
Lab 5: Creating Java Class Methods   

 

Lab 5 Due Date:  Wednesday October 10 at 11:59 pm (can be submitted till 
Thursday 10/11/01 at 11:59) with no penalty 

 

Background: 

Lab 5 will be an exercise in creating the methods for a Java class and processing numb ers. You will 
implement a class called Point. The class models the x and y coordinate of a position on a Cartesian plane: 
the internal representation (the measurement stored in the private data members) are two integers, 
representing the coordinate values, while the external representation (the measurement printed in the 
console window) is the same. 
 
There is an existing class, PointTest that is already written and complete. Once you successfully 
finished the Point class, the program should run correctly, generating the output displayed below. You 
will also have access to the InteractiveIO class for console input and output. 
 
Design: 
 
The class has the following methods that need to be completed: 
 

• Default constructor — sets the x and y values to 0 
• Second constructor (with parameters) — accepts int parameters for an x and y 

and sets the passed values as appropriate to create the proper internal representation 
• set— receives two String arguments for an x and a y; the point’s internal representation is 

derived from these arguments  
• getX, getY — two methods that return the x-value and the y-value of the Point object, 

respectively 
• add— receives a Point object as an argument, adds the x  and y of the passed object to the x 

and y of the Point object that invoked the method, and returns a new Point object with the 
total of the two times. 

 
For example: If point1  represents x = 5, y = 20 and point2 represents x =7, y = -
10, then point1.add(point2) returns a Point object that represents x = 12, y = 10 
 

• distance —  receives a Point object as an argument , and returns a double value that 
represents the distance between two points, using the distance formula (distance = square root 
of (x2 - x1 )2 + (y2 - y1)2)  

 
For example: If point1  represents x = 3, y = 4 and point2 represents x =1, y = 2, 
then point1.distance(point2) returns the double value 2.82843 
 

 
• toString —  returns a string with an external representation (x and y) of the Point object. 

The format for this output is “X = xx, Y = yy” (where xx is the x value and yy is the y value).  
 

 

 



Lab 5: Model a Point 

Download the lab5.zip file by clicking on this link. Save the zip file to your C:\Temp directory and unzip 
the files. Open the directory lab5. You should see the following files:  

• PointModel.mcp (the project file for this Java application)  
• PointTest.java (the source file that tests   this Java application, already finished)  
• Point.java (the source file for the Clock object)  
• InteractiveIO.java (the class that supports console input and output) 

Open the PointModel.mcp file and look at the filenames listed inside. PointModel.mcp is not a Karel or 
Java program file - it s project file CodeWarrier requires as part of every Java program. A project file keeps 
track of what files are parts of a Java program. Typically there is one project file for each Java program -- 
however there can be many Java source files comprising a single Java program. The program we are going 
to work with today has 3 source file:    PointTest.java, Point.java, and InteractiveIO.java.  

The task 

Upon successfully completing the Point class, the program should run, generating output that corresponds 
to the sample output displayed below (assuming the same input values are used.)  

Writing the PointModel program 

For this exercise, all of your work will be done in Point.java . You must complete the Point class.  The 
PointTest class and InteractiveIO have already been completed..  
 

Sample Solution 

Output of a correctly implemented Point class should look something like this: 
 

Enter the x value: 2 
Enter the y value: -3 
 
p1: X = 2, Y = -3 
 
p2: X = 5, Y = -5 
 
p3: X = 7, Y = -8 
 
Distance from p1 to p3 is 7.0710678118654755 
 
 
 Press Enter to continue 

   

 

Handing in your Solution 

Your solutions should be in the form of .zip files. When we grade your solution we will unzip the folder 
and execute the project. If your project does not run you will lose the execution points for that lab.  

Your Solution zip file must contain all the files in your projects  



Your teaching assistants will show you how to zip up the files for submission. Instructions are also in the 
Tutorial document that is available  
   

Click on this link to Submit your zip file 

 


