Proof of proposition 1.2: en+1(x
+ 1) > en+1(x).
Let's check that this is correct by double induction. We need
only these clauses of the definition of en:
e1(x) = x2
+
2;
en +
2(0) = 2;
en
+ 2(x + 1) = en + 1(en
+ 2(x)).
DI 1, 2. e1(x + 1)
= (x + 1)2
+ 2 > x2
+ 2 =
e1(0).
DI 3. Suppose "x,
en
+ 1(x + 1) > en
+ 1(x). Then:
a. en + 2(1) =
en + 1(en + 2(0))
= en
+ 1(2)
>
2 = en
+ 2(0) by proposition 1.1.
b. Suppose,
further, that en + 2(x + 1) >
en + 2(x).
So there exists k >
0 such that
en + 2(x
+ 1) = en + 2(x)
+ k.
By definition:
en + 2(x
+ 2) = en
+ 1(en + 2(x + 1)) =
en + 1(en + 2(x)
+ k) [by the preceding line].
Using the hypothesis,
we have that for each i such that k >
i,
en
+ 1(en + 2(x) + i + 1)
> en + 1(en
+ 2(x) + i).
By transitivity,
en
+ 1(en + 2(x) + k) >
en + 1(en + 2(x))
= en + 2(x
+ 1).