

Relational Databases
BORROWED WITH MINOR ADAPTATION FROM

PROF. CHRISTOS FALOUTSOS, CMU 15-415/615

3

Roadmap

 Introduction

 Integrity constraints (IC)

 Enforcing IC

 Querying Relational Data

 ER to tables

 Intro to Views

 Destroying/altering tables

4

Why Study the Relational,

a.k.a. “SQL” Model?

 Most widely used model.

 Vendors: IBM/Informix, Microsoft, Oracle, Sybase,
etc.

 “Legacy systems” in older models

 e.g., IBM’s IMS

 Object-oriented concepts have merged in

 object-relational model

Informix->IBM DB2, Oracle

 Essentially for up to millions of records (Beyond
that, think NoSQL)

5

Relational Database:

Definitions

Relational database: a set of

relations

 (relation = table)

 specifically

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

6

Relational Database:

Definitions
Relation: made up of 2 parts:

Schema : specifies name of
relation, plus name and type of
each column.

Instance : a table, with rows and
columns.

#rows = cardinality

#fields = degree / arity
sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

7

Relational Database:

Definitions

 relation: a set of rows or tuples.

 all rows are distinct

 no order among rows (why?)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

8

Ex: Instance of Students

Relation
sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

• Cardinality = 3, arity = 5 ,

• all rows distinct
• Q: do values in a column need to be
distinct?

9

 SQL* (a.k.a. “Sequel”), standard language

 Data Definition Language (DDL)

create, modify, delete relations

specify constraints

administer users, security, etc.

E.g.:

* Structured Query Language

SQL - A language for Relational

DBs

create table student
(ssn fixed, name char(20));

1
0

 Data Manipulation Language (DML)

Specify queries to find tuples that satisfy

criteria

add, modify, remove tuples

SQL - A language for Relational

DBs

select * from student ;

update takes set grade=4
where name=‘smith’
and cid = ‘db’;

1
1

SQL Overview

CREATE TABLE <name> (<field>
<domain>, …)

INSERT INTO <name> (<field
names>)

VALUES (<field values>)

DELETE FROM <name>
WHERE <condition>

1
2

SQL Overview

UPDATE <name>
SET <field name> =

<value>
WHERE <condition>

SELECT <fields>
FROM <name>
WHERE <condition>

1
3

Creating Relations in SQL

Creates the Students relation.

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa FLOAT)

1
4

Creating Relations in SQL

Creates the Students relation.

Note: the type (domain) of each

field is specified, and enforced by

the DBMS whenever tuples are

added or modified.
CREATE TABLE Students

(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa FLOAT)

1
5

Table Creation (continued)

Another example:

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

1
6

Adding and Deleting Tuples

Can insert a single tuple using:

INSERT INTO Students
(sid, name, login, age, gpa)
VALUES
(‘53688’, ‘Smith’, ‘smith@cs’,
18, 3.2)

1
7

Adding and Deleting Tuples

• ‘mass’-delete (all Smiths!) :

DELETE
FROM Students S
WHERE S.name = ‘Smith’

1
8

Roadmap

 Introduction

 Integrity constraints (IC)

 Enforcing IC

 Querying Relational Data

 ER to tables

 Intro to Views

 Destroying/altering tables

1
9

Keys

Keys help associate tuples in different

relations

Keys are one form of integrity constraint

(IC)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled Students

(Motivation:)

 In flat files, how would you check for duplicate ssn, in a student file?

 (horror stories, if ssn is duplicate?)

2
0

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

2
1

Keys

Keys help associate tuples in different

relations

Keys are one form of integrity constraint

(IC)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled Students

PRIMARY KeyFOREIGN Key

2
2

Primary Keys

A set of fields is a superkey if:

No two distinct tuples can have same

values in all key fields

A set of fields is a key for a relation if :

minimal superkey

Student (ssn, name, address)

{ssn,name}: superkey
{ssn}: superkey, AND key
{name}: not superkey

2
3

Primary Keys

what if >1 key for a relation?

2
4

Primary Keys

what if >1 key for a relation?

 one of the keys is chosen (by DBA) to

be the primary key. Other keys are

called candidate keys..

Q: example of >1 superkeys?

2
5

Primary Keys

 what if >1 key for a relation?

 one of the keys is chosen (by DBA) to be the
primary key. Other keys are called
candidate keys..

Q: example of >1 superkeys?

A1: student: {ssn}, {student-id#},

{driving license#, state}

A2: Employee: {ssn}, {phone#}, {room#}

A3: computer: {mac-address}, {serial#}

2
6

Primary Keys

E.g.

sid is a key for Students.

What about name?

The set {sid, gpa} is a superkey.

2
7

Syntax:

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2))

2
8

Syntax:

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

PRIMARY KEY == UNIQUE, NOT NULL

2
9

Drill:

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

3
0

Drill:

Q: what does this mean?

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

3
1

Primary and Candidate Keys

in SQL

“Students can take only
one course, and no two
students in a course
receive the same grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

3
2

Foreign Keys

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

3
3

Foreign Keys, Referential

Integrity
Foreign key : Set of fields `refering’ to a

tuple in another relation.

Must correspond to the primary key of
the other relation.

Like a `logical pointer’.

 foreign key constraints enforce
referential integrity (i.e., no dangling
references.)

3
4

Foreign Keys in SQL

Example: Only existing students may enroll

for courses.

 sid is a foreign key referring to

Students:

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

3
5

Foreign Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

3
6

Roadmap

 Introduction

 Integrity constraints (IC)

 Enforcing IC

 Querying Relational Data

 ER to tables

 Intro to Views

 Destroying/altering tables

3
7

Enforcing Referential Integrity

 Subtle issues:

 What should be done if an Enrolled tuple with a

non-existent student id is inserted?

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

3
8

Enforcing Referential Integrity

 Subtle issues:

 What should be done if an Enrolled tuple with a

non-existent student id is inserted? (Reject it!)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

3
9

Enforcing Referential Integrity

 Subtle issues, cont’d:

 What should be done if a Student’s tuple is

deleted?

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 15-101 C

53666 18-203 B

53650 15-112 A

53666 15-105 B

Enrolled
Students

4
0

Enforcing Referential Integrity

 Subtle issues, cont’d:

 What should be done if a Students tuple is deleted?

Also delete all Enrolled tuples that refer to it?

Disallow deletion of a Students tuple that is

referred to?

 Set sid in Enrolled tuples that refer to it to a default

sid?

 (In SQL, also: Set sid in Enrolled tuples that refer to it
to a special value null, denoting `unknown’ or

`inapplicable’.)

4
1

Enforcing Referential Integrity

 Similar issues arise if primary key of Students tuple

is updated.

4
2

Integrity Constraints (ICs)

 IC: condition that must be true for
any instance of the database; e.g.,
domain constraints.

ICs are specified when schema is
defined.

ICs are checked when relations are
modified.

4
3

Integrity Constraints (ICs)

A legal instance of a relation: satisfies
all specified ICs.

DBMS should not allow illegal
instances.

we prefer that ICs are enforced by
DBMS (as opposed to ?)

Blocks data entry errors, too!

4
4

Where do ICs Come From?

4
5

Where do ICs Come From?

 the application!

4
6

Where do ICs Come From?

 Subtle point: We can check a database

instance to see if an IC is violated, but we

can NEVER infer that an IC is true by looking

at an instance.

An IC is a statement about all possible instances!

 Eg., name is not a key,

but the assertion that sid is a key is given to us.

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

4
7

Where do ICs Come From?

Key and foreign key ICs are the most

common; more general ICs supported

too.

4
8

Roadmap

 Introduction

 Integrity constraints (IC)

 Enforcing IC

 Querying Relational Data

 ER to tables

 Intro to Views

 Destroying/altering tables

4
9

ER to tables outline:

 strong entities

 weak entities

 (binary) relationships

 1-to-1, 1-to-many, etc

 total/partial participation

 ternary relationships

 ISA-hierarchies

 aggregation

50

Logical DB Design: ER to

Relational
 (strong) entity sets to

tables.

Employees

ssn
name

lot

51

Logical DB Design: ER to

Relational
 (strong) entity sets to

tables.

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

Employees

ssn
name

lot

Ssn Name Lot

123-22-6666 Attishoo 48

233-31-5363 Smiley 22

131-24-3650 Smethurst 35

52

Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

Works_InEmployees Departments

Many-to-many:

53

Relationship Sets to Tables

dname

budgetdid

since

lot

name

ssn

Works_InEmployees Departments

Many-to-many:

Ssn Name Lot

123-22-6666 Attishoo 48

233-31-5363 Smiley 22

131-24-3650 Smethurst 35

Ssn did since

123-22-6666 51 1/1/91

123-22-6666 56 3/3/93

233-31-5363 51 2/2/92

54

Relationship Sets to Tables

 key of many-to-many

relationships:

Keys from

participating entity

sets (as foreign keys).

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

Ssn did since

123-22-6666 51 1/1/91

123-22-6666 56 3/3/93

233-31-5363 51 2/2/92

55

Review: Key Constraints in

ER
 1-to-many:

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

5
6

1-to Many Many-to-1

(Reminder: Key Constraints in ER)

1-to-1 Many-to-Many

5
7

ER to tables - summary of basics

 strong entities:

key -> primary key

 (binary) relationships:

get keys from all participating entities - pr. key:

1-to-1 -> either key (other: ‘cand. key’)

1-to-N -> the key of the ‘N’ part

M-to-N -> both keys

5
8

A subtle point (1-to-many)

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

59

Translating ER with Key

Constraints

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE
Departments(
did INTEGER),
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),

)

Two-table-solution

60

Translating ER with Key

Constraints

CREATE TABLE Dept_Mgr(
ssn CHAR(11),
did INTEGER,
since DATE,
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Single-table-solution

61

Translating ER with Key

Constraints

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

Vs.

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

CREATE TABLE Dept_Mgr(
ssn CHAR(11),
did INTEGER,
since DATE,
dname CHAR(20),
budget REAL,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

6
2

Pros and cons?

6
3

Drill:

What if the toy department has no

manager (yet) ?

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

6
4

Drill:

What if the toy department has no

manager (yet) ?

A: one-table solution can not handle

that.

(ie., helps enforce ‘thick arrow’ – see

next)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

6
5

Rules:

 Thick arrow -> one-table solution

 Thin arrow -> two-table solution

(More rules: next)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

6
6

ER to tables outline:

 strong entities

 weak entities

 (binary) relationships

 1-to-1, 1-to-many, etc

 total/partial participation

 ternary relationships

 ISA-hierarchies

 aggregation

6
7

Review: Participation

Constraints
 Does every department have a manager?

 If so, this is a participation constraint: the participation of Departments in

Manages is said to be total (vs. partial).

Every did value in Departments table must appear

in a row of the Manages table (with a non-null ssn

value!)

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

6
8

Participation Constraints in

SQL
 We can capture participation constraints involving one entity set in a

binary relationship, but little else (without resorting to CHECK

constraints).

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

6
9

Participation Constraints in

SQL
 Total participation (‘no action’ -> do NOT do the delete)

 Ie, a department MUST have a nanager

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

7
0

Participation Constraints in

SQL
 Partial partipation, ie, a department may be headless

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE SET NULL)

7
1

Participation Constraints in

SQL
 Partial partipation, ie, a department may be headless

 OR (better): use the two-table solution

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE SET NULL)

7
2

ER to tables outline:

 strong entities

 weak entities

 (binary) relationships

 1-to-1, 1-to-many, etc

 total/partial participation

 ternary relationships

 ISA-hierarchies

 aggregation

7
3

Review: Weak Entities

 A weak entity can be identified uniquely only by considering the
primary key of another (owner) entity.

 Owner entity set and weak entity set must participate in a one-to-many

relationship set (1 owner, many weak entities).

 Weak entity set must have total participation in this identifying

relationship set.

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

7
4

Review: Weak Entities

lot

name

agedname

DependentsEmployees

ssn

Policy

cost

How to turn ‘Dependents’ into a table?

7
5

Translating Weak Entity Sets

 Weak entity set and identifying relationship set are

translated into a single table (== ‘total participation’)

CREATE TABLE Dep_Policy (
dname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

7
6

Translating Weak Entity Sets

 Weak entity set and identifying relationship set are

translated into a single table.

 When the owner entity is deleted, all owned weak entities
must also be deleted (-> ‘CASCADE’)

CREATE TABLE Dep_Policy (
dname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

7
7

ER to tables outline:

 strong entities

 weak entities

 (binary) relationships

 1-to-1, 1-to-many, etc

 total/partial participation

 ternary relationships

 ISA-hierarchies

 aggregation

78Review: ISA Hierarchies

 Overlap constraints: Can Joe be an Hourly_Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

 Covering constraints: Does every Employees entity also have to

be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

7
9

Drill:

 What would you do?

Contract_Emps

name

ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

8
0

Translating ISA Hierarchies to Relations

 General approach: 3 relations: Employees,
Hourly_Emps and Contract_Emps.

how many times do we record an
employee?

what to do on deletion?

how to retrieve all info about an employee?EMP (ssn, name, lot)

H_EMP(ssn, h_wg, h_wk) CONTR(ssn, cid)

8
1

Translating ISA Hierarchies to Relations

 Alternative: Just Hourly_Emps and
Contract_Emps.

Hourly_Emps: ssn, name, lot, hourly_wages,
hours_worked.

Each employee must be in one of these two
subclasses.

H_EMP(ssn, h_wg, h_wk, name, lot)

EMP (ssn, name, lot)

CONTR(ssn, cid, name, lot)

Notice: ‘black’ is gone!

Not in book – why NOT 1 table +

nulls? 8
2

ssn h_wgname cid

all hourly contractors

Not in book – why NOT 1 table +

nulls? 8
3

ssn h_wgname cid

all hourly contractors

…

…

TYPE

8
4

ER to tables outline:

 strong entities

 weak entities

 (binary) relationships

 1-to-1, 1-to-many, etc

 total/partial participation

 ternary relationships

 ISA-hierarchies

 aggregation

8
5

Ternary relationships; aggregation

 rare

 keep keys of all participating entity sets

(or: avoid such situations:

break into 2-way relationships or

add an auto-generated key

)

8
6

Roadmap

 Introduction

 Integrity constraints (IC)

 Enforcing IC

 Querying Relational Data

 ER to tables

 Intro to Views

 Destroying/altering tables

8
7

Views

 Virtual tables

CREATE VIEW YoungActiveStudents(name,grade)

AS SELECT S.name, E.grade

FROM Students S, Enrolled E

WHERE S.sid=E.sid and S.age<21

 DROP VIEW

8
8

Views and Security

 DBA: grants authorization to a view for a user

 user can only see the view - nothing else

8
9

Roadmap

 Introduction

 Integrity constraints (IC)

 Enforcing IC

 Querying Relational Data

 ER to tables

 Intro to Views

 Destroying/altering tables

9
0

Table changes

 DROP TABLE

 ALTER TABLE, e.g.

ALTER TABLE students

ADD COLUMN maiden-name CHAR(10)

9
1

Relational Model: Summary

 A tabular representation of data.

 Simple and intuitive; widely used

 Integrity constraints can be specified by the DBA, based on

customer specs. DBMS checks for violations.

 Two important ICs: primary and foreign keys

 also: not null, unique

 In addition, we always have domain constraints.

 Mapping from ER to Relational is (fairly) straightforward:

9
2

ER to tables - summary of basics

 strong entities:

 key -> primary key

 (binary) relationships:

 get keys from all participating entities - pr. key:

 1:1 -> either key

 1:N -> the key of the ‘N’ part

 M:N -> both keys

 weak entities:

 strong key + partial key -> primary key

 ON DELETE CASCADE

9
3

ER to tables - summary of

advanced

 total/partial participation:

 NOT NULL; ON DELETE NO ACTION

 ternary relationships:

 get keys from all; decide which one(s) -> prim. key

 aggregation: like relationships

 ISA:

 2 tables (‘total coverage’)

 3 tables (most general)

ISA

