Finding a needle 1n Haystack:

Facebook’s photo storage

Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel

Facebook.com

An Overview Presented in CSE-291 (Storage Systems), Spring 2017
Gregory Kesden

Overview

* Facebook is the world’s largest photosharing site

S ASTOR20H0:
. * 260 billion 1mages

* 20 petabytes of data

* 1 billion photos, 60 terabytes uploaded each week
* Over 1 million images/second served at peak

* News feed and albums are 98% of photo requests

* Images are written once, read often, never modified, and rarely deleted

Why Not Use a Traditional Filesystem?

* No need for most metadata (directory tree, owner, group, etc)
* Wiastes space
* More importantly, slows access to read, check, and use it
* Turned out to be bottleneck
* What cost? Seems small?
* Multiplied a lot
* Think about steps: Map name to inode (name cache, directory files), read inode, read data

* Latency 1s in access, itself, not tiny transfer

Haystack Goals

* High throughput, low latency

* Fault-tolerance

* Cost-effective (It 1s hugely scaled, right?)

Simple (Means matures to robustness quickly, low operational cost)

Typical Design

Web A e 3 =
Server Photo | | Photo | | Photo
Storage | | Storage | | Storage

4
S

“Original” Facebook NFS-based Design

WWelb
Seaerver
'

P hoto Stﬂ- F'I'mtt} Slt} re
2 Server Server
://:

v
3
|, Browser] — -
a8

Figure 2: NFS-based Design

Lessons Learned from “Original” !

* CDNs serve “hottest” photos, e.g. profile pictures, but don’t help with “Long tail”
of requests for older photos generated by such a large volume site

. * Significant amount of traffic, hitting backing store

* Too many possibilities, too few used to keep in memory cache of any kind, not just via
CDN

* Surprising complexity

* Directories of thousands of images ran into metadata data inefficiencies in NAS, ~10

access/image

Even when optimized to hundreds of images/directory, still took 3 access: metadata, inode,
file

Why Go Custom?

* Needed better RAM:Disk ratio

* Unachievable, because would need too much RAM

* Had to reduce demand for RAM by reducing metadata

Reality and Goal

* Reality: Can’t keep all files in memory, or enough for long-tail

. * Achievable Goal: Shrink metadata so it can fit in memory

* Result: 1 disk access per photo, for the photo, itself (not metadata)

Photo URL

* http://<CDN>/<Cache>/<Machine id>/<ILogical volume, Photo>

. * Specifies steps to retrieving the photos
CDN Looks up <Logical volume, Photo>. If hit, great. If not,

CDN strips <CDN> component, and asks the Cache. If Cache hits, great. If not,

Cache strips <Cache> component and asks back-end Haystack Store machine

If notin CDN just starts at second step.

Photo Upload

T ———

gﬂﬁiﬂ; Havetack | %%% ©* Request goes to Web server
I o .
Store | - . .
| . * Web server requests a write-enabled logical

volume from the Haystack Directory

* Web server assigns unique ID to photo and

Web) ; 3
Server uploads it to each physical volume associated

Figure 4: Uploading a photo

with logical volume

Haystack Directory

* Functions:

Logical volume to physical volumes mapping

Load balances writes across logical volumes and reads across physical volumes
Determines if the request should be handed by CDN or Cache

Makes volumes read-only, if full, or for operational reasons (Machine-level granularity)
Removes failed physical volumes, replaces with new Store

Replicated database with memcache

Haystack Cache

* Distributed hash table with photo ID as key

® Cache phetoytf

* Requestis from end user (not CDN) — CDN much bigger than cache. Miss there, unlikely to
hit in smaller Cache.

* Volume is write-enabled
* Volumes perform better when reading or writing, but not mix, so doing one or the other is helpful
* Shelter reads, letting focus on writes (No need to shelter, once volume 1s full — no more writes)

* Could pro-actively push newly uploaded files into cache.

Haystack Store

* Store needs logical volume id and offset (and size)

* 'This needs to quick to get, given the photo id — no disk operations

* Keeps open file descriptors for each physical volume (preloaded fd cache)

Keeps in-memory mapping of photo ids to fs metadata (file, offset, size)

Needle represents a file stored within Haystack

* In memory mapping from <photoid, type (size)> to <flags, size, offset>

Needle and Store File =

SUPSIHIOCK e ::::;um Field Explanation |
Needle 1 Key Header Magic number used for recovery |
Alternate Key Cookie Random number to mitigate
Flags brute force lookups
Needle 2 Sz Key 64-bit photo id
Alternate key 32-bit supplemental id
P Data Flags Signifies deleted status
Size Data size
\/\I Footer Magic Number Data The actual photo data
Data Checksum Footer Magic number for recovery
' Padding Data Checksum | Used to check integrity
Padding Total needle size is aligned to 8 bytes
Figure 5: Layout of Haystack Store file Table 1: Explanation of fields in a needle

e —————

Reads from Store

* Cache machine requests <logical volume id, key, alternate key, cookie>

. * Cookie is random number assigned/maintained by Directory upon upload.

* Prevents brute-force lookups via photo 1ds

* Store machines looks this up in in-memory metadata, if not deleted
* Seeks to offset in volume file and reads entire needle from disk
* Verifies cookie and data integrity

* Returns photo to cache

Photo Write '

* Web server provides <logical volume 1d, key, type (size), cookie, data> to
. store machines (all associated with logical volume)

* Store machines synchronously appends needle to physical volume and updates
mapping
* The append makes this much happier

* But, if files are updated, e.g. rotated, needle can’t be changed, new one must be
appended — if multiple, greatest offset wins. (Directory can update for logical volumes)

Delete

* Just a delete flag — long live those party photos!

Index File

* Asynchronously updated checkpoint of in-memory data structures, in event of reboot

* TPossible to reconstruct, but much data would need to be crunched

. ° Can be missing recent files and/or delete flags
* Upon reboot

* Load checkpoint

* Find last needle
* Add needles after that from volume file

* Restore checkpoint

* Store machines re-verify deleted flag after read form storage, in case index file was stale

Host Filesystem

* Store machines should use file system that:

* Requires little memory for random seeks within a large file

* E.g, blockmaps vs B-trees for logical to physical block mapping

Recovering From Failure

* Failure detection

* Proactively test Stores: Connected? Each volume available? Each volume readabler?

* Fail? Mark logical volumes on store read only and fix.

* In worst case. copv over from other replicas (slow = hours
SREQPE P

Optimizations

* Compaction

- * Copies over used needles, ignoring deleted ones, locks, and atomically swaps

* 25% of photos deleted over course of a year, more likely to be recent ones

* Batch Uploads

* Such as when whole albums uploaded

* Improves performance via large, sequential writes

Cache Hit Rate

Why Did We Talk About Haystack

All the fun bits

* Classical Browser-Server-Directory-CDN-Cache-Store Layering
Simple, Easy Example, By Design (Simple = Robust Fast)
Optimizes for use cases
Memory-Disk Trade
Focus on fitting metadata into memory

Real-world storage concerns

