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Abstract

Understanding the evolution of cancer in its early stages is critical to identifying
key drivers of cancer progression and developing better early diagnostics or prophy-
lactic treatments. Early cancer is difficult to observe, though, since it is generally
asymptomatic until extensive genetic damage has accumulated. In this study, we
develop a computational approach to infer how once-healthy cells enter into and be-
come committed to a pathway of aggressive cancer. We accomplish this through a
strategy of using tumor phylogenetics to look backwards in time to earlier stages of
tumor development combined with machine learning to infer how progression risk
changes over those stages. We apply this paradigm to point mutation data from a
set of cohorts from the Cancer Genome Atlas (TCGA) to formulate models of how
progression risk evolves from the earliest stages of tumor growth, as well as how
this evolution varies within and between cohorts. The results suggest general mech-
anisms by which risk develops as a cell population commits to aggressive cancer,
but with significant variability between cohorts and individuals. These results im-
ply limits to the potential for earlier diagnosis and intervention while also providing
grounds for hope in extending these beyond current practice.
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Chapter 1

Introduction

Cancer remains a major source of mortality globally [7] despite many years of intensive research
into prevention and treatment. Early screening was expected to improve outcomes by detecting
cancers when they are treatable. While such efforts have saved lives, they underperformed early
hopes in part due to overtreatment [3]: the statistical conclusion from reductions in mortality
shows that as many early-detected cancers may never have posed a serious threat. In response,
concerns about the harm to patients of overtreatment in turn has led to undertreatment [12] as
evolving clinical practice towards more conservative treatment of cancers judged unlikely to be
aggressive can lead to failure to aggressively treat some that need it. The challenge of navigating
the complementary issues of overtreatment and undertreatment has led to numerous efforts to
more accurately distinguish life-threatening from non-threatening cancers (c.f., [23]).

Much insight into how tumors evolve and progress has come from the discipline of tumor
phylogenetics [19], i.e., the study of the evolutionary history of cancer cells. Phylogenetic anal-
ysis can reveal order of mutations in a cancer cell, the timing of these mutations, and the rela-
tionships between different subclones, e.g., whether the most deadly clones arise from a single
lineage or through parallel events [[10]. Work on cancer evolution has suggested that cancer is not
normally a primary illness but rather usually a late-stage outcome of genetic instability, either
intrinsic or due to environmental factors [2]]. This instability could potentially indicate tumor
risk long before the tissue becomes phenotypically abnormal [21]]. Combined with the insight of
overtreatment, these observations suggest that our primary goal in early cancer screening should
focus not merely on detecting cancer per se, but also on identifying genetic lesions that will go
on to be threatening to the patient.

Solving such prediction problems has led to a more prominent role for statistical inference
and machine learning methods in personalized and precision cancer treatment. See, for exam-
ple, [14] for a recent review. Machine learning tools have yielded ever better ability to identify
those cancers that will threaten patient lives and predict which tumors will likely respond to
what treatments [[15]. Nonetheless, they are limited by our ability to gather data about tumors,
our imperfect understanding of their biology, and the inherent stochasticity of the progression
process.

Our prospects for predicting future cancer progression hinge on the question of when a cell
lineage becomes committed to being a cancer, or a cancer with a bad progression outcome. If
the risk of a cancer progressing is essentially constant until the moment it progresses, then the



prediction task is impossible. However, if progression risk gradually increases over a cancer’s
history then there is hope of predicting progression well before it occurs. There has been consid-
erable prior work to answer variants of this question of how a tissue becomes committed to being
an aggressive cancer, including the classic two-hit model [11] and the more recent “bad luck”
model [23]], which can be conceptualized as different ways of reasoning about how we expect
measures of progression risk to vary over the history of a cell lineage. Does risk of progression
rise suddenly, as from a single chance mutation shifting a tissue from low-risk to high-risk, or
does it increase gradually, as from a series of mutations each slightly driving aggressiveness?
Do these changes tend to occur early in tumor development, long before a cancer is typically
detected, or late, once it is already advanced? The answers to these questions may be of great
practical importance in understanding the limits of prospects for early detection of high-risk
lesions or early interventions to keep incipient cancers off of high-risk pathways.

Our central goal in this study is to establish a model for reconstructing how progression risk
develops over a tissue’s history as it transitions from healthy to cancerous and potentially to
lethality. We want to ask, if we could have observed the cells that eventually become cancers
from their earliest development, how early could we have identified that they were on a trajectory
to aggressive cancer? We emphasize that our goal here is not to provide the definitive answer to
this question, but to show 1) that it is theoretically possible to ask it by computational methods
applied to extant data sources and 2) that doing so will provide insight into basic cancer research
and potentially actionable knowledge for improving early diagnosis and treatment. We recognize
that we cannot definitively answer the question yet, largely because we do not have the ideal data
for the proposed analysis, but proceed in the hope of inspiring future work to yield more definitive
answers.

Our major contributions are:

* Developing a paradigm for tumor phylogenetics combined with machine learning to char-

acterize how the landscape of cancer risk evolves over time.

* Implementing a realization of this paradigm using existing tools and data.

* Applying that realization to a pilot study of lung and colorectal cancers to suggest how
cancer risk evolves and how it can vary between tumor types and individual patients.
The remainder of this paper describes how we accomplish these steps and examines the results
and conclusions we can draw from them before returning in the Discussion to consider how this
question might be asked better in the future.
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Figure 1.1: Summary figure describing the overall analysis pipeline.
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Chapter 2

Methodology

2.1 Data Collection and Preprocessing

We apply our methodology to data from The Cancer Genome Atlas (TCGA) [4], which pro-
vides genomic data from large cohorts of thirty three cancer types with associated clinical and
demographic metadata. We accessed TCGA data through the Genomic Data Commons (GDC)
data portal [9], restricting analysis for the present study to DNA-seq single nucleotide variant
(SNV) data. We also downloaded clinical data to extract survival information. We restricted
our analysis to cohorts with at least 400 subjects and low class imbalance in survival outcomes
due to our need for predictive regression models of censored survival. We therefore chose to
focus the study on four cancers: lung adenocarcinoma (TCGA-LUAD), colorectal adenocarci-
noma (TCGA-COAD), glioblastoma (TCGA-GBM), and head and neck squamous cell carci-
noma (TCGA-HNSC).

2.2 Phylogenetic Analysis

A limitation of TCGA data is that it normally offers only one bulk DNA-seq sample per patient,
which makes clonal phylogenetic inference challenging. To reconstruct the phylogenetic trees
of the cohorts, we used PhyloWGS [3], a Bayesian method for tumor phylogeny inference from
bulk SNV data, which our prior experience has shown to work comparatively well on single bulk
samples. We applied PhyloWGS to the SNV data of each cohort to infer the evolution history
of the cancer cell lineages. Where PhyloWGS inferred multiple possible trees, we selected the
tree with the highest posterior probability. We then used these trees to estimate the time points of
key mutations in the evolution of each cell lineage, as described below. To ensure a reasonable
runtime and exclude samples with insufficient mutations, we limited our analysis to samples with
mutation numbers ranging from 45 to 1200 SNVs. Additionally, we omitted a small number of
samples for which PhyloWGS failed to return a result. Consequently, approximately 80% of the
samples from each cohort were included in the study.

5



2.3 Pathway and Mutation Analysis

Due to large numbers of SNV mutations (> 10, 000 genes for 400 to 1100 patients), we took a
systems approach to reduce the problem dimension by aggregating mutations to key pathways
relevant to tumor progression [17]. We used the PANTHER [16] 22]] database to convert raw
SNV data to affected pathways, assuming that an SNV in any gene in a pathway affects the
pathway. We used random forest and Coxnet regression, via the scikit-survival [18]] package,
applied to the pathway data to identify key pathways that affect patient survival.

We used a random forest classifier to drive risk scores for each patient based on their pathway-
mapped mutations and used random search to optimize the hyperparameters and a K-fold cross-
validation with £ = 5. Since the set of variants and affected pathways for the two cancers are
different, we trained separate models for the two cancer types.



Chapter 3

Results

Figure shows how predicted risk varies over time for the four cohorts, LUAD (Fig [3.Ta-b),
COAD (Fig[3.1k-d), GBM (Fig [3.1k-f), and HNSC (Fig[3.1jg-h), separating subjects by survival
outcome. Both cohorts show a qualitatively similar portrait of slowly increasing risk over time.
For all four cohorts, mean risk scores are somewhat elevated in individuals with bad versus good
survival outcomes throughout the tumor history, suggesting that there are at least sometimes
intrinsic differences predictive of outcome from the earliest stages of cancer development. How-
ever, the variability patient-to-patient is substantially larger than the difference between good-
and bad-outcome subgroups. In the case of LUAD, there is minimal separation by outcome early
on, but they diverge in the latter half of their evolutionary trajectory, indicating that a significant
portion of the determination of outcome occurs late in the tumor’s development. In the case of
COAD, the separation between surviving and deceased subjects is more consistent across the
tumor’s timeline. The case of GBM is similar to that of COAD, but they diverge at the last time
point. The separation of the scores in HNSC is small from early on, and it fluctuates as the can-
cer progresses, and the risk scores also grow faster compared with the three other cohorts in this
study.

For the four types of cancers we studied, risk scores are significantly different between living
and deceased patients, as assessed by a t-test (p-value < 0.05). In these cases, however, the
ability to distinguish patients by outcome improves sharply over the latter half of the trajectory
as risk for both outcome groups increases. The separation only becomes statistically significant
late in the progression process, although this is in part a function of the cohort size among other
study variables and not just an intrinsic property of the system.

To better understand what drives the evolution of the risk scores, we plotted for each tumor
type the mean fraction of mutations for the five most frequently mutated driver genes of the
highest-risk clones. These appear as Fig|3.2| (LUAD) and Fig|3.3|(COAD). Each figure provides
two subplots to separate patients surviving versus deceased over the course of the TCGA study
followup. To map mutations to an approximate time axis, we assumed a molecular clock with
mutations accumulating at a uniform rate across the tree and the length of a tree branch pro-
portional to the number of mutations it contains. The figures show that while the overall risk
evolution appears similar for the two cohorts, they exhibit quite different patterns of accumula-
tion of key mutations in the evolution of cancer cells. LUAD involves a more gradual increase
in inferred mutations over the course of a tumor’s development. It is also less dominated by any
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(a) Max Risk Score of TCGA-LUAD by Time

(b) T-Test P-Values of TCGA-LUAD
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Figure 3.1: Risk scores and p-values versus inferred time for LUAD and COAD cohorts. (a)
Risk score of the most high-risk clone vs. inferred time for LUAD subjects. (b) p-value for
distinguishing by survival outcome in LUAD subjects. (c) Risk score of the most high-risk
clone vs. inferred time for COAD subjects. (d) p-value for distinguishing by survival outcome in
COAD subjects.

one mutation, although TP53 emerges early as the most common mutation in each. There is little
evident qualitative difference between the good and bad outcome plots aside from higher levels



of TP53 mutation and lower levels of CSMD?3 in bad-outcome cancers. COAD, by contrast,
shows a sharper increase and higher rate of mutation, especially for the two most mutated genes
(TP53 and APC). While mutations are predicted to accumulate in these genes from early times,
there is a notable later increase in their mutation frequencies.

(a) Mutation Timeline in Surviving Patients (b) Mutation Timeline in Deceased Patients
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Figure 3.2: Fractions of patients with key mutations in the evolution of cancer cells for LUAD.
For each subfigure, the X-axis shows the relative time of the mutation and the Y-axis is the
fraction of patients with the mutation. (a) Accumulation of mutations over time in surviving
patients. (b) Accumulation of mutations over time in deceased patients.

(a) Mutation Timeline in Surviving Patients (b) Mutation Timeline in Deceased Patients

—— PIK3CA —— PIK3CA
—— SYNE1 —— SYNE1
—— APC —— APC

TP53 TP53
KRAS g KRAS
—

o
@
o
@

o
S
o
<

o
o
o
EY

o
o
o
@

Frequency
Frequency

° ° °
8 & i
° ° °
S o =

o
o
o
-

Y _ . ~

o
o
o
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Relative Time Relative Time

Figure 3.3: Fractions of patients with key mutations in the evolution of cancer cells for COAD.
For each subfigure, the X-axis shows the relative time of the mutation and the Y-axis is the
fraction of patients with the mutation. (a) Accumulation of mutations over time in surviving
patients. (b) Accumulation of mutations over time in deceased patients.

Fig[3.2](a-b), Fig[3.3(a-b), Fig[3.5(a-b), and Fig[3.4(a-b) examine the overall accumulation of
mutations for the top genes and pathways for each cancer, broken down by good and bad out-

come cancers. Table provides descriptors for the pathways identified by this analysis. The
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(a) Mutation Timeline in Surviving Patients

(b) Mutation Timeline in Deceased Patients
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Figure 3.4: Fractions of patients with key mutations in the evolution of cancer cells for HNSC.
For each subfigure, the X-axis shows the relative time of the mutation and the Y-axis is the
fraction of patients with the mutation. (a) Accumulation of mutations over time in surviving
patients. (b) Accumulation of mutations over time in deceased patients.
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Figure 3.5: Fractions of patients with key mutations in the evolution of cancer cells for GBM. For
each subfigure, the X-axis shows the relative time of the mutation and the Y-axis is the fraction
of patients with the mutation. (a) Accumulation of mutations over time in surviving patients. (b)
Accumulation of mutations over time in deceased patients.

top-ranked genes and pathways are similar as are frequencies between cohorts. The high-ranking
pathways themselves are largely consistent with prior expectations, for example in prominent
representation of Wnt signaling, TP53 signaling, and inflammatory pathways. The most striking
difference for LUAD is the relatively higher rate of TP53 mutations and somewhat high rates
of mutations across top-scoring pathways in subjects with poor outcomes. COAD shows simi-
lar results, with notably higher frequencies of mutations in TP53 and APC in deceased versus
surviving groups and a qualitatively similar difference in pathways affected despite somewhat
different pathways showing up as relevant. We also noticed that the frequency of mutations in
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TP53 is higher in the surviving groups of GBM, starting at approximately 0.2 in relative time.

(a) Top 10 Mutations in Surviving Patients

(b) Top 10 Mutations in Deceased Patients

(c) Top 10 Pathways in Surviving Patients

(d) Top 10 Pathways in Deceased Patients
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Figure 3.6: Drivers of risk evolution for LUAD.
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Figure 3.7: Drivers of risk evolution for COAD.
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Drivers of risk evolution for HNSC.

Individual genes and pathways arising in these analyses are mostly consistent with expec-
tations from prior literature. For example, EGFR is known to be important in early lung can-
cers [26] and although it does not show up as one of the five most frequently mutated genes,
examining it individually shows that it is indeed predicted by our analysis to accumulate pre-
dominantly early in poor-outcome LUAD cancers (Figure 3.10). Some other key mutations,
such as ERBB2, occur mostly through copy number alterations (CNAs) and would not be seen in
this study. Other key mutations in defining cancer risk, such as TP53 [26] have been suggested to
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(a) Top 10 Mutations in Surviving Patients (b) Top 10 Mutations in Deceased Patients (c) Top 10 Pathways in Surviving Patients (d) Top 10 Pathways in Deceased Patients
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Figure 3.9: Drivers of risk evolution for GBM.

| Pathway ID | Pathway Name |
P00057 Wnt signaling pathway

P04398 pS53 pathway feedback loops 2

P00031 Inflammation mediated by chemokine and
cytokine signaling pathway

P00034 Integrin signalling pathway

P00012 Cadherin signaling pathway

P00018 EGF receptor signaling pathway

P06664 Gonadotropin releasing hormone receptor pathway
P00005 Angiogenesis

P00029 Huntington disease

P00047 PDGF signaling pathway

P00059 pS53 pathway
P00006 Apoptosis signaling pathway
P04397 pS3 pathway by glucose deprivation

Table 3.1: Most frequently mutated PANTHER pathways in the LUAD and COAD cohorts

occur more often in the later stages of cancer evolution, although our results suggest high patient-
to-patient variability. In contrast, key risk-driving mutations in COAD [24] appear less likely to
be seen in the root node of the phylogeny but rather appear to accumulate more gradually. We
also noticed a few unexpected results, for example, the frequency of TP53 mutation is higher in
the surviving group of GBM compared with the deceased group (Figure [3.9).
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Accumulation of EGFR Mutation in LUAD
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Figure 3.10: Fraction of mutated EGFR versus estimated time for LUAD.

13



14

April 9, 2025
DRAFT



Chapter 4

Conclusion and Discussion

We sought to characterize how risk of progression to aggressive cancer develops over time. We
established a computational inference model for answering this question with extant cancer ge-
nomic and outcome data. We applied an implementation of that model to two cancer cohorts,
revealing qualitatively similar portraits of risk accumulation although with some variability by
tumor type and large variability by subject within each type. The results suggest that there are
average differences predictive of outcome, captured in machine learning-derived risk scores,
present from the earliest stages of tumor development although these differences are dominated
by high variability within each cohort. Statistically significant separation of good and bad out-
come subjects by risk score becomes possible only relatively late, in part reflecting the high
variability by subject. However, this separation might be pushed back to earlier times with larger
cohorts, more comprehensive variant data, or more accurate phylogeny inferences, among other
factors. The results suggest that there is potential, for at least subsets of patients, for earlier di-
agnostics or interventions before cancer is commonly detected — and potentially even before it
is cancer — but further advances in methodology will be needed to judge the absolute limits.

As noted in the Introduction, our goal is not to definitively answer the question we pose
about the evolution of cancer risk but rather to demonstrate that it is feasible and worthwhile to
answer it, in the hope of inspiring future work. The biggest obstacle to answering this question
better is data. The present work used TCGA data because the nature of the question requires
relatively large cohorts with consistent data types, and TCGA was a landmark in making such
data available. TCGA sequencing was not designed with tumor phylogenetics in mind, though,
and did not have access to many technologies available to us today. We further expect that
we are missing a substantial portion of risk-driving mutations by focusing here only on SNV
mutations, ignoring copy number alteration (CNA) and various kinds of structural variation (SV)
mutations important in cancers. Methods exist to map SNV, CNA, and SV mutations to a tumor
lineage tree tree (6} 8], but they perform poorly on single-sample data such as is available with
TCGA. Sufficiently large cohorts with multiple samples per patient, single-cell genomic data,
longitudinal data, and protocols for profiling somatic variation in non-cancerous tissues [13]]
might improve the effectiveness of future studies along these lines. How to choose among many
possible options in designing such a study is itself an emerging question for which tools are
beginning to become available [20]. The computational tools used in this study are also older,
in part because they were selected to be suitable for the data currently available; better methods
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for phylogenetic risk prediction might also be chosen or developed to accommodate richer data
sources.

Finally, we consider what one could do with answers from a study such as is presented here.
Better models of cancer risk progression could have particular value to early cancer screening and
public health interventions. As we now appreciate that somatic variation is ubiquitous [1/] and
usually asymptomatic, it is important to develop better ways to identify when seemingly harmless
variation poses a risk and better respond to problems of both overtreatment and undertreatment.
Studies such as that prototyped here may also inspire better ways to respond to cancers prophy-
lactically before they become threatening. Better characterizing the features defining high-risk
lesions may also help during treatment in tailoring personalized therapies to high-risk clones or
predicting when and how a tumor under treatment might recur or become more aggressive.
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