
Parallel Seam Carver
Abigail Li (abigail2), Jonathan Liu (jsliu2)

SUMMARY: Summarize your project in no more than 2-3 sentences. Describe what you plan to
do and what parallel systems you will be working with.

The Seam Carving algorithm is an algorithm that resizes an image by removing seams
(paths from one end of the image to another) that have the least importance. One way of
implementing this is via a Dynamic Program approach, so we will be trying to parallelize the DP
version of the Seam Carving algorithm such that we can achieve at least 4x speedup on the
GHC machines. We will attempt a version for CPUs with multiple cores using OpenMP, and also
a version for GPUs using CUDA.

URL: https://www.andrew.cmu.edu/user/jsliu2/418projectproposal.pdf

BACKGROUND:
Seam Carving is an image resizing algorithm that works by removing seams of least
importance. A vertical seam is defined as a path from the top to bottom of an image of adjacent
pixels such that there is exactly one pixel per row on the path. A pixel is considered adjacent
from another pixel if the pixels are in adjacent rows and their column indices differ by at most 1.
For this illustration, we will be working with vertical seams.

Seam Carving is considered as a better alternative to cropping or scaling an image in order to
resize it because it better preserves the field of vision of the original image. In this series of
examples taken from the 15-210 DP Lab writeup, the rightmost Seam-Carved image does a
much better job preserving the details of the rocks while maintaining a view of the water.

https://www.andrew.cmu.edu/user/jsliu2/418projectproposal.pdf


The intuitive directions for parallelism would be to parallelize the work across columns when
vertical seams are being removed. This alone, however, is unlikely to achieve the desired
speedup, since this still requires synchronization for each row, and for a given row, there is not
enough work to be split. Thus, we will search for alternative ways to partition the tasks so that
each task has a larger granularity. Another natural extension is to remove multiple seams at
once in parallel. However, it is nontrivial to identify nonintersecting seams and, furthermore, the
removal of each seam depends on what was removed previously, so there will be challenges
involving balancing between achieving more parallelism and more accuracy.

In the DP solution to making a valid Seam Carver via vertical seams, the pixel energy
matrix is traversed one row at a time such that the computation for each row depends on having
finished the computation for the row directly above it. This means that the computation for each
row has to be synchronized before the computation for the next row can be started in the
optimal/sequential solution. This presents our main challenge: With so many row dependencies,
only parallelizing across the columns will not be enough to overcome the cost of synchronizing
each row, especially when each pixel only has to look at the 3 pixels above it, which is a very
small amount of work. We will try to find ways to address this issue. Additionally, we will
probably have to investigate how to balance between optimally removing the seam of lowest
energy and achieving greater speedup. One idea we are entertaining is to remove multiple
seams in parallel. For example, if we wanted to remove 2 vertical seams in parallel then we
would divide the image in half and remove a seam from each half such that the seams don’t
touch the other half. Another challenge is what to do after we have identified the seam to
remove- the seam to remove could be spread across the whole image so we have to figure out
how to efficiently copy the remaining pixels into a new image in parallel.

In terms of memory access characteristics, there is a fair amount of spatial locality
because each pixel accesses a contiguous set of 3 pixels in the row above and adjacent pixels
in a row will access 2 of the same pixels in the row above. There should be very little divergent
execution because the only edge cases that do not access 3 pixels are the leftmost/rightmost
pixel in each row.



● We will start by using this person’s public Seam Carver code as our starter code:
https://github.com/dwxiao/seam-carving/blob/master/seam-carving.cpp

● Our initial plan is to follow the DP version of the Seam Carving algorithm that’s
implemented already in the starter code as well as described in this link:
https://en.wikipedia.org/wiki/Seam_carving#:~:text=Seam%20carving%20

● We will use the GHC machines and request use of the PSC machines to see how our
implementation performs at higher core counts.

● We will also be referencing how to use CUDA from our asst2 code and how to use
OpenMP from our asst3 code

Plan to Achieve
● A parallelizable version of the DP algorithm implementation of a Seam Carver that

carves vertical seams. The initial version will not be focused on runtime speedup, just
getting a version that behaves correctly when run on multiple processors.
We think that this is achievable because this is essentially taking the sequential code
and distributing the work among multiple processors, so maintaining correctness should
not be super hard.

● Some sort of correctness verifier that we can use to test the parallel version of Seam
Carver. We can assess the quality of an image both via human verification and the
resultant energy of the image.
We think that this is achievable because this will be a separate check from the runtime
tests so we don’t have to worry about making this efficient. We can simply take in a
seam from the sequential version and verify that it is the same seam as found in the
parallel version

https://github.com/dwxiao/seam-carving/blob/master/seam-carving.cpp
https://en.wikipedia.org/wiki/Seam_carving#:~:text=Seam%20carving%20


● A version of the DP implementation of a Seam Carver that carves vertical seams where
the speedup from the sequential version is 4x.
If we assume that we cannot achieve perfect speedup and the GHC machines and the
GHC machines can employ at most 8 processors, then we think that achieving at least
half of 8x speedup (4x) is reasonable.

Hope to Achieve
● We can try to also parallelize Seam Carving with OpenMP. This seems feasible because

we have worked with OpenMP for assignment 3 so we have experience and reference
material. Moreover, if we’ve already hashed out how to effectively parallelize by now,
then changing syntax should not be too hard.

Demo at poster session: We will be presenting speedup graphs with a sequential version as a
baseline. We will also provide images that have been Seam Carved to various degrees of
resizing as a more visual representation of what our project does.
We hope to determine whether multi-core CPUs or GPUs are best suited for parallel seam
carving, and we plan to understand the bottlenecks of parallelizing this algorithm and what limits
its performance.

PLATFORM CHOICE: Describe why the platform (computer and/or language) you have chosen
is a good one for your needs. Why does it make sense to use this parallel system for the
workload you have chosen?

We will be choosing to work in C++ because we have worked with C++ for all of our prior
assignments for this class and are familiar with how to apply parallelism using techniques such
as CUDA. CUDA makes sense for this workload because we don’t need very much
communication between pixels and we only need to synchronize, so CUDA would be great at
dividing up this labor. We will be using the GHC machines to test our speedup.

Week Deadline Task(s)

1 Wed March 27 - submit project proposal

2 Tues April 2 - update/finalize project proposal based on feedback
from submitted proposal



3 Tues April 9 - modify starter code to get a working sequential version
we can write parallel code off of
- establish how we will parallelize finding multiple
seams

4 Tues April 16 - working parallel version of sequential code
- identify bottlenecks
- run experiments to compare various ideas we had
- understand the tradeoff with finding multiple seams
and the image quality

5 Tues April 23 - try to get as much speedup as possible on the GHC
machines
- test on PSC machines to obtain speedups on higher
core counts

6 Sun May 5 - finish final report
- finish poster


