
Finding a needle in Haystack:

Facebook’s photo storage
OSDI 2010

Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel

Facebook.com

An Overview Presented in CSE-291 (Storage Systems), Spring 2017

Gregory Kesden



Overview

• Facebook is the world’s largest photosharing site

• As of  2010:

• 260 billion images

• 20 petabytes of  data

• 1 billion photos, 60 terabytes uploaded each week

• Over 1 million images/second served at peak

• News feed and albums are 98% of  photo requests

• Images are written once, read often, never modified, and rarely deleted



Why Not Use a Traditional Filesystem?

• No need for most metadata (directory tree, owner, group, etc)

• Wastes space

• More importantly, slows access to read, check, and use it

• Turned out to be bottleneck

• What cost? Seems small?

• Multiplied a lot

• Think about steps: Map name to inode (name cache, directory files), read inode, read data

• Latency is in access, itself, not tiny transfer



Haystack Goals

• High throughput, low latency

• Fault-tolerance

• Cost-effective (It is hugely scaled, right?)

• Simple (Means matures to robustness quickly, low operational cost)



Typical Design



“Original” Facebook NFS-based Design



Lessons Learned from “Original”

• CDNs serve “hottest” photos, e.g. profile pictures, but don’t help with “Long tail” 
of  requests for older photos generated by such a large volume site

• Significant amount of  traffic, hitting backing store

• Too many possibilities, too few used  to keep in memory cache of  any kind, not just via 
CDN

• Surprising complexity

• Directories of  thousands of  images ran into metadata data inefficiencies in NAS, ~10 
access/image

• Even when optimized to hundreds of  images/directory, still took 3 access: metadata, inode, 
file



Why Go Custom?

• Needed better RAM:Disk ratio

• Unachievable, because would need too much RAM

• Had to reduce demand for RAM by reducing metadata



Reality and Goal

• Reality: Can’t keep all files in memory, or enough for long-tail

• Achievable Goal: Shrink metadata so it can fit in memory

• Result: 1 disk access per photo, for the photo, itself  (not metadata)



Haystack’s Design



Photo URL

• http://<CDN>/<Cache>/<Machine id>/<Logical volume, Photo>

• Specifies steps to retrieving the photos

• CDN Looks up <Logical volume, Photo>. If  hit, great. If  not,

• CDN strips <CDN> component, and asks the Cache. If  Cache hits, great. If  not,

• Cache strips <Cache> component and asks back-end Haystack Store machine

• If  not in CDN just starts at second step. 



Photo Upload

• Request goes to Web server

• Web server requests a write-enabled logical 

volume from the Haystack Directory

• Web server assigns unique ID to photo and 

uploads it to each physical volume associated 

with logical volume



Haystack Directory

• Functions:

• Logical volume to physical volumes mapping

• Load balances writes across logical volumes and reads across physical volumes

• Determines if  the request should be handed by CDN or Cache

• Makes volumes read-only, if  full, or for operational reasons (Machine-level granularity)

• Removes failed physical volumes, replaces with new Store

• Replicated database with memcache



Haystack Cache

• Distributed hash table with photo ID as key

• Cache photo iff

• Request is from end user (not CDN) – CDN much bigger than cache. Miss there, unlikely to 

hit in smaller Cache.

• Volume is write-enabled

• Volumes perform better when reading or writing, but not mix, so doing one or the other is helpful

• Shelter reads, letting focus on writes (No need to shelter, once volume is full – no more writes)

• Could pro-actively push newly uploaded files into cache. 



Haystack Store

• Store needs logical volume id and offset (and size)

• This needs to quick to get, given the photo id – no disk operations

• Keeps open file descriptors for each physical volume (preloaded fd cache)

• Keeps in-memory mapping of  photo ids to fs metadata (file, offset, size)

• Needle represents a file stored within Haystack

• In memory mapping from <photoid, type (size)> to <flags, size, offset>



Needle and Store File



Reads from Store

• Cache machine requests <logical volume id, key, alternate key, cookie>

• Cookie is random number assigned/maintained by Directory upon upload. 

• Prevents brute-force lookups via photo ids

• Store machines looks this up in in-memory metadata, if  not deleted

• Seeks to offset in volume file and reads entire needle from disk

• Verifies cookie and data integrity

• Returns photo to cache



Photo Write

• Web server provides <logical volume id, key, type (size), cookie, data> to 

store machines (all associated with logical volume)

• Store machines synchronously appends needle to physical volume and updates 

mapping

• The append makes this much happier

• But, if  files are updated, e.g. rotated, needle can’t be changed, new one must be 

appended – if  multiple, greatest offset wins. (Directory can update for logical volumes)



Delete

• Just a delete flag – long live those party photos!



Index File

• Asynchronously updated checkpoint of  in-memory data structures, in event of  reboot

• Possible to reconstruct, but much data would need to be crunched

• Can be missing recent files and/or delete flags

• Upon reboot

• Load checkpoint

• Find last needle

• Add needles after that from volume file

• Restore checkpoint

• Store machines re-verify deleted flag after read form storage, in case index file was stale



Host Filesystem

• Store machines should use file system that:

• Requires little memory for random seeks within a large file

• E.g., blockmaps vs B-trees for logical to physical block mapping



Recovering From Failure

• Failure detection

• Proactively test Stores: Connected? Each volume available? Each volume readable?

• Fail? Mark logical volumes on store read only and fix. 

• In worst case, copy over from other replicas (slow = hours)



Optimizations

• Compaction

• Copies over used needles, ignoring deleted ones, locks, and atomically swaps

• 25% of  photos deleted over course of  a year, more likely to be recent ones

• Batch Uploads

• Such as when whole albums uploaded

• Improves performance via large, sequential writes



Cache Hit Rate



Why Did We Talk About Haystack

• All the fun bits

• Classical Browser-Server-Directory-CDN-Cache-Store Layering

• Simple, Easy Example, By Design (Simple = Robust Fast)

• Optimizes for use cases

• Memory-Disk Trade

• Focus on fitting metadata into memory

• Real-world storage concerns 


