
HDFS Architecture
Gregory Kesden, CSE-291 (Storage Systems) Fall 2017

Based Upon: http://hadoop.apache.org/docs/r3.0.0-alpha1/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html

Assumptions

• At scale, hardware failure is the norm, not the exception

• Continued availability via quick detection and work-around, and eventual automatic rull
recovery is key

• Applications stream data for batch processing

• Not designed for random access, editing, interactive use, etc

• Emphasis is on throughput, not latency

• Large data sets

• Tens of millions of files many terabytes per instance

Assumptions, continued

• Simple Coherency Model = Lower overhead, higher throughput

• Write Once, Read Many (WORM)

• Gets rid of most concurrency control and resulting need for slow, blocking coordination

• “Moving computation is cheaper than moving data”

• The data is huge, the network is relatively slow, and the computation per unit of data is
small.

• Moving (Migration) may not be necessary – mostly just placement of computation

• Portability, even across heterogeneous infrastructure

• At scale, things can be different, fundamentally, or as updates roll-out

Overall Architecture

NameNode

• Master-slave architecture

• 1x NameNode (coordinator)

• Manages name space, coordinates for clients

• Directory lookups and changes

• Block to DataNode mappings

• Files are composed of blocks

• Blocks are stored by DataNodes

• Note: User data never comes to or from a NameNode.

• The NameNode just coordinates

DataNode

• Many DataNodes (participants)

• One per node in the cluster. Represent the node to the NameNode

• Manage storage attached to node

• Handles read(), write() requests, etc for clients

• Store blocks as per NameNode

• Create and Delete blocks, Replicate Blocks

Namespace

• Hierarchical name space

• Directories, subdirectories, and files

• Managed by NameNode

• Maybe not needed, but low overhead

• Files are huge and processed in entirety

• Name to block lookups are rare

• Remember, model is streaming of large files for processing

• Throughput, not latency, is optimized

Access Model

• (Just to be really clear)

• Read anywhere

• Streaming is in parallel across blocks across DataNodes

• Write only at end (append)

• Delete whole file (rare)

• No edit/random write, etc

Replication

• Blocks are replicated by default

• Blocks are all same size (except tail)

• Fault tolerance

• Opportunities for parallelism

• NameNode managed replication

• Based upon heartbeats, block reports (per dataNode report of available blocks), and

replication factor for file (per file metadata)

Replication

Location Awareness

• Site + 3-Tier Model is default

Replica Placement and Selection

• Assume bandwidth within rack greater than outside of rack

• Default placement

• 2 nodes on same rack, one different rack (Beyond 3? Random, below replicas/rack

limit)

• Fault tolerance, parallelism, lower network overhead than spreading farther

• Read from closest replica (rack, site, global)

Filesystem Metadata Persistence

• EditLog keeps all metadata changes.

• Stored in local host FS

• FSImage keeps all FS metadata

• Also stored in local host FS

• FSImage kept in memory for use

• Periodically (time interval, operation count), merges in changes and checkpoints

• Can truncate EditLog via checkpoint

• Multiple copies of files can be kept for robustness

• Kept in sync

• Slows down, but okay given infrequency of metadata changes.

Failure of DataNodes

• Disk Failure, Node Failure, Partitioning

• Detect via heartbeats (long delay, by default), blockmaps, etc

• Re-Replicate

• Corruption

• Detectable by client via checksums

• Client can determine what to do (nothing is an option)

• Metadata

Datablocks, Staging

• Data blocks are large to minimize overhead for large files

• Staging

• Initial creation and writes are cached locally and delayed, request goes to NameNode

when 1st chunk is full.

• Local caching is intended to support use of memory hierarchy and throughput needed

for streaming. Don’t want to block for remote end.

• Replication is from replica to replica, “Replication pipeline”

• Maximizes client’s ability to stream

