number of rows of X(1) is the number of points at risk at time index 1 (correspond-
ing to time τ(1)) while the number of columns is d + L = 2 + 2 = 4. We have added new columns
that simply indicate which time index we are currently looking at. Next, we also create the follow-
ing vector that indicates which of the points at risk actually died at time index 1, which would only
be training point 1:

y(1) :=

death at time index 1[ ]point 1 1
point 2 0
point 3 0

Collect information from time index 2. Now we proceed to time index 2 (corresponding to time
τ(2) = Y3) and repeat the same idea. We list all the data points at risk, which would just be data
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point 3. We create the following 2D table:

X(2) :=
feature 1 feature 2 time index 1 time index 2
[ ]point 3 X3,1 X3,2 0 1

We also create a vector indicating that point 3 did experience death at time index 2:

y(2) :=
death at time index 2
[ ]point 3 1

Stack information vertically to get training data for classifier. At this point, we have gone through
all the unique times of death. We vertically stack X(1) and X(2), and similarly we vertically stack
y(1) and y(1) to get:

X :=

[
X(1)

X(2)

]
=




X1,1 X1,2 1 0
X2,1 X2,2 1 0
X3,1 X3,2 1 0
X3,1 X3,2 0 1




y :=

[
y(1)

y(2)

]
=




1
0
0
1




Then we treat the rows of X as feature vectors, where the i-th row has binary classification label
given by the i-th entry of y, and we use these to train a probabilistic binary classifier of our choosing,
such as logistic regression or a random forest.

The binary classification task. To help make sense of what this binary classifier is predicting,
consider the fourth training feature vector being fed in, i.e., the last row of X: (X3,1, X3,2, 0, 1).
The classifier is being told what the original feature vector is for this data point (namely X3 =
(X3,1, X3,2)) along with which time index we are making a prediction for (time index 2, encoded
as the vector (0, 1)), which of course implies that the data point is still alive at this particular time
step. We are thus predicting the probability of death, assuming that the point is still at risk. In other
words, we are predicting the discrete time hazard probability at time index 2.

More generally, what is happening is that we are discretizing time using the unique times of
death τ(1) < τ(2) < · · · < τ(L). Let eℓ ∈ {0, 1}L denote an L-dimensional vector that is all zeros
except for a single 1 at the ℓ-th entry, where ℓ ∈ [L]. For any test feature vector x ∈ Rd in the original
space, let x⊕ eℓ denote the concatenation of vectors x and eℓ (so x⊕ eℓ is in Rd+L). Then the binary
classifier, given input feature vector x ⊕ eℓ, predicts the hazard probability corresponding to the
original feature vector x at time index ℓ ∈ [L], i.e., what we had denoted as h[ℓ|x] in our earlier
coverage. When the binary classifier is logistic regression, Craig et al. [2021, Section 2.3] show that
the resulting classifier closely approximates the original Cox proportional hazards model [Cox,
1972]. We discuss the Cox model later in Section 3.3.

Training dataset size for the binary classifier. In the toy example above, we ended up with a clas-
sification training feature matrix X that is 4-by-4 even though the original time-to-event prediction
feature matrix was only 3-by-2. How much larger could the classification training feature matrix
be?

We can compute the exact size of X. In general, the number of columns of X is d + L where,
as a reminder, L is the number of unique times of death. As for the number of rows of X, we can
determine this by adding up the number of rows of X(1), X(2), and so forth (which we had vertically
stacked to form X). The number of rows in each X(ℓ) (for ℓ ∈ [L]) is precisely the number of points

43



at risk at time index ℓ, given by N[ℓ] = 1{Yj ≥ τ(ℓ)} from equation (30). Thus, in general,

number of rows in X =
L

∑
ℓ=1

N[ℓ] =
L

∑
ℓ=1

n

∑
j=1

1{Yj ≥ τ(ℓ)}.

In the worst case, every observed time is unique and is a time of death (so that at each time index,
exactly one point dies). In this case, one could see that at the first time index there are n points
at risk (so X(1) would have n rows), at the second time index there are n− 1 points at risk (so X(2)
would have n− 1 rows), etc. In this case, the number of rows of X is n+(n− 1)+ (n− 2)+ · · ·+ 1 =
n(n+1)

2 . Meanwhile, if every observed time is unique, then it means that L = n, so the number of

columns of X is d + L = d + n. Thus, the worst case size of X is n(n+1)
2 = O(n2) rows by d + n

columns, which of course is larger than the time-to-event prediction feature matrix size of n-by-d.
In practice, to prevent the stacked matrix X ∈ R(∑L

ℓ=1 N[ℓ])×(d+L) from being too large, what one
could do is discretize the time grid to be coarser: instead of taking L to be the number of unique
times of death, we could manually specify L to be much smaller than n and discretize Yi values
to L time indices (we presented some ways of doing this in Section 2.3.2). In doing so, we would
directly control the number of columns of X (since we would set the value of L and the number
of columns is d + L), while also decreasing the number of rows of X. Note that dealing with the
number of rows of X being large is somewhat less of an issue in that many classifiers are designed to
scale to large datasets (e.g., XGBoost [Chen and Guestrin, 2016]). Classifiers that support minibatch
training could avoid looking at all rows of X at once.

2.7.1 Connection to Regression: Conditional CDF Estimation

The connection to regression is straightforward: consider the case where censoring happens with
probability 0 (which could be thought of as an extreme case where the censoring time C is deter-
ministically +∞ in the generative procedure from Section 2.1). Then our training data would be
the same as that of standard regression (we could ignore the event indicator ∆i variables since they
would all be equal to 1) although all the regression labels (the Yi variables) are guaranteed to be
nonnegative (whereas in, for instance, linear regression, the regression labels are not constrained
to be nonnegative). The prediction task of estimating the conditional survival function without
censoring would simply amount to conditional CDF estimation for a regression label, which has
previously been studied (e.g., Chagny and Roche 2014).

2.A Technical Details

2.A.1 Definition of the Raw Input Space

As stated in Section 2.1, we assume that the raw input space X is the “support” of distribution PX .
Roughly, the support of PX consists of all possible values that we could sample from PX . We now
build up to formally defining what the support of a distribution is.

First, to motivate why X cannot be defined arbitrarily, consider the following toy example.
Suppose that we set X := R, and that PX is uniform over the unit interval [0, 1]. However, we aim
to be able to make predictions (i.e., to estimate one of the target functions that fully characterize
PT|X(·|x)) for all x ∈ X . In the toy example given, PT|X(·|x) would not actually be defined when x
is outside of [0, 1] (e.g., we cannot condition on X = 2). The fix is simple in this case: we should
instead define X := [0, 1].

In general, we should set X to be the support of distribution PX , which we denote as supp(PX).
As concrete examples:

• If X is a discrete random vector in Rd, then

supp(PX) := {x ∈ Rd : P(X = x) > 0}.

44



• If X is a continuous random vector over Rd with PDF fX(·), then

supp(PX) := {x ∈ Rd : fX(x) > 0},

where the line over the set indicates that we are taking its closure.

However, even if X resides in Rd so that it is a fixed-length feature vector, in real applications,
X could consist of a mix of discrete and continuous features. In this case, the above definitions
that require all features to be discrete or all features to be continuous are not adequate. A general
definition of the support of PX that works whenever X takes on a value in Rd is as follows:

supp(PX) := {x ∈ Rd : P(∥X− x∥ ≤ r) > 0 for all r > 0},

where ∥ · ∥ denotes Euclidean distance.
Since neural networks can accommodate input spaces X that are not Rd, we now substantially

generalize the definition of supp(PX). Specifically, suppose that PX is defined over a separable
metric space (X , ρ), where the function ρ : X × X → [0, ∞) is a metric: for any two x, x′ ∈ X ,
ρ(x, x′) gives a distance between x and x′ (if X is Euclidean space, then we could take ρ to be
Euclidean distance). Then we define

supp(PX) := {x ∈ X : P(ρ(X, x) ≤ r) > 0 for all r > 0}.

The reason we assumed that the metric space is separable is to guarantee that P
(
X ∈ supp(PX)

)
=

1 [Cover and Hart, 1967].
In summary, by defining X := supp(PX), we can indeed condition on X = x for all x ∈ X , and

in particular, we can then work with the conditional distribution PT|X(·|x) for all x ∈ X .

2.A.2 Proof of Proposition 2.1: H[ℓ|x] as a First-Order Taylor Approximation of − log S[ℓ|x]

Recall the Taylor series expansion − log(1− z) = ∑∞
p=1

zp

p for z ∈ [0, 1). Then assuming that
h[ℓ|x] ∈ [0, 1) for all ℓ ∈ [L], we have

− log S[ℓ|x] = − log
ℓ

∏
m=1

(1− h[m|x])

=
ℓ

∑
m=1
− log(1− h[m|x])

=
ℓ

∑
m=1

∞

∑
p=1

(h[m|x])p

p

=
ℓ

∑
m=1

(
h[m|x] +

∞

∑
p=2

(h[m|x])p

p

)

= H[ℓ|x] +
ℓ

∑
m=1

∞

∑
p=2

(h[m|x])p

p
. □

2.A.3 Hazard Function Maximum Likelihood Derivation for the Kaplan-Meier and Nelson-
Aalen Estimators

In this section, we derive equation (28):

θ̂ℓ := arg max
θℓ
L(ℓ)(θℓ) =

D[ℓ]

N[ℓ]
for ℓ ∈ [L], (28, reproduced)
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where, as a reminder:

L(ℓ)(θℓ) :=
n

∑
i=1

1{ℓ ≤ κ(Yi)}
{

Bi,ℓ log θℓ + (1− Bi,ℓ) log(1− θℓ)
}

, (26, partially reproduced)

D[ℓ] :=
n

∑
j=1

1{Yj = τ(ℓ)}∆j =
n

∑
j=1

Bj,ℓ, (29, reproduced)

N[ℓ] :=
n

∑
j=1

1{Yj ≥ τ(ℓ)} =
n

∑
j=1

1{κ(Yj) ≥ ℓ}. (30, reproduced)

We set the derivative of θ̂ℓ with respect to θℓ to 0 (for the moment, we do not worry about the
constraint that θℓ ∈ [0, 1]; as we shall see shortly, the value of θℓ that achieves derivative 0 is
guaranteed to be between 0 and 1). We have

0 =
[d logL(ℓ)(θℓ)

dθℓ

]
θℓ=θ̂ℓ

=
n

∑
i=1

1{ℓ ≤ κ(Yi)}
[Bi,ℓ

θ̂ℓ
− 1− Bi,ℓ

1− θ̂ℓ

]

=
∑n

i=1 1{ℓ ≤ κ(Yi)}Bi,ℓ

θ̂ℓ
− ∑n

i=1 1{ℓ ≤ κ(Yi)}(1− Bi,ℓ)

1− θ̂ℓ

=
∑n

i=1 1{ℓ ≤ κ(Yi)}Bi,ℓ

θ̂ℓ

− ∑n
i=1 1{ℓ ≤ κ(Yi)} −∑n

i=1 1{ℓ ≤ κ(Yi)}Bi,ℓ

1− θ̂ℓ
.

Rearranging terms, we have

∑n
i=1 1{ℓ ≤ κ(Yi)}Bi,ℓ

θ̂ℓ
=

∑n
i=1 1{ℓ ≤ κ(Yi)} −∑n

i=1 1{ℓ ≤ κ(Yi)}Bi,ℓ

1− θ̂ℓ

⇐⇒ θ̂ℓ =
∑n

i=1 1{ℓ ≤ κ(Yi)}Bi,ℓ

∑n
i=1 1{ℓ ≤ κ(Yi)}

=
∑n

i=1 1{ℓ ≤ κ(Yi)}∆i1{κ(Yi) = ℓ}
∑n

i=1 1{ℓ ≤ κ(Yi)}

=
∑n

i=1 ∆i1{κ(Yi) = ℓ}
∑n

i=1 1{ℓ ≤ κ(Yi)}

=
D[ℓ]

N[ℓ]
.

Note that θ̂ℓ =
D[ℓ]
N[ℓ]

is guaranteed to be between 0 and 1. To verify that θ̂ℓ is indeed the maximum

and not the minimum, we check that [
dL(ℓ)(θℓ)

dθ2
ℓ

]
θℓ=θ̂ℓ

< 0. In fact,

dL(ℓ)(θℓ)
dθ2

ℓ

= −
n

∑
i=1

1{ℓ ≤ κ(Yi)}
[Bi,ℓ

θ2
ℓ

+
1− Bi,ℓ

(1− θℓ)2

]
< 0

for all θℓ ∈ (0, 1). This finishes the proof. □

3 Deep Proportional Hazards Models

In this section, we cover perhaps the most widely used family of time-to-event prediction models
used in practice, called proportional hazards models. Our exposition goes over a fairly general
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formulation that includes, as special cases, the original Cox proportional hazards model [Cox, 1972]
as well as its deep learning variant called DeepSurv [Faraggi and Simon, 1995, Katzman et al., 2018].

When determining what time-to-event prediction model to use in real applications, Cox models
(e.g., the original version or DeepSurv) are good baselines to try, similar to how logistic regression is
good to try for binary classification and linear regression is good to try for predicting a continuous
outcome. However, much like how logistic regression and linear regression make strong assump-
tions, Cox models do as well, which is why they often do not achieve state-of-the-art prediction
accuracy.

In general, proportional hazards models assume that the hazard function factorizes as

h(t|x) = h0(t; θ)ef(x;θ) for t ≥ 0, x ∈ X , (39)

where we have two functions to be learned: the so-called baseline hazard function h0(·; θ) : [0, ∞)→
[0, ∞) and the log partial hazard function f(·; θ) : X → R, both of which have parameter variable
θ. The factorization implies that regardless of what the input x is, the hazard function h(·|x) must
be proportional to the baseline hazard h0(·; θ), which is why equation (39) is called the proportional
hazards assumption. As we shall see in Section 3.1, the proportional hazards assumption imposes a
strict constraint on the shapes of survival functions S(·|x). The proportional hazard assumption often
does not hold in real data, which is why proportional hazards models often do not work as well as more flexible
time-to-event prediction models.

The log partial hazard function f(·; θ) maps each input x ∈ X to a single real number that could
be thought of as a risk score. A higher value of f(x; θ) implies that the survival time tends to be
lower. Since all inputs share the same dependence on time that is captured by the baseline hazard
h0(·; θ), under the proportional hazard assumption, the only difference between inputs x, x′ ∈ X
is captured entirely in comparing their log partial hazard function values f(x; θ) and f(x′; θ). Thus,
proportional hazards models could fundamentally be viewed as providing a way to rank data
points based on the “scoring” function f(·; θ). We refer to f(·; θ) as the log partial hazard function
because

log h(t|x) = log h0(t; θ) + f(x; θ),

so f(x; θ) only captures part of the full log hazard.
As a reminder, we saw two examples of proportional hazards models in Section 2, where we

had assumed that X = Rd:

• In the exponential time-to-event prediction model (Examples 2.1 and 2.2), we had θ =
(β, ψ) ∈ Rd ×R, h0(t; θ) = eψ, and f(x; θ) = β⊤x.

• In the Weibull time-to-event prediction model (Example 2.3), we instead had θ = (β, ψ, ϕ) ∈
Rd ×R×R, h0(t; θ) = teϕ−1eψ+ϕ, and f(x; θ) = eϕβ⊤x.

These models are considered parametric proportional hazards models because the baseline hazard
h0(·; θ) and the log partial hazard f(·; θ) are assumed to have parametric forms. We had already
shown in Section 2 how these two models could be learned via maximum likelihood (i.e., how to
obtain an estimate θ̂ of θ) and how to subsequently predict hazard, cumulative hazard, and survival
functions for these models. Basically, after learning the model parameters, we could estimate the
baseline hazard with h0(·; θ̂ ) and the log partial hazard with f(·; θ̂ ).

The rest of this section is organized as follows:

• (Section 3.1) First, assuming that the h0(·; θ) and f(·; θ) are known (or alternatively that we
have estimates for these), we show how the proportional hazards assumption restricts the
shapes of S(·|x) that are possible across different x ∈ X .

• (Section 3.2) Next, we go over the general procedure for learning h0(·; θ) and f(·; θ) for para-
metric proportional hazards models as well as how to make predictions after model training.
Our coverage here generalizes what we saw in Section 2 for the exponential and Weibull
time-to-event prediction models.
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• (Section 3.3) We then discuss semiparametric proportional hazards models, where h0(·; θ) is
learned nonparametrically while f(·; θ) is learned parametrically. Note that semiparamet-
ric proportional hazards models are commonly referred to as Cox proportional hazards models
(which we just abbreviate as Cox models). The original Cox model [Cox, 1972] leaves h0(·; θ)
unspecified and assumes that f(·; θ) = θ⊤x, where θ ∈ Rd and x ∈ X ⊆ Rd. The deep learn-
ing version (DeepSurv) [Faraggi and Simon, 1995, Katzman et al., 2018] also leaves h0(·; θ)
unspecified and replaces f(·; θ) with a neural network.

• (Section 3.4) Finally, we discuss an extension of the Cox model called Cox-Time [Kvamme
et al., 2019] that removes the proportional hazards assumption.

A major selling point of the original Cox model [Cox, 1972] (where f(·; θ) = θ⊤x with both θ and
x belonging to Rd) is that it is straightforward to interpret if the d input features themselves are
interpretable (as is commonly the case for tabular data). In this setting, parameter vector θ =
(θ1, θ2, . . . , θd) simply says how to weight each feature: the ℓ-th feature has weight θℓ. In fact, a
standard quantity used for model interpretation is called the hazard ratio, which is defined for the
ℓ-th feature to be exp(θℓ). The basic idea is as follows. Consider a feature vector x ∈ Rd. Now
consider a second feature vector x̃ ∈ Rd that is the same as x except that the ℓ-th entry is larger by
1, i.e., x̃j = xj for every index j ̸= ℓ whereas x̃ℓ = xℓ + 1. In this case, it turns out that the second
feature vector x̃ has a hazard value that is a multiplicative factor of exp(θℓ) larger than that of x. To
see this, note that

h(t|x̃)
h(t|x) = ����h0(t; θ) exp(θ⊤ x̃)

����h0(t; θ) exp(θ⊤x)

=
exp

(
θℓ(xℓ + 1) + ∑j ̸=ℓ θjxj

)

exp
(

∑d
j=1 θjxj

)

=
exp

(
θℓ + ∑d

j=1 θjxj
)

exp
(

∑d
j=1 θjxj

)

= exp(θℓ).

To recap, under the proportional hazard assumption for the standard Cox model, an increase in the
ℓ-th feature by 1 unit (with all other features being held the same) is associated with an increase in
risk by a multiplicative factor given by the hazard ratio exp(θℓ).

By replacing f(x; θ) = θ⊤x (a linear function of x) with a potentially highly nonlinear function,
the DeepSurv model is more flexible than the original Cox model, but interpreting how the Deep-
Surv model makes predictions is less straightforward. In more detail, consider again the setting
where raw inputs are feature vectors in Rd. Reusing the earlier notation where x ∈ Rd and x̃ ∈ Rd

differ only in the ℓ-th feature, with x̃ℓ = xℓ + 1, the hazard ratio would be

h(t|x̃)
h(t|x) = ����h0(t; θ) exp(f(x̃; θ))

����h0(t; θ) exp(f(x; θ))
.

When f is highly nonlinear, then this ratio does not, in general, simplify “nicely” and could depend
on many parameters, unlike in the linear setting where the hazard ratio ends up depending only
on a single parameter θℓ. The Cox-Time model is even more flexible than the DeepSurv model and
can be even less straightforward to interpret.

3.1 Constraint on Survival Function Shapes

In this section, we assume that we already know θ (or have an estimate for it), which means that
we also know h0(·; θ) and f(·; θ). Let’s look at what the proportional hazards assumption implies
about the shapes of survival functions that are possible. Recall from Summary 2.1 that by knowing
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the hazard function h(t|x), we can recover H(t|x) =
∫ t

0 h(u|x)du and S(t|x) = e−H(t|x). Thus,
under the proportional hazards assumption (equation (39)), the cumulative hazard function is

H(t|x) =
∫ t

0
h(u|x)du =

∫ t

0
h0(u; θ)ef(x;θ)du = ef(x;θ)

∫ t

0
h0(u; θ)du

︸ ︷︷ ︸
=:H0(t;θ)

, (40)

where the newly defined H0(·; θ) is referred to as the baseline cumulative hazard function. Then we
recover the survival function

S(t|x) = e−H(t|x) = e−ef(x;θ)H0(t;θ) = [e−H0(t;θ)︸ ︷︷ ︸
=:S0(t;θ)

]e
f(x;θ)

, (41)

where we have the newly defined baseline survival function S0(·; θ). Equation (41) tells us that
all possible survival functions under the proportional hazards assumption must be powers of
S0(·; θ)—see Figure 4(a) for an illustration. This is a strong assumption! Survival functions that
are not powers of S0(·; θ) are impossible under the proportional hazards assumption (such as the green curve
that crisscrosses the baseline survival function in Figure 4(b).

As shown in Figure 4(a), the allowed survival functions that are closer to the origin—which
have higher f(x; θ) value—are uniformly worse than ones farther away from the origin, regardless
of what time t we look at (as a reminder from Section 2.2.1, the area under a survival function is
the mean survival time and the time at which the survival function crosses the y-axis value of 1/2
is the median survival time). In particular, under a proportional hazards assumption, whether a
data point with x is likely to have a shorter or longer survival time is entirely determined by the
log partial hazard function value f(x; θ) (which we previously pointed out could be interpreted as
a risk score): higher values of f(x; θ) correspond to shorter survival times.

3.2 Parametric Proportional Hazards Models

In Section 2.2.2, we had already shown how exponential and Weibull time-to-event prediction mod-
els could be learned via maximum likelihood and also how to subsequently make predictions. We
now generalize both of these cases. Consider when h0(·; θ) and f0(·; θ) are parametric functions
differentiable with respect to θ (where we assume that h0(·; θ) is specified in continuous time just
like in the exponential and Weibull examples), and we have some closed-form expression for

H0(t; θ) :=
∫ t

0
h0(u; θ)du,

which is also differentiable with respect to θ.15 Then learning θ and making predictions works
similarly to what is described in Examples 2.2 and 2.3. We now state the general procedure.

Training. Model training amounts to learning the parameters θ, which we do by writing the loss
function (that depends on training data (X1, Y1, ∆1), . . . , (Xn, Yn, ∆n)) and then optimizing:

1. We write the negative log likelihood loss (equation (11)) but replace h(t|x; θ) with

15For the exponential time-to-event prediction model, recall that θ = (β, ψ) ∈ Rd ×R and h0(t; θ) = eψ, so that

H0(t; θ) =
∫ t

0
eψdu = teψ.

For the Weibull time-to-event prediction model, recall that θ = (β, ψ, ϕ) ∈ Rd ×R×R and h0(t; θ) = teϕ−1eψ+ϕ, so that

H0(t; θ) =
∫ t

0
ueϕ−1eψ+ϕdu = teϕ

eψ.
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Figure 4: Under the proportional hazards assumption (equation (39)), possible survival functions
are all powers of the baseline survival function S0(·; θ) as shown in panel (a); note that we can
always unambiguously order these functions based on the log partial hazard function f(·; θ). In
contrast, the green curve shown in panel (b) is not possible under a proportional hazards model
and is neither uniformly better nor uniformly worse than the baseline survival function.

h0(t; θ)ef(x;θ):

LHazard-NLL(θ)

= − 1
n

n

∑
i=1

{
∆i log h(Yi|Xi; θ)−

∫ Yi

0
h(u|Xi; θ)du

}

= − 1
n

n

∑
i=1

{
∆i log(h0(Yi; θ)ef(Xi ;θ))−

∫ Yi

0
h0(u; θ)ef(Xi ;θ)du

}

= − 1
n

n

∑
i=1

{
∆i[f(Xi; θ) + log h0(Yi; θ)]− ef(Xi ;θ)

∫ Yi

0
h0(u; θ)du

}

= − 1
n

n

∑
i=1

{
∆i[f(Xi; θ) + log h0(Yi; θ)]− ef(Xi ;θ)H0(Yi; θ)

}
.

2. We then use a standard neural network optimizer to solve

θ̂ := arg min
θ

LHazard-NLL(θ).

Prediction. To predict the hazard function, we simply use equation (39), where we plug in θ̂ in
place of θ:

ĥ(t|x) := h0(t; θ̂ )ef(x;θ̂ ) for t ≥ 0, x ∈ X .
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Predicting the cumulative hazard and survival functions then just amount to using the conversions
from Summary 2.1. Specifically, we could estimate the cumulative hazard function using

Ĥ(t|x) :=
∫ t

0
ĥ(u|x)du = ef(x;θ̂ )

∫ t

0
h0(u; θ̂ )du = ef(x;θ̂ )H0(t; θ̂ ),

and the survival function using

Ŝ(t|x) := exp(−Ĥ(t|x)) = exp
(
− ef(x;θ̂ )H0(t; θ̂ )

)
.

3.3 Semi-Parametric Proportional Hazards Models: DeepSurv

We now turn to the more complicated case where h0(·; θ) is left unspecified (but we shall see that
it still depends on parameter variable θ) while f(·; θ) remains parametric, resulting in a model
commonly referred to as DeepSurv [Faraggi and Simon, 1995, Katzman et al., 2018]. We state the
standard procedure for learning f(·; θ) and h0(·; θ) followed by how the hazard, cumulative hazard,
and survival functions are predicted. The training procedure does maximum likelihood estimation
(for a derivation, see Section 3.A).

Training. Model training consists of two steps:

1. We estimate θ by numerically solving the optimization problem

θ̂ := arg min
θ

1
n

n

∑
i=1

∆i

[
− f(Xi; θ) + log

( n

∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ)
)]

(42)

using a standard neural network optimizer.16

2. Next, we estimate h0(·; θ) using the method by Breslow [1972]: consider the discrete time grid
given by the unique times of death τ(1) < τ(2) < · · · < τ(L). We define τ(0) := 0. Breslow
assumes that h0(·; θ) (defined in continuous time) is piecewise constant, where the possible
changes in h0(·; θ) happen at the discrete time grid points. Specifically, the Breslow estimator
of h0(·; θ) is

ĥ0(t) :=





D[ℓ]

(τ(ℓ)−τ(ℓ−1))∑n
j=1 1{Yj≥τ(ℓ)}e

f(Xj ;θ̂ )

if τ(ℓ−1) < t ≤ τ(ℓ)
for ℓ ∈ [L],

0 if t > τ(L).
(43)

Note that ĥ0(·) depends on θ̂.

Prediction. To predict the hazard function h(t|x) = h0(t; θ)ef(x;θ), we simply plug in the estimated
θ̂ and ĥ0(·):

ĥ(t|x) := ĥ0(t)ef(x;θ̂ ) for t ≥ 0, x ∈ X .

To predict the cumulative hazard function, we use equation (40): H(t|x) = ef(x;θ)H0(t; θ). In partic-
ular, we first estimate the baseline cumulative hazard with

Ĥ0(t) :=
∫ t

0
ĥ0(u)du =

L

∑
m=1

1{τ(m) ≤ t}D[m]

∑n
j=1 1{Yj ≥ τ(m)}ef(Xj ;θ̂ )

for t ≥ 0. (44)

16In the classical setting where X ⊆ Rd and f(x; θ) = θ⊤x with θ ∈ Rd, this problem is convex and can be solved using,
for instance, Newton-Raphson. Moreover, in the classical setting, researchers have explored adding lasso [Tibshirani, 1997]
or elastic net regularization [Zou and Hastie, 2005] on θ to encourage the estimated θ to, for instance, be sparse. In the neural
network setting that we consider, standard tricks can be used for regularization, such as using dropout or weight decay.
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Then we predict H(·|x) using the estimator

Ĥ(t|x) := ef(x;θ̂ )Ĥ0(t) for t ≥ 0, x ∈ X . (45)

Finally, to predict S(·|x) using the estimator

Ŝ(t|x) := e−H(t|x) = exp
(
− ef(x;θ̂ )Ĥ0(t)

)
for t ≥ 0, x ∈ X . (46)

We provide a Jupyter notebook that shows how to implement DeepSurv.17

Remark 3.1 (Relationship to ranking). The loss function in equation (42) is equal to

1
n

n

∑
i=1

∆i log
( n

∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ)−f(Xi ;θ)
)

.

By carefully staring at this, notice the following. Minimizing this loss means that when
∆i = 1 and also Yi ≤ Yj (i.e., the i-th point died and has an observed time before that of
the j-th point), we would like risk score f(Xj; θ) to be lower than risk score f(Xi; θ). This
directly corresponds to the intuition for the concordance index metric (Definition 2.1). In
this sense, the Cox model’s loss function could be interpreted as a ranking-based loss. For a
more detailed explanation, see the paper by Raykar et al. [2007].

Remark 3.2 (The Nelson-Aalen estimator as a special case of the Cox model). Breslow [1972]
pointed out that in the special case where f(x; θ) = 0 for all x ∈ X , then Ĥ0(·) from equa-
tion (44) actually just becomes the Nelson-Aalen estimator (equation (32)). In this case, the
cumulative hazard estimate (equation (45)) would also just become the Nelson-Aalen esti-
mator. However, the survival function estimator (equation (46)) would not be exactly equal
to (but would approximate) the Kaplan-Meier estimator due to the result of Proposition 2.1.

Remark 3.3 (Piecewise constant functions in continuous time). Note that ĥ0(·) in equa-
tion (43) could be thought of as a discrete time object since it only has L nonzero values.
Thus, it could be stored on a computer in a 1D array/table. However, we want to empha-
size that h0(·) really is a continuous time hazard function and not a forward-filled version
of a discrete time hazard function like the ones we see in Section 2.3.

As a reminder, in Section 2.3, when we were working directly in discrete time, we re-
quired that the discrete time hazard function h[·|x] to have values that are at most 1 since
they are probabilities. We used this to, for instance, derive that S[ℓ|x] = ∏ℓ

m=1(1− h[m|x]).
In contrast, one can easily check that the Breslow estimator ĥ0(·) could take on values

that are arbitrarily large (possibly larger than 1) since f(·; θ) is unconstrained (so that the

nonnegative term ef(Xj ;θ̂ ) could be arbitrarily large or small).
Later on in Section 5.2, we will show that we can convert any discrete time model like

the ones in Section 2.3 to continuous time. However, what we are saying here is that for a
hazard function that is defined originally in continuous time, even if it is piecewise constant,
we cannot in general convert it to be a discrete time hazard function of the form we saw in
Section 2.3.

17https://github.com/georgehc/survival-intro/blob/main/S3.3_DeepSurv.ipynb
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3.4 Removing the Proportional Hazards Assumption: Cox-Time

A generalization of the Cox model called Cox-Time [Kvamme et al., 2019] replaces f(x; θ) with the
neural network g(x, t; θ) that depends on both input x ∈ X and time t ≥ 0. As a result, we have
the factorization

h(t|x) = h0(t; θ)eg(x,t;θ) for t ≥ 0, x ∈ X . (47)

The earlier proportional hazards factorization from equation (39) has time t and input x contribute
to different factors. Now, in equation (47), time t and input x could interact within the func-
tion g(x, t; θ). Thus, whereas previously, the proportional hazards factorization constrained the
survival function shapes to be powers of a baseline survival function (as discussed in Section 3.1),
this constraint is no longer guaranteed to hold in general for Cox-Time.18

One might wonder why there needs to even be a baseline hazard function h0(t; θ) if g(x, t; θ)
already depends on time t. This has to do with how the Cox-Time model is trained. Kvamme
et al. [2019] proposed simply using the DeepSurv training and prediction procedures with minor
modifications to train the Cox-Time model.

Training. Model training consists of two steps:

1. We define the loss

LCox-Time(θ)

:=
1
n

n

∑
i=1

∆i

[
− g(Xi, Yi; θ) + log

( n

∑
j=1

1{Yj ≥ Yi}eg(Xj ,Yi ;θ)
)]

. (48)

Using a neural network optimizer, we compute θ̂ := arg minθ LCox-Time(θ). The summation
inside the log intentionally uses time Yi and not Yj (notice the expression “g(Xj, Yi; θ)”).

2. Denote the unique times of death by τ(1) < τ(2) < · · · < τ(L), and define τ(0) := 0. We
compute:

ĥ0(t)

:=





D[ℓ]

(τ(ℓ)−τ(ℓ−1))∑n
j=1 1{Yj≥τ(ℓ)}e

g(Xj ,τ(ℓ) ;θ̂ )

if τ(ℓ−1) < t ≤ τ(ℓ)
for ℓ ∈ [L],

0 if t > τ(L).

The reason why we still need to estimate the baseline hazard function h0(·; θ) is as follows
[Kvamme et al., 2019, Section 3.4]: if g(x, t; θ) = a(x, t; θ) + b(t; θ) for some functions a(·, ·; θ) and
b(·; θ), then the function b(·; θ) would actually be cancelled out in the loss LCox-Time(θ). Thus,
minimizing LCox-Time(θ) would not be able to learn b(·; θ). Instead, we learn b(·; θ) as part of the
baseline hazard function.

Prediction. We predict the hazard function h(·|x) using

ĥ(t|x) := ĥ0(t)eg(x,t;θ̂ ) for t ≥ 0, x ∈ X .

To predict the cumulative hazard function, we first compute

Ĥ0(t) :=
∫ t

0
ĥ0(u)du =

L

∑
m=1

1{τ(m) ≤ t}D[m]

∑n
j=1 1{Yj ≥ τ(m)}eg(Xi ,τ(m);θ̂ )

for t ≥ 0.

18We point out that the idea of replacing f(x; θ) with a function that depends on both raw input x and time t is an inno-
vation that predates the paper by Kvamme et al. [2019]. For example, Chapter 9 of the textbook by Klein and Moeschberger
[2003] suggests setting f to still have a linear form but where there are some newly added features that capture interac-
tions between some of the original features and a pre-specified function of time (e.g., see equation (9.2.2) of Klein and
Moeschberger [2003]). It is possible to specify such an f that still enables statistical inference (see Example 9.2 of Klein and
Moeschberger [2003]). Cox-Time was not designed with statistical inference in mind and aims to simply replace f with
an arbitrarily complex neural network that depends on both x and t, with the hope that after model training, the neural
network will encode interactions between x and t that are relevant for prediction.
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Then we predict H(·|x) using

Ĥ(t|x) := eg(x,t;θ̂ )Ĥ0(t) for t ≥ 0, x ∈ X .

We predict the survival function S(·|x) using

Ŝ(t|x) := e−H(t|x) = exp
(
− eg(x,t;θ̂ )Ĥ0(t)

)
for t ≥ 0, x ∈ X .

Overall, the training and prediction procedures for Cox-Time are heuristically justified. It is unclear
whether there is a more theoretically sound manner for jointly estimating h0(·; θ) and g(·, ·; θ),
where h0(·; θ) is left unspecified and g(·, ·; θ) is within, say, some reasonably wide family of neural
networks.

In our companion code repository, we provide a Jupyter notebook that implements Cox-
Time.19 Our notebook uses the original Cox-Time code by Kvamme et al. [2019] for which the loss
LCox-Time(θ) in equation (48) is not computed exactly. To speed up computation, in equation (48),
the summation (over index j) inside the log is approximated by randomly sampling one of the
nonzero terms of the summation. This is referred to as a “case-control” approximation, with the
idea that for each training point i (the outer summation of equation (48)) that we call the “case”
data point, we are randomly choosing a single other training point (called the “control”) to be used
inside the log.

3.A Technical Details: Derivation of the Cox Model’s Two-Step Maximum
Likelihood Estimator

The derivation we present here spells out the steps of the terse derivation given by Breslow [1972]
that was for the original Cox model (specifically, the first few paragraphs of his discussion outlines
how the derivation works). Breslow’s derivation trivially can be adapted to the DeepSurv setting,
where the log partial hazard function is specified by a neural network and is not simply a linear
function.

As a reminder, we discretize time so that τ(1) < τ(2) < · · · < τ(L) are the unique times of
death, and we set τ(0) := 0. For a noncensored data point i, let κ(Yi) ∈ [L] denote the time index
corresponding to time Yi. Extremely importantly, as Breslow [1972] states in his derivation, he
follows Kalbfleisch and Prentice’s convention and takes a censored data point’s observed time to be
the preceding observed time of death. In other words, for a censored data point i, we take κ(Yi) ∈ [L]
to be the time index of the largest time of death that is before Yi (if there is no death prior to Yi, then
we take κ(Yi) = 0).

Next, suppose that h0(t; θ) is piecewise constant so that

h0(t; θ) :=

{
λℓ if τ(ℓ−1) < t ≤ τ(ℓ) for ℓ ∈ [L],
0 if t > τ(L),

where λ := (λ1, λ2, . . . , λL) ∈ [0, ∞)L. Thus, the hazard function is equal to

h(t|x; θ) := h0(t; θ)ef(x;θ).

The hazard form of the log likelihood (equation (10)) is (where we emphasize both the dependence
on θ and λ):

logL(θ, λ)

=
n

∑
i=1

{
∆i log h(Yi|Xi; θ)−

∫ Yi

0
h(u|Xi; θ)du

}

=
n

∑
i=1

{
∆i log(h0(Yi; θ)ef(Xi ;θ))−

∫ Yi

0
h0(u; θ)ef(Xi ;θ)du

}

19https://github.com/georgehc/survival-intro/blob/main/S3.4_Cox-Time.ipynb
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=
n

∑
i=1

{
∆i log(h0(Yi; θ)ef(Xi ;θ))− ef(Xi ;θ)

∫ Yi

0
h0(u; θ)du

}

=
n

∑
i=1

{
∆i log(λκ(Yi)

ef(Xi ;θ))− ef(Xi ;θ)
κ(Yi)

∑
m=1

(τ(m) − τ(m−1))λm

}

=
n

∑
i=1

{
∆i log λκ(Yi)

+ ∆if(Xi; θ)− ef(Xi ;θ)
κ(Yi)

∑
m=1

(τ(m) − τ(m−1))λm

}

=
n

∑
i=1

∆i log λκ(Yi)
+

n

∑
i=1

∆if(Xi; θ)−
n

∑
i=1

ef(Xi ;θ)
κ(Yi)

∑
m=1

(τ(m) − τ(m−1))λm

=
L

∑
m=1

D[m] log λ(m) +
n

∑
i=1

∆if(Xi; θ)

−
L

∑
m=1

(τ(m) − τ(m−1))λm

n

∑
j=1

1{Yj ≥ m}ef(Xj ;θ). (49)

Setting the derivative with respect to λ(ℓ) to 0, we get

0 =
[d logL(θ)

dλ(ℓ)

]
λ(ℓ)=λ̂(ℓ)

=
D[ℓ]

λ̂(ℓ)

− (τ(ℓ) − τ(ℓ−1))
n

∑
j=1

1{Yj ≥ ℓ}ef(Xj ;θ).

Rearranging terms, we get

λ̂(ℓ) =
D[ℓ]

(τ(ℓ) − τ(ℓ−1))∑n
j=1 1{Yj ≥ ℓ}ef(Xj ;θ)

, (50)

which is strictly positive. One can verify that
[d2 logL(θ)

dλ2
(ℓ)

]
λ(ℓ)=λ̂(ℓ)

< 0 so that indeed we are looking

at a maximum. Plugging in the optimal choice of λ̂(ℓ) back into equation (49), we get

logL(θ, λ̂)

=
L

∑
m=1

D[m] log
D[ℓ]

(τ(m) − τ(m−1))∑n
j=1 1{Yj ≥ m}ef(Xj ;θ)

+
n

∑
i=1

∆if(Xi; θ)−
L

∑
m=1

D[m]

=
n

∑
i=1

∆if(Xi; θ)−
L

∑
m=1

D[m] log
n

∑
j=1

1{Yj ≥ m}ef(Xj ;θ)

+
L

∑
m=1

D[m] log
D[ℓ]

(τ(m) − τ(m−1))
−

L

∑
m=1

D[m]

︸ ︷︷ ︸
constant (with respect to θ)

=
n

∑
i=1

∆if(Xi; θ)−
n

∑
i=1

∆i log
n

∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ) + constant

=
n

∑
i=1

∆i

[
f(Xi; θ)−

n

∑
i=1

log
n

∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ)
]
+ constant.
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Then

θ̂ := arg max
θ

logL(θ, λ̂)

= arg min
θ
− 1

n
logL(θ, λ̂)

= arg min
θ
− 1

n

n

∑
i=1

∆i

[
f(Xi; θ)−

n

∑
i=1

log
n

∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ)
]

,

where we have dropped the constant as it does not affect the argument achieving the minimum.
This finishes the derivation of the first step of the Cox training procedure (namely, equation (42)).
The second step of the Cox training procedure simply plugs in the optimal choice of θ̂ in place of θ
in equation (50).

4 Deep Conditional Kaplan-Meier Estimators

In Section 2, we encountered the Kaplan-Meier estimator [Kaplan and Meier, 1958], which esti-
mates the population-level survival function Spop(t) := P(T > t). In this section, we describe
a wide class of deep learning variants of the Kaplan-Meier estimator that estimate survival func-
tion S(·|x).20 Specifically, we cover what are called deep kernel survival analysis (DKSA) models
[Chen, 2020, 2024]. As we shall see, these models provide a couple different notions of inter-
pretability. A special case of these models also has a theoretical accuracy guarantee. In experi-
ments on standard datasets, these models have been shown to be competitive with various deep
time-to-event prediction models.

As a reminder, classically, the Kaplan-Meier estimator discretizes time using the unique times
of death τ(1) < τ(2) < · · · < τ(L). At each time index ℓ ∈ [L], we keep track of the number of deaths
at time index ℓ (denoted as D[ℓ]) and the number of points at risk at time index ℓ (denoted as N[ℓ]):

D[ℓ] :=
n

∑
j=1

1{Yj = τ(ℓ)}∆j, (29, partially reproduced)

N[ℓ] :=
n

∑
j=1

1{Yj ≥ τ(ℓ)}. (30, partially reproduced)

Then the Kaplan-Meier estimator is given by

ŜKM(t) :=
L

∏
m=1

(
1− D[m]

N[m]

)1{τ(m)≤t}
for t ≥ 0. (33, partially reproduced)

We start from this classical nonparametric estimator and build our way to increasingly more so-
phisticated methods:

• (Section 4.1) We begin by presenting conditional Kaplan-Meier estimators [Beran, 1981],
which estimate S(·|x) instead of Spop(·). Conditional Kaplan-Meier estimators build on a
simple idea: to predict a survival function specific to x ∈ X , first determine which of the
training raw inputs X1, . . . , Xn are the k closest ones to x. We then compute a Kaplan-Meier
survival function using only these k training points’ ground truth labels. In this manner, we
just constructed a survival function that depends on x. Moreover, any prediction comes with
“evidence” as we would know exactly which k training points contributed to the prediction.

A more elaborate “kernel” version is to weight the contribution of each training point based
on how similar it is to x. Specifically, the user pre-specifies a kernel function (also called a

20Backing out estimates of the hazard and cumulative hazard functions is also possible, but for simplicity, we focus just
on predicting S(·|x) in this section.
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similarity function) K : X ×X → [0, ∞) that measures how similar any two inputs x, x′ ∈ X
are (e.g., K(x, x′) := exp(−∥x − x′∥2)). We explain how this so-called kernel Kaplan-Meier
estimator works.

• (Section 4.2) The problem with the kernel Kaplan-Meier estimator is that how well it works
in practice depends heavily on the kernel function used. To address this problem, we present
the DKSA framework by Chen [2020] that automatically learns the kernel function in a neural
network framework. Prediction is still done exactly the same way as the kernel Kaplan-Meier
estimator, just with an automatically learned kernel function.

• (Section 4.3) The kernel Kaplan-Meier estimator is computationally expensive for large
datasets. When making predictions, a naive implementation would need to compute a simi-
larity score (using the kernel function) of each test raw input x with every training input Xi.
We go over a compression strategy by Chen [2024] that results in a class of models called sur-
vival kernets. Conceptually, survival kernets could be viewed as representing any data point
as a combination of a few clusters, each of which could be visualized in terms of how it relates
to raw input features and also to time-to-event outcomes. A special case of survival kernets
has a theoretical accuracy guarantee.

4.1 Conditional Kaplan-Meier Estimators: k Nearest Neighbor and Kernel
Variants

The basic idea of conditional Kaplan-Meier estimators [Beran, 1981] is that we could compute the
Kaplan-Meier estimator restricted to (or “conditioned on”) using only a subset of our training
dataset and not necessarily all of it. Beran suggested both k nearest neighbor and kernel Kaplan-
Meier estimators.

k nearest neighbor Kaplan-Meier estimator. How the k nearest neighbor Kaplan-Meier
estimator works is that we first specify a distance function ρ : X × X → [0, ∞) be-
tween any two raw inputs (for example, if X = Rd, then ρ could be Euclidean distance).
The distance between test raw input x and training raw input Xi is thus ρ(x, Xi). Let
(X(1), Y(1), ∆(1)), (X(2), Y(2), ∆(2)), . . . , (X(n), Y(n), ∆(n)) denote the training raw inputs sorted so
that X(1) is the closest training raw input to x (according to distance function ρ), X(2) is the
second closest, and so forth. Then the k nearest neighbor Kaplan-Meier estimator simply
computes the standard Kaplan-Meier estimator only using the k ground truth outcome labels
(Y(1), ∆(1)), (Y(2), ∆(2)) . . . , (Y(k), ∆(k)). We recover the standard Kaplan-Meier estimator by choos-
ing k = n.

Kernel Kaplan-Meier estimator. The more general kernel version that Beran suggested assigns
weights to different training points according to kernel function K : X × X → [0, ∞), where
K(x, Xi) having a higher value means that x and Xi are “more similar”. Then we generalize the
definitions for the number of deaths D[ℓ] and number of data points at risk N[ℓ] at time τ(ℓ) from
equations (29) and (30), respectively, into kernel versions. Specifically, for ℓ ∈ [L] and x ∈ X , we
define

Dkernel[ℓ|x] :=
n

∑
j=1

K(x, Xj)1{Yj = τ(ℓ)}∆j,

Nkernel[ℓ|x] :=
n

∑
j=1

K(x, Xj)1{Yj ≥ τ(ℓ)}.

Here, Dkernel[ℓ|x] could be thought of as the number of deaths at time τ(ℓ) among training points
who “look like” x, where we have weighted each training point j ∈ [n] by its similarity to x (the
nonnegative weight K(x, Xj)). Likewise, Nkernel[ℓ|x] could be thought of as the number of training
points at risk at time τ(ℓ) among those who “look like” x.
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Then the kernel Kaplan-Meier estimator is given by

Ŝkernel-KM(t|x) :=
L

∏
m=1

(
1− Dkernel[m|x]

Nkernel[m|x]
)1{τ(m)≤t}

for t ≥ 0, x ∈ X ,

with the convention that in the product, we ignore any time index m such that Nkernel[m|x] = 0,
and if the product is “empty” (there are no terms to multiply), then the output is just 1.

The standard Kaplan-Meier estimator could be obtained by just setting K(x, x′) = 1 for all
x, x′ ∈ X . The k-nearest neighbor Kaplan-Meier estimator corresponds to the case where K(x, Xj) =
1 if Xj is one of the k nearest neighbors of x (among training raw inputs X1, X2, . . . , Xn) according
to some distance function ρ : X × X → [0, ∞) (such as Euclidean distance), and K(x, Xj) = 0
otherwise.

Similar to how the Kaplan-Meier estimator can be viewed as having a corresponding discrete
time hazard function (equation (31)), so too does the kernel Kaplan-Meier estimator. Specifically,
we can define the kernel hazard function estimate to be

ĥkernel[ℓ|x] :=
Dkernel[ℓ|x]
Nkernel[ℓ|x]

=
∑n

j=1 K(x, Xj)1{Yj = τ(ℓ)}∆j

∑n
j=1 K(x, Xj)1{Yj ≥ τ(ℓ)}

, (51)

which the convention that if the denominator is 0, then we just output ĥkernel[ℓ|x] = 0. In particular,

Ŝkernel-KM(t|x) =
L

∏
m=1

(1− ĥkernel[ℓ|x])1{τ(m)≤t} for t ≥ 0, x ∈ X .

Interpreting predictions. An appealing aspect of the kernel Kaplan-Meier estimator is that when
predicting S(·|x), we know how much any training point j ∈ [n] contributes to the prediction since
it is just given by the similarity score K(x, Xj). Thus, in some sense, we have “evidence” for every
prediction made, as we could always look at which training points contributed the most to the
prediction. How interpretable this evidence is depends on whether it is straightforward for a user
to make sense of these “most similar” training points to x.

Theoretical guarantees. Meanwhile, we point out that theory for k nearest neighbor and Kaplan
Meier estimators is well-understood. Much like how as n→ ∞, the Kaplan-Meier estimator, under
fairly general settings, converges to Spop(t) := P(T > t) for all times t that are not too large
[Földes and Rejtö, 1981], a similar result holds for the k nearest neighbor and kernel Kaplan-Meier
estimators provably converging to S(t|x) for all times t that are not too large (Chen [2019] provides
rates of convergence in the case where raw inputs could reside in separable metric spaces, of which
Euclidean space is a special case).

4.2 Learning the Kernel Function: Deep Kernel Survival Analysis

In practice, how well the kernel Kaplan-Meier estimator works heavily depends on the choice of
the kernel function K [Chen, 2019]. To automatically learn K, Chen [2020] proposed an approach
called deep kernel survival analysis (DKSA). Specifically, Chen set K equal to

K(x, x′; θ) := exp(−∥f(x; θ)− f(x′; θ)∥2) for x, x′ ∈ X , (52)

where f(·; θ) is a neural network with parameter variable θ that maps from the raw input space X
to a latent embedding space Rdemb for a user-specified embedding space dimension demb.21

We now state how prediction works as it is fairly straightforward and, moreover, the training
procedure (that learns θ) depends on the prediction procedure.

21Traditionally, the kernel Kaplan-Meier estimator would be used in a simplistic manner where the user specifies
K(x, x′; θ) in terms of a single real-valued “bandwidth” parameter. For instance, we could have f(x; θ) = x√

2σ2 (with θ = σ)
so that K(·, ·; θ) is a Gaussian kernel with standard deviation parameter σ (that is taken to be the “bandwidth”). Other ways
to parameterize K(x, x′; θ) in terms of f(·; θ) are possible, e.g., K(x, x′; θ) = 1/[e∥f(x;θ)−f(x′ ;θ)∥ + 2 + e−∥f(x;θ)−f(x′ ;θ)∥].
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Prediction. We use the kernel Kaplan-Meier estimator with the learned kernel function from equa-
tion (52). Specifically, we set ĥkernel[ℓ|x] from equation (51) equal to

hDKSA[ℓ|x; θ] :=
∑n

j=1 K(x, Xj; θ)1{Yj = τ(ℓ)}∆j

∑n
j=1 K(x, Xj; θ)1{Yj ≥ τ(ℓ)}

=
∑n

j=1 exp(−∥f(x; θ)− f(Xj; θ)∥2)1{Yj = τ(ℓ)}∆j

∑n
j=1 exp(−∥f(x; θ)− f(Xj; θ)∥2)1{Yj ≥ τ(ℓ)}

, (53)

where, in terms of notation, on the left-hand side, we have dropped the hat “̂” over the function
name to emphasize that at this point, the function has not actually been estimated yet since we still
need to learn θ. Meanwhile, the survival function is given by

SDKSA(t|x; θ) :=
L

∏
m=1

(1− hDKSA[ℓ|x; θ])1{τ(m)≤t} for t ≥ 0, x ∈ X .

If we can come up with an estimate θ̂ of θ, then we could then predict S(·|x) using

ŜDKSA(t|x) := SDKSA(t|x; θ̂ ) for t ≥ 0, x ∈ X . (54)

Training. The basic idea of how to learn θ is to plug in the hazard function estimate (equation (53))
into the hazard form of the discrete time negative log likelihood loss (equation (24)), i.e., we could
use the loss function

LDKSA-NLL-naive(θ) := − 1
n

n

∑
i=1

{
∆i log(hDKSA[κ(Yi)|Xi; θ])

+ (1− ∆i) log(1− hDKSA[κ(Yi)|Xi; θ])

+
κ(Yi)−1

∑
m=1

log(1− hDKSA[m|Xi; θ])

}
,

where, as a reminder, κ(Yi) ∈ [L] is the time index that Yi corresponds to. However, it turns out
that minimizing LDKSA-NLL-naive(θ) works poorly in practice due to overfitting issues. Specifically
note that

hDKSA[ℓ|Xi; θ] =
∑n

j=1 exp(−∥f(Xi; θ)− f(Xj; θ)∥2)1{Yj = τ(ℓ)}∆j

∑n
j=1 exp(−∥f(Xi; θ)− f(Xj; θ)∥2)1{Yj ≥ τ(ℓ)}

,

which means that to predict the hazard function for Xi, on the right-hand side, we use ground truth
outcome labels (namely Yi and ∆i) from the i-th training point itself. Thus, Chen [2020] suggested
instead using a leave-one-out hazard estimator during model training:

hDKSA-train[ℓ|i; θ] :=
∑j ̸=i exp(−∥f(Xi; θ)− f(Xj; θ)∥2)1{Yj = τ(ℓ)}∆j

∑j ̸=i exp(−∥f(Xi; θ)− f(Xj; θ)∥2)1{Yj ≥ τ(ℓ)}
for ℓ ∈ [L], i ∈ [n],

(55)

which predicts the hazard function for the i-th training point only using the other training points’
ground truth information. On the left-hand side, our notation now intentionally makes it clear that
hDKSA-train[ℓ|i; θ] is not meant to be evaluated at an arbitrary raw input x. Instead, it is only used to
predict the hazard function for each training point i ∈ [n].
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The final negative log likelihood training loss used by Chen [2020] is

LDKSA-NLL(θ) := − 1
n

n

∑
i=1

{
∆i log(hDKSA-train[κ(Yi)|i; θ])

+ (1− ∆i) log(1− hDKSA-train[κ(Yi)|i; θ])

+
κ(Yi)−1

∑
m=1

log(1− hDKSA-train[m|i; θ])

}
.

This loss could be numerically minimized using a neural network optimizer to estimate θ̂ :=
arg minθ LDKSA-NLL(θ). We emphasize here that using a variant of minibatch gradient descent is
important rather than using full batch gradient descent (that uses the entire training data per opti-
mization step). In particular, the loss function would require computation time that scales asO(n2)
when using full batch gradient descent. By using minibatches of batch size b that the user specifies
(where b < n), the loss function would only be computed for training data in each minibatch, with
computation time scaling as O(b2).

We mention several refinements that are important in practice to getting DKSA to work well:

• When coming up with an initial guess for θ during neural network optimizer, standard ran-
dom parameter initialization (e.g., He et al. 2015) tends to work poorly compared to a random
initialization strategy based on tree ensembles [Chen, 2020, 2024]. In particular, Chen [2024,
Section 4] showed how to randomly initialize θ with the help of XGBoost; this initialization
strategy can scale to large datasets. The rough idea is that an already trained XGBoost model
comes with a kernel function K̃ : X × X → [0, 1] that we could easily evaluate for any pair
of inputs [Chen and Shah, 2018, Section 7.1.3]. We initialize θ by first minimizing (in mini-
batches) a mean squared error loss between K(·, ·; θ) and K̃ (evaluated on data for a single
minibatch at a time) for some number of iterations.

• How time is discretized during training and how time is interpolated for prediction matter
in practice [Chen, 2020, 2024]. For time discretization, for some datasets, it could be helpful
to use all unique times of death whereas for other datasets, using a coarser grid is helpful
(which requires some preprocessing that discretizes the Yi values seen in training data into
some user-specified number of bins; we gave examples of ways to do this in Section 2.3.2).
As for time interpolation, even though for simplicity we have presented the kernel Kaplan-
Meier estimator using forward filling interpolation, in practice, using a more sophisticated
interpolation strategy such as constant density or constant hazard interpolation is better (an
explanation of how these work is provided by Kvamme and Borgan [2021]). In short, we
advise against using forward filling interpolation.

• Chen [2020, Section 6] discussed how to incorporate the DeepHit model’s ranking loss [Lee
et al., 2018] although he did not implement it in the original DKSA paper. The subsequent
work by Chen [2024] does include this ranking loss (so that the overall training loss is the
sum of the negative log likelihood loss LDKSA-NLL(θ) and the ranking loss), which improves
the achieved time-dependent concordance index of the resulting model.

These refinements, however, do not remedy the issue that after model training, when we predict
S(·|x) for a single test raw input x ∈ X , computing the prediction ŜDKSA(·|x) using equation (54)
would involve computing hDKSA[ℓ|x; θ̂ ] using equation (53), which iterates through all n training
points. When n is large, this computation is impractical. We resolve this issue in the next sec-
tion. The resolution turns out to also help with model interpretability and comes with an accuracy
guarantee.
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4.3 Scalable Deep Kernel Survival Analysis: Survival Kernets

To accelerate prediction for a single raw input, we want to avoid having to look at all n training
points. Chen [2024] proposed a method for doing this that uses two key ideas:

• First, after training a DKSA model (which can scale to large datasets using the ideas we pre-
sented in the previous section), we cluster the training points using an exemplar-based clus-
tering method. In other words, each cluster has an “exemplar” that is an actual training point
that represents the cluster. When we make predictions, we only compute the similarity be-
tween test raw input x and these exemplars. This idea could be thought of as us compressing
training data into a few clusters.

There will be a hyperparameter ε ≥ 0 that controls how much compression happens, where
ε = 0 means that there is no compression (in which case prediction will be slower) whereas
when ε→ ∞, then we maximally compress the data (so that there’s only a single cluster), but
this will mean that we predict the exact same survival function regardless of what the test
raw input x is.

• Second, we ignore any exemplar that is “too far” from x. A key idea here is to exploit existing
fast nearest neighbor search algorithms that enable us to quickly find only the exemplars that
are close enough to x.

There will be a distance threshold hyperparameter τ > 0 that controls what it means to be
too far. Having τ → ∞ will mean that there is no distance restriction (so prediction will be
slower).

To combine these ideas in a manner that can come with a theoretical guarantee, Chen extended
an existing approach designed for classification and regression called kernel netting [Kpotufe and
Verma, 2017] to time-to-event prediction. Chen referred to the resulting class of models as survival
kernets (the latter word abbreviates “kernel netting”).

We now state the training and prediction procedures for survival kernets, which depends on
the hyperparameters ε ≥ 0 and τ > 0 mentioned above. Recall that we have discretized time to the
user-specified grid τ(1) < τ(2) < · · · < τ(L). Let D1 ⊆ [n] and D2 ⊆ [n] be subsets of the training
data (e.g., we randomly divide the n training data into two halves D1 and D2).

Training. We proceed as follows:

1. (Learn kernel function) Train a DKSA model on dataset D1 by using a neural network op-
timizer to minimize LDKSA-NLL(θ) (restricted to using only training data in D1). Denote the
resulting estimate of θ as θ̂.

2. (Compute embedding vectors) Recall that K(x, x′; θ) = exp(−∥f(x; θ) − f(x′; θ)∥2) (equa-
tion (52)). In particular, the distance ∥f(x; θ)− f(x′; θ)∥ is computed in the latent embedding
space. We compute the embedding vectors X̃i = f(Xi; θ̂ ) ∈ Rdemb for each i ∈ D2.

3. (Cluster embedding vectors) Run an exemplar-based clustering method on the embedding
vectors {X̃i : i ∈ D2} to obtain a set of exemplars Q ⊆ D2.

While there are different clustering methods that are possible here, to get a theoretical guaran-
tee, the clustering method used by Chen [2024] is the standard ε-net method (see, for instance,
the textbook by Vershynin [2018]), which has a hyperparameter ε ≥ 0 (where choosing ε = 0
results in every point being its own cluster, and as ε→ ∞, we will have all points in the same
cluster):

(a) Initialize Q := 0.

(b) For i ∈ D2:

i. If Q is empty, then add i to the set of exemplars Q. This means that now point i
forms a new cluster.

ii. Otherwise:
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A. Let j be the point inQwhose embedding vector is closest (in Euclidean distance)
to X̃i.

B. If ∥X̃i − X̃j∥ > ε: Add i to the set of exemplars Q, so that point i forms a new
cluster.
Otherwise: assign point i to the cluster of exemplar j.

4. (Compute summary information per cluster) For each exemplar j ∈ Q, let Cj ⊆ D2 denote
the points that have been assigned to the same cluster as j. Per exemplar j, we compute two
summary functions:

Dcluster[ℓ|j] := ∑
i∈Cj

1{Yi = τ(ℓ)}∆i,

Ncluster[ℓ|j] := ∑
i∈Cj

1{Yi ≥ τ(ℓ)}.

These are just the death and at-risk counts from equations (29) and (30) restricted to points in
the cluster of exemplar j.

5. (Optional summary information fine-tuning) As an optional step, Chen [2024, Section 3.3]
described a method that fine-tunes the summary functions Dcluster and Ncluster in a neural
network framework. For simplicity, we do not go over this fine-tuning step in this mono-
graph.

Prediction. After model training, for a specific test raw input x, we predict S(·|x) as follows.

1. Compute x̃ := f(x; θ̂ ).

2. Use a nearest neighbor search algorithm to find all exemplars inQwhose embedding vectors
are within distance τ from x̃. Denote this resulting set of exemplars as Q(x; τ).

3. Compute the weighted number of deaths and the weighted number of points at risk of dying
at each time index ℓ ∈ [L] as follows:

Dkernet[ℓ|x] := ∑
j∈Q(x;τ)

K(x, Xj; θ̂)Dcluster[ℓ|j],

Nkernet[ℓ|x] := ∑
j∈Q(x;τ)

K(x, Xj; θ̂)Ncluster[ℓ|j].

4. Finally, we predict S(·|x) using

Ŝkernet(t|x) :=
L

∏
m=1

(
1− Dkernet[ℓ|x]

Nkernet[ℓ|x]
)1{τ(m)≤t}

for t ≥ 0.

If we set D1 = D2 = [n] (i.e., D1 and D2 are both set to be the full training data), ε = 0, and
τ = ∞, and we do not use the optional summary information fine-tuning step that is mentioned,
then the resulting survival kernet model would make the same prediction as the original DKSA
model (using equation (54)). Meanwhile, if ε→ ∞ (so that there is only a single cluster), τ → ∞ (so
that for any test point, we predict using the only cluster present), and we do not use the optional
summary information fine-tuning, then the resulting survival kernet model would just become the
classical Kaplan-Meier estimator.

In his experiments, Chen [2024] found that setting D1 = D2 = [n] and using the optional
summary information fine-tuning tends to result in the survival kernet model that achieves the
highest time-dependent concordance index in practice.
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We provide a Jupyter notebook that implements survival kernets.22 Note that our notebook also
shows how to warm-start neural network training with the help of XGBoost, using the strategy by
Chen [2024, Section 4].

Model interpretation. Ignoring the optional summary information fine-tuning step, when a sur-
vival kernet model makes a prediction for a test raw input x, the only training data that contribute
to the prediction are the ones in Q(x; τ). In particular, suppose for a moment that Q(x; τ) con-
sists of only a single point q ∈ [n] (which we could interpret as x being “purely explained” by
exemplar q’s cluster according to the learned survival kernet model). Then we would have

Dkernet[ℓ|x] = K(x, Xq; θ̂ )Dcluster[ℓ|q],
Nkernet[ℓ|x] = K(x, Xq; θ̂ )Ncluster[ℓ|q].

This means that

Ŝkernet(t|x) =
L

∏
m=1

(
1− K(x, Xq; θ̂ )Dcluster[ℓ|q]

K(x, Xq; θ̂ )Ncluster[ℓ|q]
)1{τ(m)≤t}

=
L

∏
m=1

(
1− Dcluster[ℓ|q]

Ncluster[ℓ|q]
)1{τ(m)≤t}

,

which is just the Kaplan-Meier estimator restricted to the points assigned to the cluster of exem-
plar q.

Thus, since any data point purely explained by a single cluster has a prediction given by the
Kaplan-Meier for that cluster, a straightforward way to visualize the different clusters is to just
overlay their Kaplan-Meier survival functions over each other (we could make such a visualization
for any subset of clusters, such as the five largest clusters found). As an example of this, see Figure 5,
where we also display: (i) 95% confidence intervals per Kaplan-Meier survival function estimate
(computed using the standard exponential Greenwood formula [Kalbfleisch and Prentice, 1980]),
(ii) an estimate of each cluster’s median survival time (the time when the survival function crosses
probability 1/2, as discussed in Section 2.2.1), and (iii) each cluster’s size.

In the case where that raw input space corresponds to fixed-length feature vectors (e.g., X =
Rd), Chen [2024] also proposed a heat map visualization that shows, for each cluster, what values
each feature tends to take on. An example of this is shown in Figure 6, where rows correspond
to values that the features can take on (note that continuous features have been discretized for
visualization purposes) and the columns correspond to different clusters.

When making a prediction for test raw input x, we could determine which clusters contribute
to the prediction for x (which are precisely the clusters corresponding to the exemplars inQ(x, τ)).
For only these clusters, we could make visualizations like the ones in Figures 5 and 6 as well as
report the similarity scores K(x, Xj; θ̂ ) for each j ∈ Q(x, τ).

Theory. Under fairly general conditions, Chen [2024] showed that the survival kernet model’s
predicted survival curve converges to S(t|x) for times t that are not too large. To show this result,
Chen’s analysis requires the training data subsets D1 and D2 to be independent of each other (e.g.,
two disjoint halves of the full training data) and the optional summary information fine-tuning
step cannot be used. Unfortunately, this theory does not help with analyzing the best-performing
variant of survival kernets that Chen found in his experimental results, which sets D1 = D2 = [n]
and uses the summary information fine-tuning step.

5 Neural Ordinary Differential Equation Formulation of Time-
to-Event Prediction

As we discussed in Section 2, modeling time-to-event outcomes in continuous time can be chal-
lenging in that computing likelihoods involves evaluating integrals. In particular, we can write the

22https://github.com/georgehc/survival-intro/blob/main/S4.3_Survival_Kernets.ipynb
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Figure 5: (Figure source: Chen 2024, Figure 1) For the largest 5 clusters found by a survival kernet
model on the SUPPORT dataset [Knaus et al., 1995], these are the clusters’ Kaplan-Meier survival
function plots overlaid over each other.

likelihood in equation (5) as

L =
n

∏
i=1

{
f (Yi|Xi)

∆i S(Yi|Xi)
1−∆i

}

=
n

∏
i=1

{
f (Yi|Xi)

∆i

[ ∫ ∞

Yi

f (u|Xi)du
]1−∆i}

,

or if we specify the likelihood using the hazard function, then

L =
n

∏
i=1

{
h(Yi|Xi)

∆i exp
(
−
∫ Yi

0
h(u|Xi)du

)}
. (9, partially reproduced)

If f (·|x) or h(·|x) can be integrated in closed form, then computing the likelihood functions is
straightforward. However, requiring either of these functions to have a closed-form integral could
be a restrictive modeling assumption.

A solution that accommodates functions f (·|x) or h(·|x) that lack closed-form integral expres-
sions and that still models time to be continuous is to use neural ordinary differential equations
(ODEs) [Chen et al., 2018]. In a nutshell, by using neural ODEs, we could use the continuous time
likelihood expression as written (importantly, we leave the integral expression as is without stating
what it explicitly evaluates to, as we shall let an ODE solver compute this integral), and it turns out
that it is still possible to use minibatch gradient descent for learning model parameters!

As a point of reference, recall that nonparametric methods like conditional Kaplan-Meier esti-
mators or how the baseline hazard function is estimated for the semiparametric Cox model still
fundamentally view time as discrete, so that some interpolation is needed to reason about times
that are not along the discrete time grid. For example, we had already mentioned that deep kernel
survival analysis models in practice depend heavily on how the modeler chooses to discretize time
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Figure 6: (Figure source: Chen 2024, Figure 1) For the same clusters as the ones in Figure 5, this
heatmap shows the prevalence of raw feature values per cluster.
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(during training) and to interpolate time (during prediction). Neural ODE time-to-event prediction
models move these time discretization and interpolation steps “under the hood” so that the mod-
eler does not have to worry about time discretization issues. Instead, these issues are handled by
an ODE solver, which we treat as a black box.

At this point, a number of time-to-event prediction models are available based on neural ODEs
(e.g., Groha et al. 2020, Tang et al. 2022b, Danks and Yau 2022, Moon et al. 2022). We cover one
example of a neural ODE time-to-event prediction model called SODEN (Survival model through
Ordinary Differential Equation Networks), proposed by Tang et al. [2022b]. In their experiments,
Tang et al. found SODEN to significantly outperform DeepSurv and Cox-Time while being compet-
itive with DeepHit. SODEN is very general and encompasses essentially all the models we have
covered thus far including the discrete time models (even though we no longer have to manually
discretize time when using neural ODEs, we could still manually discretize time as we show later).
We say “essentially all” rather than “all” because as we shall see, the neural ODE versions of many
models we have already talked about previously might have some minor differences, and they will
be trained differently (with the help of an ODE solver).

As a reminder, in Section 1, we already stated that even though SODEN is very general, we are
not always best off using it. As our accompanying code hopefully makes clear, SODEN’s training
procedure is slow compared to the training procedures we covered in Sections 2 to 4. Also, from
playing with the code, one can occasionally encounter numerical stability issues with the ODE
solver used.

The rest of this section is organized as follows:

• (Section 5.1) We first go over the ODE formulation Tang et al. used and show how it can
represent all the models we have discussed so far in this monograph as special cases.

• (Section 5.3) We then explain how training and prediction work with SODEN.

• (Section 5.4) We briefly mention an alternative to using ODEs for handling the integral of
equation (9). Specifically, we outline an approach called SurvivalMonotonic-net (SuMo-net)
by Rindt et al. [2022].

The main reason we have chosen to focus our exposition on ODEs is that the ODE formulation can
readily be related to other models covered earlier in this monograph.

5.1 General ODE Formulation: SODEN

We present a special case of SODEN [Tang et al., 2022b] that is a little easier to describe and corre-
sponds to our problem setup from Section 2. Recall from Summary 2.1 that d

dt H(t|x) = h(t|x) and
that H(0|x) =

∫ 0
0 h(u|x)du = 0. We use these two constraints to define the following ODE for any

x ∈ X : {
d
dt H(t|x) = h

(
(t, H(t|x), x); θ

)
for t > 0,

H(0|x) = 0 (initial condition at time t = 0),
(56)

where h(·; θ) is a neural network with parameter variable θ. Since d
dt H(t|x) = h(t|x), this means

that h(·; θ) models the hazard function, so its output needs to be a nonnegative number. As our
notation indicates, h(·; θ) takes three inputs: time t, the cumulative hazard value H(t|x) at time t,
and a raw input x. The solution to the ODE is precisely the cumulative hazard function H(·|x).
Let’s look at a concrete example.

Example 5.1 (Weibull time-to-event prediction model as the solution to an ODE). Let X =
Rd. Let

h
(
(t, H(t|x), x); θ

)
:=
(

H(t|x)
)1−e−ϕ

eβ⊤x+ϕ+ψe−ϕ
, (57)

where β ∈ Rd, ψ ∈ R and ϕ ∈ R are parameters (i.e., θ = (β, ψ, ϕ)). Plugging equation (57)
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into equation (56) yields the ODE
{

d
dt H(t|x) =

(
H(t|x)

)1−e−ϕ

eβ⊤x+ϕ+ψe−ϕ
for t > 0,

H(0|x) = 0 (initial condition at time t = 0).
(58)

This ODE can be solved in closed form (as shown in Section 5.A.1), yielding the solution

H(t|x) = e(β⊤x)eϕ+ψteϕ
,

which is precisely the cumulative hazard function that we had derived for the Weibull time-
to-event prediction model (see equation (13)).

As a reminder, we had pointed out after we first presented the Weibull time-to-event prediction
model (Example 2.3) that this model is both a proportional hazards model and an accelerated failure
time (AFT) model (and moreover, it generalizes the exponential time-to-event prediction model we
had presented in Examples 2.1 and 2.2 which correspond to the case where ϕ = 0). In fact, deep
proportional hazards and deep AFT models can both be encoded as special cases of SODEN, as we
show shortly.

Note that back in Example 2.3, we already derived a way to learn parameters of the Weibull
time-to-event prediction model using maximum likelihood. We will be able to learn these parame-
ters using maximum likelihood under this neural ODE framework as well, where the difference is
that the learning procedure relies on an ODE solver.

We now give some examples of families of time-to-event prediction models that are handled by
SODEN to illustrate its level of generality.

5.1.1 Special Case: Deep Proportional Hazards Models

To encode a deep proportional hazards model that is fully parametric in SODEN, it suffices to set

h
(
(t, H(t|x), x); θ

)
:= h0(t; θ)ef(x;θ),

where h0(·; θ) : [0, ∞) → [0, ∞) and f(·; θ) : X → R are two different user-specified neural net-
works with parameter variable θ. Since h(·; θ) models the hazard function, by construction, we
have chosen it to satisfy the proportional hazards assumption (equation (39)). Once we have spec-
ified h

(
(t, H(t|x), x); θ

)
, we can then use SODEN’s training procedure that depends on an ODE

solver (described momentarily in Section 5.3); in fact, this resulting method is called SODEN-PH in
the original SODEN paper [Tang et al., 2022b]. We emphasize that from a modeling perspective, a
fully parametric deep proportional hazards model does not actually need to be encoded in an ODE
framework for us to learn the model parameters (since we can use the training procedure described
in Section 3.2 instead). However, we are simply showing that it is also possible to learn this same
model class within the SODEN framework with a different training procedure.

To encode a deep proportional hazards model that is semiparametric, we could still use the
above formulation, but we instead set h0(·; θ) to be a piecewise constant function. Let τ(1) < τ(2) <
· · · < τ(L) be the unique times of death, and set τ(0) := 0. We introduce unconstrained parameters
γ1, γ2, . . . , γL ∈ R (so that θ now includes γ1, . . . , γL). Then we define

h0(t; θ) :=

{
g(γℓ) if τ(ℓ−1) < t ≤ τ(ℓ) for ℓ ∈ [L],
0 if t > τ(L),

,

where g(·) is any activation function that outputs a nonnegative number (e.g., ReLU, softplus);
recall that in continuous time, hazard function values could be larger than 1, so we do not need
to enforce an upper bound constraint (see Remark 3.3). This semiparametric model could then be
learned using SODEN’s training procedure (Section 5.3) and, in particular, we do not need to use
the two-step procedure from Section 3.3.
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Note that even though we motivated the use of neural ODEs as a way to not have to explicitly
discretize time, our semiparametric example here emphasizes that we could still intentionally set
h0(·; θ) to use a discrete time grid. Separately, we could of course replace f(x; θ) with a neural
network that depends on both x and t to get a model like Cox-Time (Section 3.4).

5.1.2 Special Case: Deep Accelerated Failure Time Models

As another example of a wide family of models that SODEN encompasses, we look at deep AFT
models. In general, these assume that the survival function is of the form

S(t|x) = S0(tef(x;θ); θ) for t ≥ 0, x ∈ X , (59)

where S0(·; θ) : [0, ∞) → [0, 1] and f(·; θ) : X → R are neural networks with parameter variable θ.
Note that S0(·; θ) is a survival function (so that it monotonically decays from 1 to 0). The above
property implies that for all x ∈ X , the survival function S(·|x) has the same shape (namely that of
S0(·; θ)) except where we stretch the time axis by a factor of ef(x;θ). When f(x; θ) is larger, we acceler-
ate how fast death is likely to happen. Note that “classical” AFT models [Prentice and Kalbfleisch,
1979] correspond to the case where X = Rd and f(x; θ) = θ⊤x for parameter vector θ ∈ Rd, and
S0(·; θ) could either be parametric or left unspecified.23

Example 5.2 (Weibull time-to-event prediction model is an AFT model). The Weibull time-
to-event prediction model corresponds to the case where X = Rd, S0(t; θ) = exp(−eψteϕ

),
and f(x; θ) = β⊤x, where θ = (β, ψ, ϕ) ∈ Rd ×R×R.

Equation (59) is equivalent to the condition

h(t|x) = h0(tef(x;θ); θ)ef(x;θ) for t ≥ 0, x ∈ X , (60)

where h0(t; θ) := − d
dt log S0(t; θ) (for a derivation of this equivalence, see Section 5.A.2). Thus, in

the SODEN model, we could represent a deep AFT model by setting

h
(
(t, H(t|x), x); θ

)
:= h0(tef(x;θ); θ)ef(x;θ),

where the user specifies the neural networks h0(·; θ) and f(·; θ).
Tang et al. [2022a] suggested an alternative approach to specifying deep AFT models in an ODE

framework (note that they actually suggested it for a classical rather than deep AFT model, but the
idea trivially extends to the deep AFT case). In particular, it turns out that if we set

h
(
(t, H(t|x), x); θ) := g(H(t|x); θ)ef(x;θ),

for some user-specified neural networks g(·; θ) and f(·; θ), then the solution to the ODE is a deep
AFT model. In fact, we already saw this way of specifying an AFT model in Example 5.1, where
g(t; θ) := eϕ+ψe−ϕ

t1−e−ϕ
, and f(x; θ) = β⊤x. The function g(·; θ) relates to the shape of S0(·; θ) in a

nontrivial manner, although it is possible to convert between these two functions (for details, see
Section 2.2 of Tang et al. [2022a]).

5.1.3 Special Case: Deep Extended Hazard Models

A family of models that contains both deep proportional hazards and deep AFT models as spe-
cial cases is called deep extended hazard models (DeepEH) [Zhong et al., 2021]. As the basic idea is
straightforward, we directly state how to set h(·; θ) for SODEN to get a DeepEH model:

h
(
(t, H(t|x), x); θ

)
:= h0(tef1(x;θ); θ)ef2(x;θ),

23As we pointed out in footnote 10 on page 21, for more details on classical AFT models, please see Chapter 12 of the
textbook by Klein and Moeschberger [2003] or Chapter 3 of the textbook by Box-Steffensmeier and Jones [2004].
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where h0(·; θ), f1(·; θ), and f2(·; θ) are neural networks with parameter variable θ. When f1(x; θ) =
0, then we get a deep proportional hazards model (see equation (39)). If instead f1(x; θ) = f2(x; θ),
then we get a deep AFT model (see equation (60)). Note that the way Zhong et al. [2021] learn
a DeepEH model has a known theoretical guarantee, whereas if we learn it using the SODEN
learning procedure, there is no known theoretical guarantee that we are aware of.

5.2 Special Case: Converting Discrete Time Models to
Continuous Time

As we saw for deep proportional hazards models in Section 5.1.1, we could set the baseline haz-
ard function h0(·; θ) to be piecewise constant over a discrete time grid. We could use this same
idea to directly specify the hazard function h(·; θ) as piecewise constant over a user-specified grid
τ(1) < τ(2) < · · · < τ(L) (these need not be the unique times of death and could be chosen by
other strategies) with τ(0) := 0. In fact, by making this piecewise constant assumption, we could
actually convert any time-to-event prediction model specified in discrete time (such as the ones
in Section 2.3 as well as deep kernel Kaplan-Meier estimators of Section 4) into a continuous time
model.

To give an example of how to convert a discrete time model to continuous time, consider Nnet-
survival [Gensheimer and Narasimhan, 2019], which we covered in Example 2.5. For this model,
we could set the SODEN parametric hazard function to be

h
(
(t, H(t|x), x); θ

)

:=





(
1

τ(ℓ)−τ(ℓ−1)

)
h[ℓ|x; θ] if τ(ℓ−1) < t ≤ τ(ℓ) for ℓ ∈ [L],

0 if t > τ(L),

where h[·|x; θ] is given in equation (23). Note that in this case, the ODE is actually straightforward
to solve since h

(
(t, H(t|x), x); θ

)
does not depend on H(t|x). Then note that by integrating from

time 0 to time τ(ℓ) for ℓ ∈ [L], we get

H(τ(ℓ)|x) =
∫ τ(ℓ)

0
h
(
(u, H(u|x), x); θ

)
du =

ℓ

∑
m=1

h[m|x; θ].

Perhaps what is more interesting is that the model would now interpolate. Suppose that time
t ∈ (τ(ℓ−1), τ(ℓ)]. Then

H(t|x) =
∫ τ(ℓ)

0
h
(
(u, H(u|x), x); θ

)
du

=
ℓ−1

∑
m=1

h[m|x; θ] +

( t− τ(ℓ−1)

τ(ℓ) − τ(ℓ−1)

)
h[ℓ|x; θ].

This is precisely using an interpolation strategy that assumes a piecewise constant hazard function.
In terms of how the prediction targets relate between continuous and discrete time, first note

that H[ℓ|x] = H(τ(ℓ)|x). However, h[ℓ|x] would in general not equal h(τ(ℓ)|x) = 1
τ(ℓ)−τ(ℓ−1)

h[ℓ|x; θ]

due to the extra multiplicative factor in the latter; instead,

h[ℓ|x] = h[ℓ|x; θ] = h(τ(ℓ)|x) · (τ(ℓ) − τ(ℓ−1)) for ℓ ∈ [L].

Meanwhile, S[ℓ|x; θ] would also in general not equal S(τ(ℓ)|x) = exp(−H(τ(ℓ)|x)) = exp(−H[ℓ|x])
due to Proposition 2.1. However, this proposition shows the precise manner in which S(τ(ℓ)|x) =
exp(−H[ℓ|x]) approximates S[ℓ|x].

Since deep kernel survival analysis could be viewed as parameterizing a discrete time haz-
ard function (equation (53)), converting a deep kernel survival analysis model to continuous time
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would work the same way as what we just showed for Nnet-survival. The main difference is
that we would also have to remember to convert the leave-one-out discrete time hazard functions
(equation (55)) during model training.

The same conversion strategy could be used with the simplified version of DeepHit [Lee et al.,
2018] that we presented in Example 2.4, with just a minor difference: DeepHit parameterizes the
distribution PT|X(·|x) in terms of the survival time PMF f [·|x] and not the hazard function h[·|x].
However, we could simply use Summary 2.2 to obtain

h[ℓ|x] = f [ℓ|x]
S[ℓ− 1|x] =

f [ℓ|x]
∑L

m=ℓ f [m|x]
,

which means that by having a parametric form of f [·|x], we have a parametric form for h[·|x].
Overall, converting discrete time models to continuous time models using a neural ODE frame-

work is possible and gives a different way of learning such discrete time models (by using the
general learning procedure for SODEN) that automatically also handles interpolation. However,
in such cases, solving the maximum likelihood problem directly in discrete time could be faster in
practice as there is no need to use an ODE solver. After training a discrete time model, we could
also use piecewise constant hazard interpolation to back out continuous time predictions.

5.3 Prediction and Training with a SODEN Model

We now give an overview of how to train a SODEN model and how to subsequently make predic-
tions.

Training. Training neural ODEs (such as the one in equation (56)) is possible thanks to the land-
mark paper by Chen et al. [2018]. Importantly, using any user-specified ODE solver, given any raw
input x ∈ X and neural network parameters θ, we can numerically solve the ODE in equation (56)
(going from time 0 to any user-specified time t > 0) to obtain an estimate for H(t|x). We denote
the resulting estimate as HODE-solve(t|x; θ). Then a major result of Chen et al. [2018] is that the loss
function we use can contain the terms h((t, H(t|x), x); θ) and HODE-solve(t|x; θ), where it is possi-
ble to compute the gradient of HODE-solve(t|x; θ) with respect to θ (Chen et al. provide the software
package torchdiffeq for computing such gradients).

Then to train the SODEN model, Tang et al. [2022b] simply use the negative log likelihood loss
we had stated in equation (11) except we replace h(t|Xi; θ) with h((Yi, H(Yi|Xi), Xi); θ) and we
replace the integral (which is equal to H(Yi|Xi)) with HODE-solve(Yi|Xi; θ). The resulting loss is

LSODEN-NLL(θ)

:= − 1
n

n

∑
i=1
{∆i log h

(
(Yi, H(Yi|Xi), Xi); θ

)
− HODE-solve(Yi|Xi; θ)}.

We can use a neural network optimizer to minimize the loss to obtain an estimate θ̂ :=
arg minθ LSODEN-NLL(θ).

Prediction. For any test raw input x ∈ X , by using the user-specified ODE solver, we can predict
the cumulative hazard function using Ĥ(t|x) := HODE-solve(t|x; θ̂ ). We can then predict the survival
function with Ŝ(t|x) := exp(−Ĥ(t|x)) and the hazard function with ĥ(t|x) := h

(
(t, Ĥ(t|x), x); θ̂

)
.

Note that to predict the hazard function, we first predict the cumulative hazard function since
even though neural network h(·; θ̂ ) models the hazard function, recall that it takes in three inputs
and in general can depend on the cumulative hazard value at any given time.

We provide a Jupyter notebook that shows how to train a SODEN model and subsequently
make predictions with it.24 Our notebook makes it clear where calls to the ODE solver happen.

24https://github.com/georgehc/survival-intro/blob/main/S5.2_SODEN.ipynb

70

https://github.com/georgehc/survival-intro/blob/main/S5.2_SODEN.ipynb


5.4 An Alternative to ODEs via Monotonic Networks: SuMo-net

We began Section 5 by mentioning that the right-censored likelihood from Section 2 has the form

L =
n

∏
i=1

{
h(Yi|Xi)

∆i exp
(
−
∫ Yi

0
h(u|Xi)du

)}
, (9, partially reproduced)

where the difficulty of working with this likelihood is in evaluating the integral. At a high level, the
basic idea of SODEN was that we modeled the hazard function h with a neural network h(·; θ), and
we relied on the neural ODE framework to take care of automatically integrating h(·|Xi) (specified
in terms of h(·; θ)) to compute H(Yi|Xi) =

∫ Yi
0 h(u|Xi)du.

Naturally, this suggests that we could have attempted an alternative parameterization. We can
rewrite the likelihood of equation (9) as

L =
n

∏
i=1

{[dH
dt

(Yi|Xi)
]∆i

exp
(
− H(Yi|Xi)

)}
.

Then we could directly model the cumulative hazard function H(·|x) with a neural net H(·|x; θ)

and instead rely on automatic differentiation software to compute dH
dt (Yi|Xi) = h(Yi|Xi) (so that

now we leave the derivative unspecified in the loss function, whereas previously in the ODE setup,
we left the cumulative hazard function unspecified in the loss). However, we need to add the
constraint that H(t|x; θ) is nonnegative and monotonically increases with respect to time t. We
can take advantage of the fact that there already exist standard neural network architectures for
enforcing monotonicity (e.g., Chilinski and Silva 2020, Yanagisawa et al. 2022). This approach does
not use neural ODEs and simply takes advantage of automatic differentiation, which is already
a standard component of all modern neural network software packages. This resulting approach
corresponds to the SurvivalMonotonic-Network (SuMo-net) model by Rindt et al. [2022].25

Rindt et al. [2022] show that SuMo-net works very well in practice, outperforming neural ODEs
(namely, SODEN and also the SurvNODE model by Groha et al. [2020]) on several benchmark
datasets in terms of log likelihood scores and also computation time. In terms of computation
time, roughly, automatic differentiation is relatively fast (and natively supported by neural network
software packages) compared to making many calls to an ODE solver.

The reason that it is straightforward relating SODEN to models we have presented earlier in
this monograph is that these models can be specified in terms of a hazard function (continuous
or discrete), i.e., there is some way to directly parameterize the hazard function. SuMo-net, on
the other hand, could be thought of as asking the modeler to parameterize either the survival or
cumulative hazard function directly, but not the hazard function, so that the hazard function is
indirectly obtained. Whether this is desirable depends on the use case. Of course, if one just cares
about a survival model doing well on a specific evaluation metric and nothing else, then we could
just choose whichever model does best on the evaluation metric of interest. However, if there are
other design considerations (such as some notion of interpretability), or if the model is not being
used purely for prediction but for causal inference, then choosing which model is “best” can be
more challenging. We discuss some of these issues in Section 7.

5.A Technical Details

5.A.1 Solving the Weibull Time-to-Event Prediction Model’s ODE From Example 5.1

Treating x as fixed, the ODE of equation (58) can be written as

d
dt

y(t) = a · b · y(t)1− 1
a

25Technically, Rindt et al. [2022] specify SuMo-net in terms of constraining the survival function S(t|x) to monotonically
decrease in t, but they also explain how to instead directly model the cumulative hazard function H(t|x) (and constrain this
to be monotonic), which corresponds to our exposition.
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subject to the constraint that y(0) = 0 (where in our case, y(t) = H(t|x), a = eϕ, and b = eβ⊤x+ψe−ϕ
).

Rearranging terms, we have

y(t)
1
a−1 d

dt
y(t) = a · b.

Integrate both sides with respect to t to get

a(y(t))1/a = a · b · t + c,

where c is a constant to be determined based on the constraint y(0) = 0. We rearrange terms to get
that

y(t) =
(

b · t + c
a

)a
,

where, using the constraint, we get that we must have c = 0. Hence, y(t) = (b · t)a, i.e.,

H(t|x) = (eβ⊤x+ψe−ϕ
t)eϕ

= e(β⊤x)eϕ+ψteϕ
.

5.A.2 Deriving the Hazard Function of Deep AFT Models

We show that the AFT model as defined in equation (59) (namely that S(t|x) = S0(tef(x;θ); θ))
implies that the hazard function h(·|x) is the one in equation (60), which we reproduce here for
convenience:

h(t|x) = h0(tef(x;θ); θ)ef(x;θ) for t ≥ 0, x ∈ X . (60, reproduced)

To prove that this factorization holds for the hazard function, we begin by stating yet another
equivalent characterization of a deep AFT model that will be helpful.

Proposition 5.1 (Log survival time viewpoint of a deep AFT model). Using the time-to-
event prediction setup in Section 2.1 and the key assumptions of 2.2, suppose that the ran-
dom survival time T satisfies the equality

log T = −f(X; θ) + W, (61)

where the “noise” random variable W is independent of everything else, and eW has a CDF
given by F0(t; θ) := 1 − S0(t; θ) for t ≥ 0. Then this setup is equivalent to making the
assumption that the survival function S(·|x) satisfies the factorization in equation (59), i.e.,
this time-to-event prediction model is a deep AFT model.

Proof of Proposition 5.1. To see why equation (61) is equivalent to equation (59), first note that equa-
tion (61) can be rearranged as T = e−f(X;θ)eW . Then,

S(t|x) = P(T > t|X = x)

= P(e−f(X;θ)eW > t|X = x)

= P(eW > tef(X;θ))

= 1− F0(tef(X;θ); θ)

= S0(tef(X;θ); θ),

which shows that equation (59) holds. We could reverse the steps to show that equation (59) implies
equation (61).

We now proceed to derive the hazard function of a deep AFT model. Summary 2.1 tells us that
h(t|x) = f (t|x)

S(t|x) which combined with equation (59) yields

h(t|x) = f (t|x)
S0(tef(x;θ); θ)

. (62)
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As a reminder, f (·|x) is the PDF of PT|X(·|x), and the corresponding CDF is F(t|x) =
∫ t

0 f (u|x)du.
We next write f (·|x) in terms of f0(·; θ), the PDF corresponding to CDF F0(·; θ). To do this, we start
by writing CDF F(·|x) in terms of F0(·; θ):

F(t|x) = P(T ≤ t|X = x)

= P(e−f(X;θ)+W ≤ t|X = x) (using equation (61))

= P(eW ≤ tef(X;θ)|X = x)

= P(eW ≤ tef(x;θ))

= F0(tef(x;θ); θ).

Then using the derivative chain rule,

f (t|x) = dF(t|x)
dt

=
d
dt

F0(tef(x;θ); θ) = f0(te f (x;θ); θ)ef(x;θ). (63)

Combining equations (62) and (63), we have

h(t|x) = f0(tef(x;θ); θ)ef(x;θ)

S0(tef(x;θ); θ)
= h0(tef(x;θ); θ)eβ⊤x,

where the last step uses the fact that h0(t; θ) = f0(t;θ)
S0(t;θ)

for the same reason h(t|x) = f (t|x)
S(t|x) in Sum-

mary 2.1. This completes the proof. □

6 Beyond the Basic Time-to-Event Prediction Setup: Multiple
Critical Events and Time Series as Raw Inputs

In this section, we present two extensions of the basic time-to-event prediction problem setup we
described in Section 2 that showcase concrete directions where deep learning models have been
successful. Specifically, we go over the following two extensions that progressively get more gen-
eral than the standard time-to-event prediction setup:

• (Section 6.1) In previous sections, we focused on modeling the time until a specific critical
event (e.g., death) happens. We now consider a more general setup where there are k different
critical events that we keep track of. For any data point, we want to reason about the time
until the earliest of these events happens, as well as which of the k events it is. This is referred
to as the competing risks setup since we could think of the k events as competing to see which
one happens first. A number of deep learning models have been developed for this setup. We
go over one called DeepHit [Lee et al., 2018]. Note that the k = 1 case recovers the standard
setup from Section 2.

• (Section 6.2) We then turn to the problem of what happens when each data point is actually
a time series. As we see more of a time series over time, we could keep making predictions
of the time until the earliest of k critical events happens and which event it is. Each training
point is a time series, and different training points could be time series of different lengths.
We go over an example model that handles this setup called Dynamic-DeepHit [Lee et al.,
2019]. In the special case where every time series has length 1 (meaning that per data point,
we only see the raw input at a single time point before we aim to make a prediction), we
recover the setup of Section 6.1.

6.1 Time-to-Event Prediction with Multiple Critical Events: The Competing
Risks Setup

Similar to our exposition in Section 2, we first state the statistical framework (Section 6.1.1) and
the prediction problem (Section 6.1.2). These lead to a likelihood expression that we could write
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(Section 6.1.3). We then give an example model that maximizes the likelihood (Section 6.1.4), which
is the full version of the DeepHit model we encountered in Example 2.4. Because this problem
setup is different from earlier sections, how we evaluate model accuracy also is a bit different
(Section 6.1.5).

Note that DeepHit is at this point a standard baseline to try in time-to-event prediction problems
with competing risks (and even in the standard setup without competing risks). More recently,
other models that support competing risks have also been developed (e.g., Nagpal et al. 2021a,
Danks and Yau 2022, Jeanselme et al. 2023). Similar to what we have seen with the standard time-
to-event prediction setup, for this competing risks setup, no single model is best at this point across
all datasets. We present DeepHit because it is the original deep competing risks model developed
and is fairly straightforward to explain.

There are classical baselines as well although we only mention them now without explaining
how they work (as understanding them is not needed for our monograph). Recall that in the stan-
dard setup of Section 2, the Kaplan-Meier estimator would give the same population-level pre-
dicted survival function regardless of which test point we look at. The analogue in the competing
risks setting is called the Aalen-Johansen estimator [Aalen and Johansen, 1978]. Meanwhile, the
Fine-Gray subdistribution hazard model [Fine and Gray, 1999] could be thought as the Cox model
analogue in the competing risks setting.

6.1.1 Statistical Framework

We keep track of k different critical events. We still assume that we have n training points
(X1, Y1, ∆1), . . . , (Xn, Yn, ∆n) like in the standard setup. However, the major difference now is that
the event indicator ∆i ∈ {0, 1, . . . , k} takes on more possible values. When ∆i = 0, then Yi is the
censoring time, just as before. However, if ∆i > 0, then ∆i tells us which of the k events happened
earliest, and Yi is equal to the time until this earliest critical event happened.

As before, X denotes the random variable for a generic raw input (with distribution PX), and
C denotes the random variable for the true (possibly unobserved) censoring time corresponding
to X (with distribution PC|X(·|x)). However, now the random variable T is a random vector taking
on values in [0, ∞)k (with distribution PT|X(·|x)). In particular, T = (T1, T2, . . . , Tk) consists of the
times until each of the k different critical events happen.

We assume each (Xi, Yi, ∆i) for i ∈ [n] to be generated i.i.d. as follows:

1. Sample raw input Xi from PX .

2. Sample vector Ti = (Ti,1, Ti,2, . . . , Ti,k) (true times until the k critical events happen) from
PT|X(·|Xi).

3. Sample true censoring time Ci from PC|X(·|Xi).

4. Set Yi = min{Ti,1, Ti,2, . . . , Ti,k, Ci}.
If Yi = Ci: set ∆i = 0. Otherwise: set ∆i = arg minδ∈[k] Ti,δ (if there is a tie for the smallest
time, then break the tie arbitrarily).

This generative procedure allows for the times until the critical events happen to potentially de-
pend on each other. However, conditioned on Xi, we still assume that Ti is independent of Ci just
as in the standard setup (which we see since steps 2 and 3 do not depend on each other). Note that
the k critical events are “exhaustive” in the sense that they are the only options that could happen
(unless none of them happen yet due to censoring), which is implied by step 4.

6.1.2 Prediction Task

For all x ∈ X , we assume that PT|X(·|x) exists. Consider the random variable Ttest :=
(Ttest,1, Ttest,2, . . . , Ttest,k) ∈ [0, ∞)k that is sampled from PT|X(·|x). Define the random variables

Ytest := min{Ttest,1, Ttest,2, . . . , Ttest,k}, ∆test := arg min
δ∈[k]

Ttest,δ.
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Notice that these are defined without sampling a censoring time (whereas we assumed censoring
times to be generated for training data).

A common prediction target is the so-called cumulative incidence function (CIF) [Gray, 1988, Fine
and Gray, 1999] of each event δ ∈ [k], which is the probability of event δ happening by time t
(where t ≥ 0):

Fδ(t|x) := P(Ytest ≤ t, ∆test = δ | X = x). (64)

When the number of critical events is k = 1, then there would only be a single CIF to estimate
corresponding to the single critical event, and it would actually just correspond to the CDF F(·|x)
of the survival time distribution PT|X(·|x) in our problem setup from Section 2.

If we discretize time using the time grid τ(1) < τ(2) < · · · < τ(L), then the CIF could be written
as

Fδ[ℓ|x] := P(Ytest ≤ τ(ℓ), ∆test = δ | X = x) for δ ∈ [k], ℓ ∈ [L], x ∈ X ,

from which we can write its PMF version

fδ[ℓ|x] := P(Ytest = τ(ℓ), ∆test = δ | X = x) for δ ∈ [k], ℓ ∈ [L], x ∈ X . (65)

By how a CDF and PMF relate, we have Fδ[ℓ|x] = ∑ℓ
m=1 fδ[m|x]. Meanwhile, since a PMF sums to

1, we have ∑k
δ=1 ∑L

ℓ=1 fδ[ℓ|x] = 1.

6.1.3 Likelihood

For simplicity, we only present the discrete time likelihood that does not depend on the censoring
distribution:

L :=
n

∏
i=1

{
( f∆i [κ(Yi)|Xi])

1{∆i ̸=0}
(

1−
k

∑
δ=1

Fδ[κ(Yi)|Xi]

)1{∆i=0}}
, (66)

where, as a reminder, κ(Yi) ∈ [L] denotes the time index that Yi corresponds to. To make sense of
the likelihood, note that for the i-th point, if it is not censored, then the contribution to the likelihood
is the factor f∆i [κ(Yi)|Xi], which is the probability of event ∆i happening at time index κ(Yi) for raw
input Xi. Otherwise, if the i-th point is censored, the contribution to the likelihood is

1−
k

∑
δ=1

Fδ[κ(Yi)|Xi] = 1−
k

∑
δ=1

P(Ytest ≤ κ(Yi), ∆test = δ | X = Xi)

= 1−P(Ytest ≤ κ(Yi) | X = Xi)

= P(Ytest > κ(Yi) | X = Xi),

which is the probability that the earliest critical event happens after time index κ(Yi) for raw input
Xi.

6.1.4 Example Model: the Full Version of DeepHit

We had previously covered a special case of the DeepHit model [Lee et al., 2018] for when the
number of critical events is k = 1 (Example 2.4). We now present the general case that supports
multiple critical events. We parameterize the PMF function (equation (65)) in terms of a neural
network f(·; θ) : X → [0, 1]L×k as follows:




f1[1|x] f2[1|x] · · · fk[1|x]
f1[2|x] f2[2|x] · · · fk[2|x]

...
...

. . .
...

f1[L|x] f2[L|x] · · · fk[L|x]


 =




f1,1(x; θ) f2,1(x; θ) · · · fk,1(x; θ)
f1,2(x; θ) f2,2(x; θ) · · · fk,2(x; θ)

...
...

. . .
...

f1,L(x; θ) f2,L(x; θ) · · · fk,L(x; θ)




=: f(x; θ). (67)

Having the output be a 2D table is not required (we can easily flatten the table and it would con-
tain the same information); we have written it this way for clarity of exposition. Recalling that
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∑k
δ=1 ∑L

ℓ=1 fδ[ℓ|x] = 1, we require that the neural network’s output always sums to 1, which we
can easily get by, for instance, having the neural network output a total of L · k numbers that go
through a softmax activation.

By plugging equation (67) into equation (66), we obtain

L(θ) :=
n

∏
i=1

{
(f∆i ,κ(Yi)

(Xi; θ))1{∆i ̸=0}
(

1−
k

∑
δ=1

κ(Yi)

∑
m=1

fδ,m(Xi; θ)

︸ ︷︷ ︸
Fδ [κ(Yi)|Xi ]

)1{∆i=0}}
.

Then the negative log likelihood loss averaged across training data is:

LDeepHit-NLL(θ)

:= − 1
n

logL(θ)

:= − 1
n

n

∑
i=1

{
1{∆i ̸= 0} log(f∆i ,κ(Yi)

(Xi; θ))

+ 1{∆i = 0} log
(

1−
k

∑
δ=1

κ(Yi)

∑
m=1

fδ,m(Xi; θ)

)}
.

Since ranking-based accuracy metrics (Section 2.5.1) are popular, Lee et al. [2018] further introduced
a ranking loss term that is motivated by the Ctd index (Definition 2.2). For event δ ∈ [k], we define
the set of comparable pairs specific to event δ as

Eδ := {(i, j) ∈ [n]× [n] : ∆i = δ, Yi < Yj}. (68)

In particular, this means that if (i, j) ∈ Eδ, then training point i experienced critical event δ as
the earliest critical event, and training point j has not experienced any critical event yet. This
means that at the earlier time Yi (which corresponds to time index κ(Yi)), the model should predict
Fδ[κ(Yi)|Xi] to be higher than Fδ[κ(Yi)|Xj], i.e., we want Fδ[κ(Yi)|Xi]− Fδ[κ(Yi)|Xj] to be large. Note
that

Fδ[κ(Yi)|Xi]− Fδ[κ(Yi)|Xj] =
κ(Yi)

∑
m=1

(fδ,m(Xi; θ)− fδ,m(Xj; θ)). (69)

Thus, we want this difference to be large for all (i, j) ∈ Eδ, for all δ ∈ [k].
With the above intuition, for hyperparameters η = (η1, η2, . . . , ηk) ∈ [0, ∞)k and σ > 0, we

define the ranking loss term

LDeepHit-ranking(θ; η, σ)

:=
1
k

k

∑
δ=1

ηδ

|Eδ| ∑
(i,i′)∈Eδ

exp
(

∑
κ(Yi)
m=1 [fδ,m(Xi′ ; θ)− fδ,m(Xi; θ)]

σ

)
.

Having each of the terms being summed as small as possible aims to maximize equation (69).
Hyperparameter ηδ ≥ 0 controls how much we care about ranking for critical event δ, and hyper-
parameter σ > 0 controls how much we care about ranking across all critical events (as σ→ ∞, we
stop caring about ranking).

Then the full DeepHit loss is:

LDeepHit(θ) := LDeepHit-NLL(θ) + LDeepHit-ranking(θ; η, σ). (70)

Note that our presentation of DeepHit is slightly different from the original version by Lee et al.
[2018] in that for each loss term we use, we have included some normalization constants (the frac-
tion 1

n in LDeepHit-NLL, and the fractions 1
k and 1

|Eδ | in LDeepHit-ranking). Lee et al. also choose a specific
base neural network architecture, whereas we intentionally leave it up to the user to specify.
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We then use a neural network optimizer to solve θ̂ := arg minθ LDeepHit(θ). For any test raw
input x ∈ X , we could then predict the PMF form of the CIFs using f(x; θ̂ ) (see equation (67)), from
which we could readily recover an estimate for all the critical events’ CIFs.

In our companion code repository, we provide a Jupyter notebook that implements the full
DeepHit model with competing risks.26 This notebook builds on the earlier DeepHit Jupyter note-
book that we provided a link to in Example 2.4, which was for the standard right-censored survival
analysis setup. In the competing risks version, instead of using the SUPPORT dataset [Knaus et al.,
1995], we now use the PBC dataset [Fleming and Harrington, 1991], which is on predicting times
until death or transplantation of various patients with primary biliary cirrhosis of the liver. Note
that the PBC dataset is actually a time series dataset. However, per data point, we only consider
the initial time step, so that we reduce it to a tabular dataset.

6.1.5 Evaluation Metrics

We point out a few evaluation metrics that are possible. Note that we state these using the contin-
uous time version of CIFs, which could be converted into discrete time easily.

Ctd index. First, the Ctd index (Definition 2.2) generalizes to the competing risks setting by using
the set of comparable pairs Eδ (equation (68)) so that we now have a Ctd index score per critical
event δ ∈ [k].

Definition 6.1 (Ctd index for competing risks). Let δ ∈ [k]. Suppose that we have a CIF
estimate F̂δ(·|x) for any x ∈ X . Then using the set of comparable pairs Eδ from equation (68),
we define the Ctd index for event δ as

Ctd
δ :=

1
|E◦| ∑

(i,j)∈E◦
1{F̂δ(Yi|Xi) > F̂δ(Yi|Xj)},

which is between 0 and 1. Higher scores are better.

Truncated time-dependent concordance index. We can generalize the truncated time-dependent
concordance index Ctd

t (Definition 2.3) to the competing risks setting in the same manner as for
the Ctd index. We define the set of comparable pairs specific to event δ ∈ [k] and time t ≥ 0 as

Eδ(t) := {(i, j) ∈ [n]× [n] : ∆i = δ, Yi < t, Yj > Yi}.

We then define the following accuracy score.

Definition 6.2 (Truncated time-dependent concordance index for competing risks). Let δ ∈
[k] and t ≥ 0. Suppose that we have a CIF estimate F̂δ(·|x) for any x ∈ X . Then using the
set of comparable pairs Eδ(t), we define the truncated time-dependent concordance index
for event δ at time t as

Ctd
δ,t :=

∑(i,j)∈Eδ(t) wi1{F̂δ(t|Xi) > F̂δ(t|Xj)}
∑(i,j)∈Eδ(t) wi

, (71)

where
wi :=

1
(Ŝcensor(Yi))2

for i ∈ [n].

Note that Ŝcensor(·) is trained the same way as we described it in
Section 2.5.1: we fit a Kaplan-Meier estimator to training labels

26https://github.com/georgehc/survival-intro/blob/main/S6.1.4_DeepHit_competing.ipynb
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(Y1,1{∆1 = 0}), (Y2,1{∆2 = 0}), . . . , (Yn,1{∆n = 0}). Values of Ctd
δ,t are between 0

and 1, where higher is better.

We could of course integrate Ctd
δ,t over time (as done in Definition 2.4) to get an integrated Ctd

δ,t index
for competing risks. As this is straightforward, we omit writing a formal definition. Similarly, it
is straightforward to generalize the time-dependent AUC score from Section 2.5.1 to the compet-
ing risks setting as well (recall that the time-dependent AUC score we presented was just a slight
modification of Ctd

t ).

Brier score. The Brier score (Definition 2.5) can also be generalized to the competing risks setting
[Gerds and Kattan, 2021, Section 5.4.2]. Just as with the Ctd and truncated time-dependent con-
cordance indices stated above, the competing risks version of the Brier score also is specific to a
single critical event δ ∈ [k]. As with the Brier score for the standard survival analysis setup (Sec-
tion 2.5.2), the competing risks version also depends on a specific time of evaluation t ≥ 0. We have
the following.

Definition 6.3 (Brier score for competing risks). Let δ ∈ [k] and t ≥ 0. Suppose that we
have a CIF estimate F̂δ(·|x) for any x ∈ X . We define the Brier score for event δ at time t ≥ 0
by

BSδ(t) :=
1
n

n

∑
i=1

[
(1− F̂δ(t|Xi))

21{∆i = δ}1{Yi ≤ t}
Ŝcensor(Yi)

+
(F̂δ(t|Xi))

21{∆i ̸= δ and ∆i ̸= 0}1{Yi ≤ t}
Ŝcensor(Yi)

+
(F̂δ(t|Xi))

21{Yi > t}
Ŝcensor(t)

]
,

where Ŝcensor(·) is trained the same way as in Section 2.5.1. Brier scores are nonnegative,
where lower is better.

Of course, we can integrate the Brier score over time to obtain an integrated Brier score (as done in
Definition 2.6).

6.2 Dynamic Time-to-Event Prediction with Competing Risks

We now generalize our setup from Section 6.1 to the setting where every data point is a time series.
Each time series could vary in length (in terms of the number of time steps), and the time series
could be irregularly sampled, meaning that the amount of time that elapses between consecutive
time steps of a time series can vary. Having input data be time series can already be accommodated
by the problem setup from Section 6.1! For example, using the DeepHit model, we could simply set
f(·; θ) (equation (67)) to be a recurrent neural network (RNN), which accepts variable-length time
series as inputs. Consequently, training and test data could be variable-length time series.

Thus, we reuse the exact same statistical framework for the training data as in Section 6.1.1.
However, now we set the raw input space X in a particular manner, as we describe in Section 6.2.1.
The main conceptual difference will be that we phrase the prediction task so that it depends on
how much of a test time series we see. We state this new prediction task in Section 6.2.2. We then
show how DeepHit can be used for this time series prediction task by choosing f(·; θ) based on an
RNN with an attention module in Section 6.2.3. By introducing an RNN, during model training,
we add an extra loss term that is meant to help the RNN learn a useful latent representation of time
series (i.e., we use the RNN to learn how the time series evolves over time). The resulting model
is called Dynamic-DeepHit [Lee et al., 2019]. We comment on handling sequences of critical events
occurring in Section 6.2.4.
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A key takeaway in our exposition is that the time series version of the competing risks problem
can just be reduced to the standard competing risks problem of Section 6.1. How we go from
DeepHit to Dynamic-DeepHit is just in how we specify the base neural network f(·; θ) of DeepHit,
and the addition of a loss term that learns temporal dynamics. These design steps that enable us
to work with variable-length time series as inputs is not special to the competing risks setup and
works also when the number of critical events is k = 1. In other words, the high-level idea of how
we go from DeepHit to Dynamic-DeepHit can be applied to other deep time-to-event prediction
models (such as the ones we covered in Sections 2 to 5) to enable them to work with variable-length
time series as inputs.

6.2.1 Variable-length Time Series as Training Data

We denote training point i’s raw input as

Xi :=
(
(U(1)

i , V(1)
i )

︸ ︷︷ ︸
time step 1

, (U(2)
i , V(2)

i )
︸ ︷︷ ︸

time step 2

, . . . , (U(Mi)
i , V(Mi)

i )
︸ ︷︷ ︸

time step Mi

)
,

where Mi ∈ {1, 2, . . . } is the number of time steps for point i, and at time step m ∈ [Mi] (sorted
chronologically), U(m)

i ∈ U is the raw input (U is the raw input space for a single time step and

is an input space that standard neural network software can work with), and V(m)
i ∈ R is the

timestamp. For example, the amount of time between time steps m and m + 1 is V(m+1)
i −V(m)

i . A

common assumption is that V(1)
i := 0. The raw input space X consists of all possible time series of

the format above. As our notation suggests, different training points i can have different numbers
of time steps Mi. Again, RNNs readily accommodate this sort of time series data that can vary in
length. (Transformer models could also be used to accept variable-length time series as inputs.)

In terms of ground truth information, just as in the Section 6.1.1, training point i has an event
indicator ∆i ∈ {0, 1, . . . , k}. If ∆i = 0, then the observed time Yi is a censoring time. Otherwise, ∆i is
equal to the critical event that happened earliest to point i, and Yi is the time when this critical event
happened. We assume that Yi starts measuring time starting from the last observed timestamp
V(Mi)

i . This means that at any time step m ∈ [Mi], we are at timestamp V(m)
i , and the time until the

earliest critical event or censoring happens is Yi + (V(Mi)
i −V(m)

i ).
Even though this way of specifying the training data is a special case of the framework in Sec-

tion 6.1.1, the notation we introduced here will be important when we talk about prediction next.

6.2.2 Prediction Task

We now write any test raw input x as

x =
(
(u(1), z(1)), (u(2), z(2)), . . .

)

using the same format as the training data except where we do not pre-specify a last time step. We
denote x truncated to only include its initial m time steps as

x(≤m) :=
(
(u(1), v(1)), (u(2), v(2)), . . . , (u(m), v(m))

)
.

As time progresses, we could see more of x, similar to what would happen in some real applications
(such as a patient in a hospital intensive care unit continuously getting new measurements taken
over time).

For any m ∈ {1, 2, . . . }, just as in the prediction setup from Section 6.1.2, we sample nonnegative
durations Ttest := (Ttest,1, Ttest,2, . . . , Ttest,k) from PT|X(·|x(≤m)), and we again define

Ytest := min{Ttest,1, Ttest,2, . . . , Ttest,k}, ∆test := arg min
δ∈[k]

Ttest,δ.
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Then we aim to predict the following dynamic version of the CIF (equation (64)) that depends on
the number of time steps revealed m:

Fδ(t|x, m) := P(Ytest ≤ v(m) + t, ∆test = δ | X = x(≤m), Ytest > v(m))

for δ ∈ [k], m ∈ {1, 2, . . . }, t ≥ 0, x ∈ X .

This is the probability that the earliest critical event that happens is δ, and it happens within time
duration t, starting from timestamp v(m) (the timestamp of the m-th time step). Note that the idea
that we are starting the prediction from timestamp v(m) (so that this time step is viewed as the
“origin” of the time-to-event prediction model) is not actually a limitation of this setup.27

The version of the CIF where we discretize duration t to only take on values along the grid
τ(1) < τ(2) < · · · < τ(L) is given by

Fδ[ℓ|x, m] := P(Ytest ≤ v(m) + τ(ℓ), ∆test = δ | X = x(≤m), Ytest > v(m))

for δ ∈ [k], m ∈ {1, 2, . . . }, ℓ ∈ [L], x ∈ X . (72)

Importantly, we do not have to discretize the timestamps v(1), v(2), . . . Even if we do discretize
timestamps, how timestamps are discretized does not have to be the same way as how duration t
is discretized. When timestamps are not discretized, the PMF version of equation (72) is

fδ[ℓ|x, m]

:= P
(

Ytest − v(m) ∈ (τ(ℓ−1), τ(ℓ)], ∆test = δ
∣∣∣ X = x(≤m), Ytest > v(m)

)

for δ ∈ [k], m ∈ {1, 2, . . . }, ℓ ∈ [L], x ∈ X ,
(73)

where τ(0) := 0. We will use this PMF in a moment.

Evaluation metrics. For this prediction task, the same evaluation metrics as in the standard com-
peting risks setting could be used, although there would be a question of whether we care about
reporting evaluation metrics as a function of how much of a test time series we see. For example,
for test data, we could just predict starting from each of their final time steps, in which case using
existing competing risks evaluation metrics would be straightforward. However, we could instead
report evaluation metrics using, for instance, only up to the first hour of test time series. Then we
report evaluation metrics using only up to the second hour of test time series, etc. For a concrete
example of this, see Table 1 of Shen et al. [2023]. Note that here we used timestamp thresholds (e.g.,
1 hour, 2 hours) rather than time step thresholds (e.g., 1 time step, 2 time steps) in case time steps
are highly irregularly sampled across data points.

Overall, from what we can tell, how researchers evaluate models in this dynamic setting has still
not become as standardized as in the regular competing risks setting and certainly not as standard-
ized as in the standard right-censored time-to-event prediction setting of Section 2. For a recently
proposed “dynamic c-index”, see the paper by Putzel et al. [2021].

The standard competing risks setting as a special case. If all time series in raw input space X
are restricted to only have one time step, then the entire problem setup would be the same as the
standard competing risks setup of Section 6.1.

27It is important to keep in mind that how we have set up the problem, the neural network at any given time step actually
knows how much time has elapsed for a data point (which is a time series). Specifically, suppose that we have observed m
time steps so far of test raw input x, meaning that we have observed

x(≤m) =
(
(u(1), v(1)), . . . , (u(m), v(m))

)
.

The neural net is being asked to make a prediction starting at timestamp v(m), treating timestamp v(m) as the “origin”. Note
that the neural net also has access to v(1) as well. Thus, if desired, the modeler could specify the base neural network so that
it explicitly depends on the difference v(m) − v(1), meaning that the neural network knows, as one of its inputs, how much
time has elapsed for the current time series since we first started observing it. This idea could be used to set up the base
neural network so that it instead views timestamp v(1) as the “origin” rather than v(m).
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6.2.3 Example Model: Dynamic-DeepHit

As we pointed out earlier, DeepHit can already work for this new problem setup provided that
we set the neural network f(·; θ) in equation (67) to accept variable-length time series as inputs (in
fact, the training procedure can stay the same although we will add another loss term). We provide
details on how to specify f(·; θ) shortly. The output of f(·; θ) given any time series input is going to
still be L · k numbers. We explain how to interpret these numbers first using our new time series
notation. In other words, we explain what f(·; θ) is predicting, as this will be helpful in explaining
the model architecture and training.

Prediction. Given time series x(≤m), the ℓ-th row, δ-th column of f(x(≤m); θ) ∈ [0, 1]L×k is used to
model fδ[ℓ|x, m] (the PMF in equation (73)). In other words, DeepHit uses x(≤m) to predict CIFs
for the different critical events starting from timestamp v(m). In more detail, the CIFs are giving
probabilities of the k critical events happening within time duration t ∈ {τ(1), τ(2), . . . , τ(L)} starting
from timestamp v(m).

How to specify the neural network f(·; θ). We give an overview of how Dynamic-DeepHit [Lee
et al., 2019] specifies f(·; θ), deferring details to the original paper. Our exposition will be slightly
more general than Lee et al. as we aim to convey the key high-level ideas. For example, Lee et
al. explicitly keep track of a missingness vector per time step (that indicates which features are
missing) whereas we do not include this (the missingness vector could just be included as part of
the raw input space U for a single time step).

Given time series x(≤m) =
(
(u(1), v(1)), . . . , (u(m), v(m))

)
, Dynamic-DeepHit sets f(·; θ) to do the

following (see accompanying Figure 7):

1. We first feed the input time series x(≤m−1) (we exclude the last time step) into a user-specified
RNN (with dhidden output features per time step, for a user-specified number of dimensions
dhidden), where we slightly transform what the input looks like per time step. Specifically at
time step p ∈ [m− 1] (again, the last time step is excluded), the input to the RNN is taken to
be (u(p), v(p+1) − v(p)), i.e., we also supply a time duration to get to the next time step. The
last time step’s input u(m) is not used with the RNN, but will be used later on. The RNN’s
output at time step p ∈ [m− 1] is denoted as ũ(p) ∈ Rdhidden . This first step is shown on the
left side of Figure 7.

Note that depending on the format of a single time step’s input space U , some additional neu-
ral network components may be needed (our diagram and also the original Dynamic-DeepHit
treat U as tabular data, but this need not be the case). For example, if U corresponds to images
of a fixed shape, then prior to feeding each u(p) into an RNN cell, we could first apply a con-
volutional neural network or a vision transformer to convert u(p) into a fixed-length feature
vector representation that then goes into an RNN cell.

2. Next, given the RNN outputs ũ(1), . . . , ũ(m−1) ∈ Rdhidden as well as the raw input u(m) ∈ U ,
we summarize all this information into a fixed-length summary vector s̃ ∈ Rdhidden . To do
this, we first let fattention(·; θ) : Rdhidden × U → R be a user-specified feed-forward neu-
ral network, such as a multilayer perceptron (MLP). Note that for p ∈ [m − 1], the output
value fattention

(
(ũ(p), u(m)); θ

)
is a single number. Then we set the summary vector to be

s̃ = ∑m−1
p=1 apũ(p), where the weights a1, a2, . . . , am−1 are given by




a1
a2
...

am−1


 := softmax







fattention
(
(ũ(1), u(m)); θ

)

fattention
(
(ũ(2), u(m)); θ

)
...

fattention
(
(ũ(m−1), u(m)); θ

)





 ∈ [0, 1]m−1.

This step is labeled as the “temporal attention” block in the middle of Figure 7.
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Figure 7: Dynamic-DeepHit neural network architecture.

3. We then combine the last time step’s input u(m) with the summary vector s̃ outputted by the
temporal attention block to obtain the concatenated vector (u(m), s̃).

4. Lastly, we treat the concatenated vector (u(m), s̃) as the input to k different MLPs (one
per critical event) that each outputs L numbers (corresponding to different time durations
τ(1), τ(2), . . . , τ(L)), and the overall output (across the k MLPs) is concatenated and passed
through a softmax layer to produce the final neural network output f(x(≤m); θ) (the softmax
enforces the constraint that the PMF sums to 1). This fourth step is shown on the bottom right
of Figure 7. The final output does not have to be reshaped to be L-by-k as we had already
pointed out when we first stated equation (67).

Note that this last step uses the neural network architecture from the original DeepHit paper
[Lee et al., 2018] that is meant for handling raw inputs that are fixed-length feature vectors
(in how we presented DeepHit in Section 6.1.4, we intentionally stated it in a more general
fashion without assuming raw inputs must be fixed-length vectors).

There is one last neural network component that is not shown in Figure 7 as it is not used to
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compute the output value f(x(≤m); θ). In particular, Dynamic-DeepHit also requires that at time
step p ∈ [m− 1], the RNN on the left side of Figure 7 can output an estimate û(p+1) of the next time
step’s raw input u(p+1). There are different ways to achieve this. For example:

• If U = Rd, then we can choose the RNN in Figure 7 to be a type of RNN that already distin-
guishes between hidden state vectors and output state vectors (such as LSTMs [Hochreiter
and Schmidhuber, 1997]), in which case we let the hidden state vectors be what we denoted
as the ũ(p) variables, and we use the output state vectors to predict the next steps’ feature
vectors (we would set the output state vector to consist of d entries). Thus, we could just
denote these output state vectors as û(2), û(3), . . . , û(m) ∈ Rd.

• An alternative strategy that also works if U is not necessarily Rd is that we can feed ũ(p),
along with the time duration to get to the next time step (i.e., v(p+1) − v(p)), into a user-
specified feed-forward network fnext-time-step(·; θ) : Rdhidden × [0, ∞) → U to produce the esti-
mate û(p+1), i.e.,

û(p+1) := fnext-time-step
(
(ũ(p), v(p+1) − v(p)); θ

)
for p ∈ [m− 1].

In both of these cases, we would be able to come up with estimate û(p) of u(p) for each p ∈
{2, 3, . . . , m}.

To summarize, the overall neural network f(·; θ) consists of an RNN, an attention network
fattention(·; θ), and MLPs for each critical event. Moreover, at the RNN stage of the neural network,
we have a neural network component that predicts the next time step’s raw input as described
above. Note that the variable θ contains the parameters of all the neural network components
involved.

Model training. Dynamic-DeepHit reuses the same training loss (equation (70)) as regular DeepHit
but adds another loss term that measures how accurate each û(p) predicts u(p) for p ∈ {2, 3, . . . , m}.
This new loss is

Lnext-time-step(θ) :=
1
n
· 1

m− 1

n

∑
i=1

m

∑
p=2

ζ
(
û(p)(θ), u(p)),

where we now emphasize that û(p) depends on the parameter variable θ, and we have a user-
specified error function ζ : U × U → [0, ∞). For example, if U = Rd, then we could use squared
Euclidean distance ζ(u, u′) := ∥u− u′∥2. The overall training loss is thus

LDynamic-DeepHit(θ)

= LDeepHit-NLL(θ) + LDeepHit-ranking(θ; η, σ) + γLnext-time-step(θ),

where γ ≥ 0 is a hyperparameter for how much to weight the new loss (as a reminder, the ranking
loss already has a hyperparameter η = (η1, . . . , ηk) that weights the ranking loss contributions of
the different critical events). Note that for the negative log likelihood component of the loss, per
training time series Xi, we consider prediction only starting at the final time step (i.e., for each
training point i ∈ [n], we predict starting at time V(Mi)

i , where the time until the earliest critical
event happens is Yi).

We provide a Jupyter notebook that implements Dynamic-DeepHit in our companion code
repository.28 This notebook builds on the DeepHit Jupyter notebook that we provided a link for in
Section 6.1.4. We again use the PBC dataset but now treat the data as variable-length time series
rather than first converting the dataset to be tabular.

Practical considerations. After model training, the goal is to use the model to repeatedly make
predictions as we see more and more of an individual data point’s time series (as a reminder, it is helpful
to have in mind a real-time application where data keep streaming in, and we keep updating our

28https://github.com/georgehc/survival-intro/blob/main/S6.2.3_Dynamic-DeepHit.ipynb
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predictions). During training, it is best to try to mimic the same prediction setup as what we
would encounter during model testing. In other words, for the i-th training point, which is a time
series of length Mi, it can be helpful to actually view this individual training point as Mi different
“augmented” training points (we state each of these with its corresponding prediction task):

• Given only the first time step of this training time series (so that we observe (U(1)
i , V(1)

i )),

predict the CIFs starting at timestamp V(1)
i (i.e., equation (72)), where we treat the ground

truth observed time as Yi + (V(Mi)
i −V(1)

i ) and the ground truth event indicator as ∆i.

• Given the first two time steps of this training time series (so that we observe
(U(1)

i , V(1)
i ), (U(2)

i , V(2)
i )), predict the CIFs starting at timestamp V(2)

i , where we treat the

ground truth observed time as Yi + (V(Mi)
i −V(2)

i ) and the ground truth event indicator as ∆i.

• . . .

• Given all Mi observed time steps (so that we observe (U(1)
i , V(1)

i ), . . . , (U(Mi)
i , V(Mi)

i )), predict

the CIFs starting at timestamp V(Mi)
i , where we treat the ground truth observed time as Yi +

(V(Mi)
i − V(Mi)

i ) = Yi and the ground truth event indicator as ∆i. (Note that this actually
corresponds to the original i-th training point.)

We refer to these as augmented training points just to emphasize that these are actually constructed
based on an original (or “non-augmented”) training point (which is in fact just the very last aug-
mented training point listed above). Note that as an alternative to using all Mi of these augmented
training points, we could randomly choose one of them (e.g., per neural network training epoch,
we randomly choose a different one of the Mi augmented training points above).

Very importantly, we point out that the above augmentation strategy could be essential in prac-
tice. If one does not use the augmentation strategy and only uses the original training time series
(so that for the i-th training point, we only use the last augmented training point listed above),
then it is possible that the training procedure could, in some sense, be fooled into learning a useless
model. A fundamental problem here is one of sampling bias in how the training data are collected.

As an extreme example of sampling bias, suppose that the training time series were collected
in a manner where the very last time step always contains a magical feature that deterministically
says what critical event happens within the next hour for the data point (but this feature is missing
or not helpful at all preceding time steps). If the model is only ever trained in a manner where we
always saw this very last time step for every training time series, then the model could learn to just
rely on the magical feature (only at the last time step) and nothing else. However, this model would
not have been trained appropriately as to mimic making predictions for a time series as we see more of it!
Instead, if during training, the model was forced to realize that we are predicting starting from a
time step that is not necessarily the last one so that the magical feature is not always helpful (note
that we could ensure this by using the above augmentation strategy), then the model would be
encouraged to learn to predict well even at time steps prior to the last one per training time series.
Of course, if the training data were collected in a manner where the length of each training time
series is random and independent of the values of the features (or raw inputs) collected over time
and also independent of the survival and censoring outcomes, then we would not need to worry
about this sort of sampling bias.

6.2.4 Sequences of Critical Events

The dynamic setup could readily be extended to the setting where we model a whole sequence of
critical events, some of which could happen multiple times. Of course, a critical event such as death
would be “terminal” so that upon encountering it, there would be no future critical events to con-
sider. Non-terminal critical events (e.g., getting admitted to a hospital) could occur multiple times
though. We would simply use the same modeling strategy where the difference in interpretation is
that after the earliest of k critical events happens, we can continue to make predictions! We would
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just be predicting the time until the next critical event happens (among the k options possible). In
terms of our raw inputs, we could add history information so that we keep track of what critical
events have happened so far and when.

In this extension, we could think of any time series as “transitioning” between the k critical
events over time, so that the critical events are states that a time series is moving between. This
setup has been studied extensively under the name of marked temporal point processes (e.g., Daley
and Vere-Jones 2003, 2008, Du et al. 2016), sometimes written as just “marked point processes”.
Note that there is work in this area both with and, separately, without censoring. At this point,
common modeling strategies include using attention mechanisms (e.g., Zhang et al. 2020, Zuo et al.
2020) and recurrent neural networks (e.g., Shchur et al. 2020) to summarize history information.
Hawkes processes [Hawkes, 1971] are frequently used to model a continuous time hazard function
for when a critical event will occur next. See also the neural ODE multi-state time-to-event model
by Groha et al. [2020]. The SurvLatent ODE model [Moon et al., 2022], which handles the dynamic
competing risks setting much like Dynamic-DeepHit but with a neural ODE, could also be adapted
to this setting of reasoning about a sequence of critical events.

7 Discussion

A key goal of this monograph has been to introduce time-to-event prediction and survival analysis
concepts and how they have been used with modern deep learning tools. We saw some key ideas
for deriving deep survival models:

• We routinely converted between hazard, cumulative hazard, and survival functions. This
amounted to using Summaries 2.1 (for continuous time) and 2.2 (for discrete time).

• Every model we covered in detail involves deriving a likelihood expression that we then
turned into a negative log likelihood loss. Depending on the model, additional loss terms
may be present.

• When we work with a “nonparametric” function over time, this meant that we discretized the
time grid using unique times of death, and then we set the function values at the different time
grid points to be parameters. As an important practical remark: we could intentionally preprocess
observed times to, for instance, discrete them into a coarse grid, even before we use a method like the
Kaplan-Meier estimator. In other words, even when working with the Kaplan-Meier estimator, we
could, if we wanted to, use a time grid that is not the raw unique times of death.

• For discrete time models, the base neural network is often set so that there is an output num-
ber corresponding to each time step.

• Many evaluation metrics are ranking-based, with the idea that we can unambiguously rank
many (usually not all) pairs of data points even when there is censoring. A key idea is that
when the i-th point dies (∆i = 1) and has an observed time before the j-th point (so Yi ≤ Yj),
then we would like the time-to-event prediction model to consider the i-th point worse off (at
time Yi) than the j-th point (also at time Yi). The Cox model’s loss function relates to ranking.
DeepHit has a loss function that’s directly about ranking. Including a ranking loss during
model training is meant to help with ranking-based accuracy metrics.

We now also state some points that could be helpful in practice:

• For any discrete time model (e.g., DeepHit, Nnet-survival, DKSA, survival kernets), we could
intentionally set the time grid to be the unique times of death or, in general, based on the
training data. There is no requirement that only nonparametric models are allowed to use
time grids defined by the unique times of death. For instance, Chen [2024] found that some-
times using DeepHit with the time grid set to be all unique times of death resulted in time-
dependent concordance indices much higher than what had previously been reported in lit-
erature.
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• The use of forward filling interpolation shows up a number of times to convert a discrete
time model to continuous time. In practice, we typically would not actually recommend
using forward filling interpolation. Constant density or constant hazard interpolation could
be used instead (among other interpolation strategies possible).

• In real applications, it is important to figure out what sort of time resolution one really needs.
A major selling point of time-to-event prediction models is their ability to reason about a
potentially large window of time (e.g., if we really need to be precise about time and want it
to be continuous, then we could use a neural ODE model like SODEN, whereas if we do not
need to be too precise and discretizing time is okay, then a discrete time model could suffice).
On the other hand, if one only needs to worry about very few time steps (e.g., even if using
a discrete time model, L is small), then there could be less of a benefit to using a full-fledged
time-to-event prediction model vs just using survival stacking with an existing probabilistic
binary classifier.

• When choosing a base neural network, we think it is helpful thinking about what happens
when parameters of the base neural network go to 0, which we could encourage by regular-
izing neural network parameters (e.g., by explicitly introducing a loss term or using weight
decay). As a concrete example of this, suppose that we are training a DeepSurv model, and we
set up a base neural network so that if all its parameters are 0, then the base neural network
outputs zero. Then as we pointed out in Remark 3.2, the predicted survival function would
approximate the Kaplan-Meier estimator. Thus, we have some intuition for how regularizing
neural network parameters or using weight decay would impact the resulting learned model.

• Working with variable-length time series as inputs has really become easier thanks to recur-
rent neural networks as well as attention models. These show up in models like Dynamic-
DeepHit and SurvLatent ODE. Note that while we did not explicitly cover transformers, one
could easily use transformers instead of recurrent neural networks to handle variable-length
time series.

We discuss a few topics that we either only glossed over earlier in the monograph, or we simply
did not cover it at all. We first go over some textbook results of variants of the basic time-to-event
prediction setup that we did not yet cover. Afterward, we cover more contemporary topics that are
active areas of research.

7.1 More Variants of the Basic Time-to-Event Prediction Setup: Left and Inter-
val Censoring, Truncation, and Cure Models

We now point out some standard textbook variants of the basic setup in Section 2. As will be ap-
parent, the modifications needed to handle these variants are not difficult and do not dramatically
change how we would derive time-to-event prediction models, which is why we have delayed
their presentation until now.

We first talk about more kinds of censoring and also a concept called truncation (these could, for
instance, be found in Chapter 3 of the textbook by Klein and Moeschberger [2003]). We then talk
about how to address an issue that could show up in many applications where some data points
will actually never experience the critical event and are thus “cured” from experiencing the critical
event (a book on cure models is provided by Peng and Yu [2021]). For example, in predicting the
time until convicted criminals reoffend, it could be that many of them will never reoffend.

Left and interval censoring. Thus far in the monograph, we have focused on the right-censored
setup: for training data, when event indicator ∆i = 1, then it means that the observed time Yi is
the true survival time. If instead ∆i = 0, then Yi is the censoring time, where the true survival time
is after Yi. For this setup, we use the likelihood function from equation (5), which we reproduce
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below:

L :=
n

∏
i=1

{
f (Yi|Xi)

∆i S(Yi|Xi)
1−∆i

}

=
n

∏
i=1

{
f (Yi|Xi)

∆i

[ ∫ ∞

Yi

f (u|Xi)du
]1−∆i}

.

As a reminder, the likelihood has a simple interpretation: when we observe the i-th point’s true
survival time, then the i-th point’s contribution to the likelihood is f (Yi|Xi). When the i-th point is
right-censored so that the true survival time is after Yi, the point’s contribution to the likelihood is

∫ ∞

Yi

f (u|Xi)du = P(T > Yi | X = Xi).

Instead, if the i-th point is left-censored, then this means that the true survival time is before the
observed time Yi (instead of after as in the right-censored case). As an example of left censoring,
suppose that a data point corresponds to a patient and the critical event of interest is the time when
a patient gets a disease. If a patient tests positive for a disease at time Yi, then the actual time Ti
when the patient got the disease would be at most Yi, so that Yi is a censoring time. When the i-th
point is left-censored, the standard approach is to set its contribution to the likelihood to be

∫ Yi

0
f (u|Xi)du = P(T < Yi | X = Xi).

A third possibility is that the i-th point is interval-censored: continuing off this disease testing ex-
ample, suppose now that a patient takes the test once at time Y(1)

i , when the test turns up negative

for the disease. Then some time later, the patient takes the test a second time at time Y(2)
i , and

this second test turns up positive. In this situation, we do not observe the exact time the patient
got the disease, but we know that it is within the interval [Y(1)

i , Y(2)
i ]. This is interval censoring.

Importantly, when the i-th point is interval-censored, we assume that we observe two times Y(1)
i

and Y(2)
i (with Y(1)

i < Y(2)
i ) rather than only a single time, and the standard approach is to set the

contribution of this point to the likelihood to be

∫ Y(2)
i

Y(1)
i

f (u|Xi)du = P
(
T ∈ [Y(1)

i , Y(2)
i ]

∣∣ X = Xi
)
.

It is possible to have a setup where different points experience different censoring types, so that
we observe ∆i ∈ {not censored, right-censored, left-censored, interval-censored}. Depending on
the value of ∆i, we switch between the different possible contributions to the likelihood that we
mentioned above.

Truncation. Let’s return to the right-censored setup (so ∆i = 1 means that we observe the true
survival time, and ∆i = 0 means that we observe the censoring time) and consider a different issue
that may arise. Suppose that we want to model survival times of people in a city (per person,
time 0 would correspond to when they were born). To help with this task, we collect data on
people from a retirement home in the city. Suppose that we can get their dates of birth, when they
entered the retirement home, when they either died or were last checked up on (corresponding to
the censoring event), and other features of these people (that we treat as the raw input per person).
In terms of notation, for the i-th person, let’s denote Ai to be the person’s age at the time of entering
the retirement home, and Yi to be the age of the person at either the time of death or the time of
censoring (whichever happens earlier, as in the usual right-censored setup). Thus, Yi > Ai.

The issue here is that people could enter the retirement home at different ages, and they must
have survived up to that point to even show up in the data. People who died earlier and never
had the opportunity to enter the retirement home would not be modeled at all. Overall, what is

87



happening is that there is a selection bias: we are likely to see fewer people in the retirement home
who are younger. This issue is called left truncation.

The standard way to correct for this sampling bias is to set the i-th person’s contribution to the
likelihood as: [

f (Yi|Xi)

S(Ai|Xi)

]∆i[ ∫ ∞

Yi

f (u|Xi)

S(Ai|Xi)
du
]1−∆i

.

The basic idea is that the PDF used is instead now conditioned on surviving past age Ai (when
the i-th person entered the retirement home), resulting in the denominator factors above. Roughly,
S(Ai|Xi) being smaller could be thought of as corresponding to a person who is less likely to have
survived long enough to enter the retirement home; we up-weight this person’s contribution so
that the overall likelihood (across training individuals) tries to better resemble the city’s population
rather than only the retirement home’s population.

Right and interval truncation are also possible. As the fix for these is similar, we refer the
reader to Sections 3.4 and 3.5 of Klein and Moeschberger [2003] for examples of right and interval
truncation in practice, and how to adjust the likelihood.

Cure models. Next, we discuss what happens if some data points will actually just never expe-
rience the critical event of interest, meaning that the population-level survival function satisfies
limt→∞ Spop(t) > 0. There are different ways to model this setup. We describe a simple variant of
the mixture cure model [Boag, 1949, Xu and Peng, 2014].

Suppose that the i-th data point could possibly be “cured” of ever experiencing the critical event.
Let Zi ∈ {0, 1} be a random variable indicating whether the i-th data point is cured (if Zi = 1, then
the i-th data point is cured). We assume that Zi is sampled from some underlying distribution
PZ|X(·|x) that is Bernoulli with probability ω(x) := 1− limt→∞ S(t|x). Note that ω(·) is called the
cure rate. We do not get to observe Zi.

Then the main modeling assumption is that

S(t|x) = ω(x) + (1−ω(x))S0(t|x),
where S0(·|x) is a survival function referred to as the latency. The interpretation is that with prob-
ability ω(x), the survival probability is exactly 1 across time. Otherwise, the survival function
is S0(·|x). We could, for instance, set ω(·) and S0(·|x) to be neural networks, write the resulting
likelihood function, and maximize the likelihood with a neural network optimizer to learn param-
eters. For more details on various cure models and how explicitly modeling the cure rate can be
beneficial in practice, see, for instance, the paper by Ezquerro et al. [2023].

7.2 Causal Reasoning and Interventions

We have intentionally kept the scope of this monograph to time-to-event prediction and did not
venture into the topics of causal reasoning or of interventions. Classically, assessing whether a treat-
ment has an effect is based on population-level estimates. For example, Mantel [1966] established
the now widely used log-rank statistical test to assess whether two different groups’ time-to-event
outcome distributions are different. If the two groups correspond to treatment and control groups
that appear the “same” aside from the former receiving a treatment (e.g., we randomly assign each
individual to one of the two groups with equal probability), then the test would be measuring
whether there is a “treatment effect”. This test is done by comparing hazard function estimates of
the two groups.29 Put another way, we are comparing population-level estimates, viewing the two
groups as two different populations.

Now with deep survival models as well as other machine learning survival models capable of
predicting time-to-event outcomes at the individual data point level rather than only at the pop-
ulation level, causal questions we aim to address could be more fine-grain, such as estimating

29Even though the log-rank test pre-dates the classical Cox model [Cox, 1972], the two are intricately related: the log-rank
test corresponds to looking at a Cox model with a single feature that indicates which group a data point is (e.g., the feature is
equal to 1 for points that received treatment and is 0 otherwise), and we are effectively checking whether the weight for this
feature is 0 (which would mean that the time-to-event outcome distribution is the same between the two groups) [Harrell,
2015, Section 17.9].

88



individual treatment effects. For some recent work that uses deep learning, see the papers by Curth
et al. [2021], Chapfuwa et al. [2021], and Nagpal et al. [2022a]. Non-deep-learning approaches are
also possible (e.g., Xu et al. 2023, Cui et al. 2023).

Supposing that one knew that an intervention works, there is a separate question of when to
intervene, which has been recently studied by Damera Venkata and Bhattacharyya [2022]. Sepa-
rately, in Section 1, we already pointed out that time-to-event modeling could be applied to the
setting where the time-to-event outcome is actually a number of inventory items to stock [Huh
et al., 2011]. Huh et al. use the Kaplan-Meier estimator to obtain a simple strategy for how to allo-
cate inventory. This sort of strategy could be implemented by actual businesses.

7.3 Interpretability

At this point, interpretability and explainability are widely studied in the machine learning com-
munity (e.g., see the book by Molnar [2022]). There are two main approaches taken. The first is to
build a model that is inherently interpretable. The second is to learn an arbitrarily complex “black
box” model and then come up with some sort of “explanation” of the black box. We discuss both
of these in the context of deep survival models and then we separately mention a framework for
visualizing any intermediate representation of any deep survival model.

Inherently interpretable deep survival models. As we had discussed in Section 3, the classical
Cox model (which is a special case of a deep survival model) is straightforward to interpret. It uses
the log partial hazard function f(x; θ) := θ⊤x, where θ ∈ Rd and x ∈ X ⊆ Rd. Thus, the values in
θ tell us precisely how we weight the different features. A feature with weight 0 would be ignored
by the model entirely. We could also ask for only a subset of the features to be explained by a linear
model. For instance, suppose that each raw input can be written as x = (u, v) where u ∈ Rd1 and
v ∈ Rd2 , where we only care about interpreting the model with respect to the features in u whereas
the features in v are “nuisance” variables that are unrelated to u and that we do not care to make
sense of. Then we could set the log partial hazard function to be

f(x; θ) := ψ⊤u + g(z; ϕ),

where ψ ∈ Rd1 is a parameter vector, g(·; ϕ) : Rd2 → R is some user-specified neural network with
parameter variable ϕ, and θ = (ψ, ϕ). This partially linear Cox model with neural network g(·; ϕ)
has known statistical guarantees [Zhong et al., 2022].

Meanwhile, in Section 4, we already discussed how deep kernel survival analysis [Chen, 2020]
and survival kernets [Chen, 2024] are in some sense interpretable. As a reminder, both provide
“forecast evidence”: deep kernel survival analysis can tell us which training points contribute to
predictions, and survival kernets can tell us which exemplar clusters contribute to predictions. For
the latter, we also showed how to make visualizations like those in Figures 5 and 6. In the survival
kernets paper, Chen [2024] noted that an interesting direction for future research is determining
whether there are better ways to do exemplar-based clustering that, for instance, somehow im-
proves model accuracy or model interpretability (how to define the latter of course is not straight-
forward). The choice of using ε-net clustering was to make the model amenable to theoretical
analysis.

A number of other deep survival models have been developed that “bake in” some sort of
interpretable component. For example, Chapfuwa et al. [2020], Nagpal et al. [2021b], Manduchi
et al. [2022], and Jeanselme et al. [2022] also use clustering models, where clusters are learned in
a supervised fashion to help with predicting a time-to-event outcome. Meanwhile, Chen et al.
[2024] propose using neural topic models that are (like the clustering models just mentioned) also
supervised so that the topics help with time-to-event prediction.

More recently, Sun and Qiu [2023] proposed a deep learning approach for training survival
trees that are interpretable. We point out that there are also non-deep-learning based methods for
training survival trees (e.g., Ishwaran et al. 2008, Bertsimas et al. 2022, Zhang et al. 2024), for which
so long as a learned tree does not have too many leaves, then model interpretation is straightfor-
ward. If one uses an ensemble of trees, then if we want the overall model to be straightforward to
interpret, then we would have to avoid using too many trees.
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Explaining black box models. As for training an arbitrarily complex deep survival model that
is not interpretable and then applying a post hoc explanation tool afterward, here we begin by
saying that standard tools that were not originally designed for time-to-event prediction can be
used. Specifically, LIME [Ribeiro et al., 2016] and SHAP [Lundberg and Lee, 2017] have already
been applied to time-to-event prediction models [Kovalev et al., 2020, Krzyziński et al., 2023].

We point out two other relatively straightforward strategies that can be applied:

• We could first train a deep survival model that is not interpretable. After training this model,
we take its base neural network (with its learned parameters), and modify the last layer or a
few of the last layers so that the modified base neural network can work with one of the in-
herently interpretable deep survival models (e.g., survival kernets), at which point, we could
fine-tune the modified base neural network using the loss function of the interpretable model.

• As an alternative, we could—just as before—first train a deep survival model that is not in-
terpretable. Let’s denote its resulting predicted survival function as Ŝuninterpretable(·|x). We
then train one of the interpretable survival models where instead of (or in additional to) its
usual loss function, we use a loss function that tries to match the interpretable model’s pre-
dicted survival function with Ŝuninterpretable(·|x). Basically, we try to match the model outputs.
We could of course try matching on the hazard function or the cumulative hazard function
instead.

How to get these ideas to work well for deep survival models would be an interesting direction for
future research.

Visualizing an intermediate representation. To try to make sense of an intermediate embedding
representation of any neural network, a standard approach is to apply t-SNE [Van der Maaten and
Hinton, 2008] to this embedding representation. Note that t-SNE is not designed to explain black
box models. However, it can help us understand what semantics are captured by the embedding
space (e.g., by showing which raw inputs tend to map close to each other in the embedding space).

In a similar vein, Chen [2023] provided a general framework for visualizing any intermediate
embedding representation used by any already trained deep survival model. The framework first
identifies so-called anchor directions in the embedding space. Afterward, visualizations can be made
to relate each anchor direction to raw features and, separately, to time-to-event outcome distribu-
tions. In a healthcare dataset where data points are patients, an anchor direction could, for instance,
capture the concept of age. Naturally, younger and older patients would have different distribu-
tions for how much longer they will live. Chen’s framework also comes with statistical tests that
could be run to check whether an anchor direction is associated with specific raw features.

7.4 Fairness

The machine learning community has now been working on fairness quite extensively. Fairness
metrics for time-to-event prediction have only recently been defined [Keya et al., 2021, Rahman
and Purushotham, 2022, Zhang and Weiss, 2022]. Roughly, the key ideas of these metrics ask for: (i)
similar data points to have similar predicted time-to-event outcomes, (ii) data points from different
pre-defined subpopulations to have similar predicted outcomes, or (iii) data points from different
pre-defined subpopulations to have similar prediction accuracy.

We point out that some of these metrics do not always make sense depending on the application.
For example, in healthcare, age is often highly predictive of various time-to-event outcomes, such
as the classical example of time until death. Suppose that we want a time-to-event prediction
model to be “fair” across age groups. For simplicity, let’s say that we just use two age groups (e.g.,
thresholding based on whether a person is at least 65 years old). Then asking for young people
and elderly people to have similar predicted times until death would not make sense. In this case,
asking for the model to be equally accurate for the two subpopulations is a better notion of fairness.

In terms of encouraging fairness, the standard approach is simply to add regularization terms
[Keya et al., 2021, Rahman and Purushotham, 2022, Do et al., 2023], which is typically done in
practice with the knowledge of which subpopulations we want to account for and which specific
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fairness metric we care about. However, enumerating all the subpopulations that we want to be
fair across is not always straightforward. Minority subpopulations that might be at risk of being
treated unfairly by a machine learning model could be defined by the intersection of a variety of
different criteria [Buolamwini and Gebru, 2018]. For example, even just considering a few attributes
commonly treated as sensitive such as age, gender, and race, we run into the issue that there are
many combinations of these three that are possible, in part because we also need to decide on how
precisely to discretize age.

It turns out that it is possible to use a training loss function that does not require the modeler
to enumerate the subpopulations that we want to be fair across, and that still encourages fair-
ness. In particular, Hu and Chen [2024] introduced a general strategy for converting a wide range
of time-to-event prediction models into ones that encourage fairness using distributionally robust
optimization (DRO) (e.g., Hashimoto et al. 2018, Duchi and Namkoong 2021, Li et al. 2021, Duchi
et al. 2022). Roughly, DRO minimizes the worst-case error over all subpopulations that are large
enough (occurring with at least some user-specified probability threshold πmin), and can be solved
tractably. In particular, as πmin could be thought of as how “rare” of a minority subpopulation that
we want the trained model to account for. As πmin → 0, we would be training the time-to-event
prediction model to have the worst-case error for even an individual data point (which could be
an outlier) to be as low as possible. As πmin → 1, we switch to simply carrying about the equally
weighted average loss across all training data points, disregarding any sort of concern of minority
subpopulations.

The technical complication to applying DRO to time-to-event prediction is that existing DRO
theory uses a training loss function that decomposes across contributions of individual data points,
i.e., any term that shows up in the loss function depends only on a single training point. This
decomposition does not hold for many deep survival models’ loss functions, such as those of semi-
parametric proportional hazards models (e.g., the Cox model, DeepSurv, Cox-Time), DeepHit, deep
kernel survival analysis, and survival kernets. Hu and Chen [2024] address this technical hurdle
using a sample splitting DRO strategy, which they also established some theory for. Specifically for
classical and deep Cox models, Hu and Chen also derived an exact DRO Cox approach that does
not require sample splitting.

7.5 Statistical Guarantees

We have tried sprinkling known results of statistical accuracy guarantees as we progressed through
the monograph. In this section, we comment more on these accuracy guarantees for deep survival
models. We also briefly mention guarantees in terms of producing so-called prediction intervals for
survival times (e.g., for test patient Alice, we predict that Alice’s hospital length of stay is in the
interval [0.5, 2.5] days with probability at least 90%).

Accuracy guarantees. At present, the vast majority of deep survival models have no guarantees
whatsoever. Even for the ones that do have guarantees, once we look closely at the fine print as to
what the assumptions are, the assumptions made could be impractical.

For example, the theory for deep extended hazard models [Zhong et al., 2021] and deep partially
linear Cox models [Zhong et al., 2022] make strong assumptions on the base neural networks used
(e.g., on the architecture and on some notion of how large the neural network parameters are),
and their theory relies on the neural network optimizer reaching the global minimum of the loss
function. The theory for these models also makes some restrictive assumptions on the hazard
function (after all, a deep extended hazard model’s hazard function still has to satisfy a specific
factorization, and the deep partially linear Cox model has an even more restrictive hazard function
formulation).

Meanwhile, the theory for survival kernets [Chen, 2024] is stated in terms of the intermediate
embedding space and how it relates to true survival time and censoring time distributions. In
more detail, the theory treats the neural network f(·; θ) : X → Rdemb that maps raw inputs to
the embedding space as a black box so that it could be trained however the user wants. Instead,
the theory requires the embedding space to satisfy “nice” properties. Some of these properties
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are straightforward to enforce or encourage, such as controlling the geometry of the embedding
space and its probability distribution (the running example Chen gives is constraining the output
of f(·; θ) to be on a hypersphere, for which there are known ways of encouraging the embedding
vectors to be uniform over the hypersphere [Wang and Isola, 2020, Liu et al., 2021]). However, there
is no known practical method to our knowledge of verifying the conditions on how the embedding
space relates to true survival and censoring time distributions. Even if instead the assumptions
were on relating the raw input space (rather than the embedding space) to the true survival and
censoring time distributions, we would still not have a practical way to verify such conditions.

Suffice it to say, we think that there is a lot of space for improving our theoretical understand-
ing of deep survival models. Perhaps making some structural assumptions on the data would be
helpful, such as assuming the data to come from a few clusters.

Prediction interval guarantees. If we can predict a survival function for any data point, then we
could also back out a survival time point estimate (e.g., look at when the survival function crosses
1/2 to estimate the median survival time). However, is there any way to estimate error bars for
these survival time point estimates? When there is no censoring, this problem has at this point
been studied for a long time, where a solution that has become popular is called conformal prediction
(early work was done by Vovk et al. [2005]; for an excellent tutorial on the topic, see the monograph
by Angelopoulos and Bates [2023]).

To give a sense of how conformal prediction works, we describe an approach called split confor-
mal prediction [Papadopoulos et al., 2002, Lei et al., 2015], which we intentionally phrase in terms of
the survival analysis setup of Section 2 except where there is no censoring (so that we are looking
at a standard regression problem). With the notation we have been using throughout the mono-
graph but now dropping event indicator ∆i variables (since they are all equal to 1), we take the
i.i.d. training data to be (X1, Y1), . . . , (Xn, Yn), where Xi’s are raw inputs and Yi’s are observed
times. However, since every observed time Yi is actually a survival time Ti, for clarity, we write
that the training data are (X1, T1), . . . , (Xn, Tn). (Using this notation will be helpful as we reintro-
duce censoring later.) We separately suppose that we have access to n† so-called “calibration” data
points (X†

1 , T†
1 ), . . . , (X†

n†
, T†

n†
) that are i.i.d. with the same distribution as the training data. Impor-

tantly, the calibration data do not serve the same purpose as validation data (which are used to help
tune hyperparameters; this would be considered as part of the training procedure). The calibration
data should not be seen by the training procedure whatsoever.

Again, an example of a survival time prediction interval could be [0.5, 2.5] days. This interval
would hold with some probability (since we typically cannot be absolutely certain of survival time
prediction intervals unless it is a trivial interval like [0, ∞)). Let α ∈ (0, 1) be a user-specified
probability tolerance, where we aim to construct a prediction interval that holds with probability
at least 1− α (so that if we want to construct prediction intervals that hold with probability at least
90%, we would pick α = 0.1).

Then split conformal prediction works as follows to produce survival time prediction intervals
given the user-specified value for α:

1. We train any regression model of our choosing on the training data (X1, T1), . . . , (Xn, Tn) to
produce a survival time estimator T̂ : X → [0, ∞), meaning that T̂(x) is the predicted survival
time for any raw input x ∈ X .

2. We compute residuals for the calibration data: Ri = |T†
i − T̂(X†

i )| for i = 1, 2, . . . , n†. We also
introduce an additional residual Rn†+1 := ∞.

3. Note that the residuals R1, . . . , Rn†+1 can be sorted (even when we have Rn†+1 = ∞ ). Let
q̂ be the (1 − α)-th quantile of this empirical distribution. Put another way, if we denoted
the sorted residuals as R(1) ≤ R(2) ≤ · · · ≤ R(n†+1) = ∞ (breaking ties randomly), then
q̂ := R(⌈(1−α)(n†+1)⌉). (For example, if α = 0.1, then we would be setting q̂ to be the 90
percentile value of R1, . . . , Rn†+1.)

4. For any x ∈ X , we output the prediction interval for x to be Ĉ(x) := [T̂(x) − q̂, T̂(x) + q̂].
Thus, for any test point x ∈ X , our regression model’s survival time prediction for x is T̂(x),
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and we estimate the error bar to be q̂ (this error bar does not depend on x).

A major theoretical result for split conformal prediction is that the prediction intervals it produces
are “statistically valid”. In particular, if we were to sample a data point (X, T) from the same
distribution underlying the training (and calibration) data, then with probability at least 1− α, the
true survival time T will be in the prediction interval C(X) (see Theorem 2.2 of Lei et al. [2018]).

Now let’s discuss what happens when there is censoring. The training data are now
(X1, Y1, ∆1), . . . , (Xn, Yn, ∆n), and the calibration data are (X†

1 , Y†
1 , ∆†

1), . . . , (X†
n†

, Y†
n†

, ∆†
n†
)—again,

we assume all these data points to be i.i.d. The key observation for how to handle censoring is
actually immediate given our discussion in Section 2.5.4. When there is censoring, the above split
conformal prediction procedure can still be used but with some minor changes:

• In step 1, we would learn a survival model using the training data. We use this survival
model to predict a survival time (again, the survival model chosen might actually predict a
survival function from which we back out a median survival time estimate). We still denote
this survival time estimator as T̂ : X → [0, ∞).

• In step 2, we do not have the ground truth survival time for censored calibration points, but
we could still compute residuals when there is censoring. For example, close to the start of
Section 2.5.4, we mentioned that a naive residual that could be computed is called the hinge
error; the absolute error version would be

Ri =

{
|Y†

i − T̂(X†
i )| if ∆†

i = 1,
(Y†

i − T̂(X†
i ))1{Yi > T̂(X†

i )} if ∆†
i = 0.

Specifically, when a calibration point is censored (∆†
i = 0), the residual is nonnegative only

when the predicted survival time is less than the observed time (which is known to be a cen-
soring time), and when Yi ≤ T̂(X†

i ), we optimistically assume that the error is 0 (even though
it could be that the predicted survival time, for instance, way overestimates the unknown
true survival time).

A different choice of residual is to use each individual data point’s error from equation (38),
which—phrased in the context of calibration data—would be written as

Ri = ∆†
i |T̂(X†

i )−Yi|+ (1− ∆i)|T̂(X†
i )− TPO

i |,

where TPO
i is defined in equation (37) (we would take the evaluation data points to be the

calibration set). Of course, rather than using the pseudo observation approach to impute
the unknown true survival time, we could use some other imputation approach (such as the
margin method described in Section 2.5.4).

Once we have made the above changes, the rest of the split conformal prediction procedure stays
the same, and the upshot is that we can compute prediction intervals for survival times even when
there is censoring. It is possible to come up with statistical guarantees for the resulting prediction
intervals, much like how there are guarantees for conformal prediction in the standard regression
setting without censoring. Existing such results have been established by Chen [2020] and Can-
dès et al. [2023]. Also, it is possible to use conformal prediction to make a survival model better
calibrated [Qi et al., 2024b].

7.6 Empirical Evaluation

At the time of writing, there is no comprehensive, thorough empirical comparison of different sur-
vival models (regardless of whether they use deep learning or not) on a large selection of survival
analysis datasets. Understandably, this is an onerous task. Many models have quite a few hy-
perparameters to tune, and figuring out the “right” range of values to try across datasets could
be challenging. Also, the availability of publicly available standard datasets is, at present, not re-
motely at the same level as for classification and regression.
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In conducting this sort of benchmark, we think that it is important to try to control for differ-
ences that are not related to the actual time-to-event prediction model. For example, if we were
to compare two different deep survival models but we supplied them with vastly different base
neural networks, then the differences in how the two models perform might be explained more by
the differences in the base neural networks than by differences in the two survival models’ mod-
eling assumptions.30 As another example, in conducting minibatch gradient descent to train two
different deep survival models, whether we use early stopping (e.g., if there is no improvement in
some validation set evaluation score after 10 training epochs, then stop training and backtrack to
using whichever epoch’s model parameters achieved the highest validation set evaluation score)
should be the same across models.31

Meanwhile, devising new evaluation metrics for survival models remains an active area of re-
search (see, for instance, the recent paper by Qi et al. [2023]). The community has focused a lot on
ranking-based accuracy metrics, such as time-dependent concordance indices. While these could
be useful for ranking data points such as patients in a clinical task (e.g., to help hospitals prioritize
which patients to focus on), ranking is not always what we want to do. In some cases, having an
actual predicted value of the time-to-event outcome could be useful, in which case, the survival
time error metrics in Section 2.5.4 could be useful (e.g., MAE measured against ground truth sur-
vival times for uncensored cases and against imputed survival times for censored cases). However,
these error metrics based on pointwise estimates of survival times do not easily generalize to the
setting where there are multiple competing events (or also to the setting of cure models mentioned
in Section 7.1), where the problem is that for a specific critical event, the ground truth could be that
this event never happens for a data point.

Separately, it does not help that various metrics require an estimate of the censoring time distri-
bution PC (in terms of the function Scensor(t) = 1−PC(t)). We had pointed out that when censoring
times are independent of the raw inputs, then it suffices to estimate Scensor using the Kaplan-Meier
estimator. When this independence assumption does not hold, then there exist versions of some of
the evaluation metrics we mentioned that would still work if we instead have a good estimate of
the distribution PC|X , but this distribution could be as difficult to estimate as the target distribution
we are trying to predict PT|X . Regardless, a bad estimate of the censoring time distribution could
cause evaluation metrics that depend on this distribution to be unreliable.

Turning toward the dynamic setup of Section 6.2 where we see more of a time series over time
and can continually make predictions, it is unclear what evaluation metrics make the most sense
here. In practice, we are unlikely to need to make predictions after every single time step of new
information is collected. When a prediction might actually be useful could depend on whether
there is an intervention that might make sense to attempt in the near future. Meanwhile, in practice,
it is likely the case that among k critical events, some are more concerning than others so that we
would not want to treat all k events equally.

7.7 Large Language Models and Foundation Models

Lastly, during the writing of this monograph, large language models (LLMs) and—more
generally—foundation models took over the machine learning community by storm [Bommasani
et al., 2021]. These developments quickly transferred over to the survival analysis setting. After all,
at a conceptual level, one could simply set the base neural network to be a foundation model.

There is already a review of how LLMs are used for survival analysis [Jeanselme et al., 2024].

30Of course, commonly the base neural network cannot be made identical across different time-to-event prediction models
(e.g., DeepSurv requires its base neural network to output a single value whereas DeepHit instead asks for many output
values, one per discretized time index), but we can still have the base neural networks be as similar as possible (e.g., using
multilayer perceptrons that are identical except for the final layer).

31Some models might work better with different learning rates or different numbers of training epochs. We could try to
tune these in a similar fashion across models. For example, we can fix some maximum number of training epochs across
all models and then use early stopping to automatically tune on the number of training epochs. As for the learning rate,
we could pre-specify a grid of learning rates that we try across models. Then per model, we use whichever learning rate
achieves the best validation set evaluation score (per learning rate, we use early stopping to decide on the number of training
epochs).
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As is, in Section 7.6, we mentioned that there is no comprehensive experimental benchmark for
survival analysis. This is also true for LLMs applied to survival analysis, where differences in
experimental setups make “apples-to-apples” comparisons between LLM approaches difficult. To
address this issue, in their review, Jeanselme et al. propose a framework for evaluating LLMs for
survival analysis that aims to standardize various steps of the machine learning pipeline.

Meanwhile, specifically for electronic health records, a foundation model called MOTOR for
predicting time durations until the next critical event happens has recently been published [Stein-
berg et al., 2024]. The underlying survival model Steinberg et al. used as the prediction head has
been available for a number of years: a piecewise exponential model for hazard functions [Fornili
et al., 2014]. The base neural network is a transformer. The novelty in the research was in scaling
the resulting model to a sizable amount of data (pretraining uses 55M patient records with 9B clin-
ical events), and demonstrating impressive transfer learning results (19 tasks across 3 healthcare
datasets). Could using a different survival model as the prediction head have improved their re-
sults? What about a different base neural network? What about dramatically more data? For what
kinds of time-to-event prediction problems would foundation models be most beneficial, and for
what kinds would they be least beneficial—not limited to only the healthcare space? Suffice it to
say, there are many open questions related to how best to use foundation models for time-to-event
prediction.
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