
A Message-Passing Interpretation of Adjoint Logic

Klaas Pruiksmaa,∗, Frank Pfenninga

aComputer Science Department, Carnegie Mellon University. 5000 Forbes Ave., Pittsburgh, PA 15213, United States

Abstract

We present a system of session types based on adjoint logic which generalizes standard binary session types.
Our system allows us to uniformly capture several new behaviors in the space of asynchronous message-
passing communication, including multicast, where a process sends a single message to multiple clients,
replicable services, which have multiple clients and replicate themselves on-demand to handle requests from
those clients, and cancellation, where a process discards a channel without communicating along it. We
provide session fidelity and deadlock-freedom results for this system, from which we then derive a logically
justified form of garbage collection.

1. Introduction

Binary session types [1] were designed to specify communication protocols between two processes along
a single private channel between them. As the parties proceed through the protocol with complementary
send/receive actions, the type of the channel evolves accordingly. At first, it may seem that this prohibits the
interpretation of types as propositions of a logic, but with careful bookkeeping we can exploit the use-once
semantics of linear logic to capture this behavior exactly [2]. Proofs in the linear sequent calculus then
correspond to processes, and synchronous communication to cut reduction steps. Under this interpretation,
the exponential modality !A of linear logic corresponds a replicable service, its proofs to replication !P in
the π-calculus. It thereby extends the strict binary nature of channels because there may be multiple clients
for a channel providing a replicable service.

In this paper we reformulate and extend these correspondences between session types and logic to uni-
formly capture additional mechanisms of communication: asynchronous communication, cancellation, and
multicast. For asynchronous communication [3], we exploit earlier observations on use-once and continuation
channels [4, 5]. We accomplish this by a reformulation of the sequent calculus in semi-axiomatic form [6].
A second extension is cancellation, which arises when we consider session types (and the corresponding
propositions) to be affine rather than linear [7, 8, 9, 10]. Logically, affine hypotheses may be used at most
once. To allow both linear and affine types at the programmer’s discretion [11], we move from linear logic to
adjoint logic [12, 13, 14] (and from linear types to adjoint types) which supports the modular combination
of several logics with varying structural properties. The generalization to adjoint types enables our third
generalization: A single message may be sent to multiple recipients in a multicast. To our knowledge, this
has not been previously considered in conjunction with static typing of communication protocols.

Our main contribution, then, is a single uniform type system corresponding to a single uniform logic, in
which all of the mentioned patterns of message-passing communication (asynchronous communication, can-
cellation, multicast, and replicable services) emerge straightforwardly and coexist harmoniously. Naturally,
our system includes the usual binary session types, and even synchronous communication can be expressed
easily, both operationally and logically [11] (which stands in contrast to the untyped setting [15]). We prove
the standard properties of session fidelity (well-typed processes will adhere to the specified communication
protocols) and deadlock freedom (well-typed configurations of communicating processes will not “get stuck”).

∗Corresponding author

Preprint submitted to Elsevier July 20, 2021

As a secondary contribution we show that the substructural nature of adjoint logic together with our
specific form of cancellation eliminates the need for distributed garbage collection.

We now briefly motivate the various patterns and choices made in our approach.
Asynchronous communication seems like the right primitive for three reasons: (1) it is consistent with

message-passing implementations in actual distributed systems, (2) synchronous communication is easily
modeled by acknowledgments specified via logical modalities (“double shifts”) [11], and (3) its meaning
extends immediately to patterns such as cancellation or multicast for which synchronous communication
may not be easily defined or understood.

Examples for replicable services abound, including web servers, service-oriented architectures, or mi-
croservices. Cancellation also arises frequently, often in tandem with exceptions [7, 8, 9, 10]. Their combi-
nation allows the programmer to choose between services they expect must be used and those that might not
be used and obtain suitable static error messages if these patterns are violated. Studies of message-passing
concurrency in real-world Go programs [16] suggest that some errors could be detected in our expressive
type system.

Multicast arises in circuits and pipelines where the output of one node (modelled as a process) is used as
input to several others. It also can be used as a proxy for broadcast if the set of recipients is known, which
is the case in many distributed algorithm, for example, for leader election or consensus.

We begin with an overview of adjoint logic (Section 2), which we revise in Section 3 to a form that is
better suited to our operational semantics. We then present our type system and the syntax of our language
(Section 4) before providing our first major contribution: the operational semantics for the language (Sec-
tion 5). Our semantics models a variety of asynchronous communication behaviors, uniformly generalizing
several previous systems. We provide some examples entirely within our system that demonstrate several of
these patterns, and then in Section 6, we step outside of the system, adding recursion in order to write some
more computationally complex examples. Finally, we present our results on session fidelity and deadlock-
freedom, as well as freedom from the need for garbage collection, which follows as a corollary (Section 7).
1

2. Adjoint Logic

We present here a brief overview of the formulation of adjoint logic [12, 14], that we take as a basis for
the semantics presented in Section 4. The reader uninterested in details of logic may wish to jump forward
to that section.

Adjoint logic is a schema to define particular logics. The schema is parameterized by three data:

1. A set M of modes of truth m, which are used to index propositions and logical connectives.

2. A map σ :M→ P({W,C}) assigning to each mode a set of structural properties, where W stands for
weakening and C stands for contraction. Here, we always allow exchange as a concession to simplicity
of the presentation.

3. A preorder ≥ onM, where m ≥ k expresses that the proof of a proposition of mode k may depend on
a hypothesis of mode m. In addition, we require the preorder between modes to be compatible with
their structural properties: that is, m ≥ k implies σ(m) ⊇ σ(k). This is necessary to guarantee cut
elimination for the resulting logic.

In addition, we sometimes consider subsets of the available connectives to obtain a fragment of the logic (as,
for example, [11]).

The preorder embodies a key property of adjoint logic, the declaration of independence:

1This paper is an extended and revised version of a contribution presented at the Workshop on Programming Language
Approaches to Concurrency and Communication-Centric Software (PLACES 2019) [17]. It provides further examples, more
discussion of properties of the shift modalities, more details on garbage collection, and additional discussion of related work.
Additionally, this paper contains material that was relegated to the appendix of the previous version.

2

(x : Am) ` Am
id

Ψ ≥ m ≥ k Ψ ` Am (x : Am) Ψ′ ` Ck

Ψ Ψ′ ` Ck
cut

W ∈ σ(m) Ψ ` Ck

Ψ (x : Am) ` Ck
weaken

C ∈ σ(m) Ψ (y : Am) (z : Am) ` Ck

Ψ (x : Am) ` Ck
contract

` ∈ I Ψ ` A`
m

Ψ ` ⊕
i∈I

Ai
m

⊕R`

Ψ (y : Ai
m) ` Ck for each i ∈ I

Ψ (x : ⊕
i∈I

Ai
m) ` Ck

⊕L

Ψ ` Ai
m for each i ∈ I

Ψ ` N
i∈I

Ai
m

NR
` ∈ I Ψ (y : A`

m) ` Ck

Ψ (x : N
i∈I

Ai
m) ` Ck

NL`

Ψ ` Am Ψ′ ` Bm

Ψ Ψ′ ` Am ⊗Bm
⊗R

Ψ (y : Am) (z : Bm) ` Ck

Ψ (x : Am ⊗Bm) ` Ck
⊗L · ` 1m

1R
Ψ ` Ck

Ψ (x : 1m) ` Ck
1L

Ψ (x : Am) ` Bm

Ψ ` Am(Bm
(R

Ψ′ ≥ m Ψ′ ` Am Ψ (y : Bm) ` Ck

Ψ Ψ′ (x : Am(Bm) ` Ck
(L

Ψ ` Ak

Ψ ` ↑mk Ak
↑R

k ≥ ` Ψ (y : Ak) ` C`

Ψ (x : ↑mk Ak) ` C`
↑L Ψ ≥ m Ψ ` Am

Ψ ` ↓mk Am
↓R

Ψ (y : Am) ` C`

Ψ (x : ↓mk Am) ` C`
↓L

Figure 1: Rules of Adjoint Logic

A proof of Ak may only depend on hypotheses Bm for m ≥ k.

We emphasize independence here (rather than the allowable dependence on Bm for m ≥ k) because while a
proof may depend on some Bm, it must not depend on any B` where ` 6≥ k.

Sequents in adjoint logic have the form:

Ψ ` Ak where Ψ ≥ k

where Ψ is a collection of antecedents of the form (xi : Bi
mi

) with each mi ≥ k, where all the variables xi are
distinct. The critical presupposition that each mi ≥ k (a restatement of the declaration of independence)
is abbreviated as Ψ ≥ k. Furthermore, the order of the antecedents does not matter since we always allow
exchange. We label the antecedents with variables so we can track the fine structure of proofs, which will
be important for our operational semantics in Section 5.

At this point we can already write out the syntax of propositions:

Am, Bm ::= pm | Am(m Bm | Am ⊗m Bm | 1m | ⊕m
i∈I

Ai
m | Nm

i∈I
Ai

m | ↑
m
k Ak | ↓`mA`

Here pm stands for atomic propositions at mode m. Most of the connectives are those of intuitionistic linear
logic, annotated with modes. Due to the needs of our operational interpretation, we generalize internal and
external choice to n-ary constructors parameterized by a finite index set I, recovering the binary choice with
I = {π1, π2}.

Adjoint logic adds two modal operators (shifts) to the linear connectives. They are ↑mk Ak (pronounced
up), which is a proposition at mode m and requires m ≥ k; and ↓`mA` (down), which is also a proposition
at mode m, and which requires ` ≥ m. Note that these connectives are the only ones that move between
modes — all other connectives operate entirely within a single mode m.

Remarkably, the right and left rules in the sequent calculus defining the logical connectives are the same
for each mode and are complemented by the permissible structural rules.

2.1. Judgmental and structural rules

The rules for adjoint logic can be found in Figure 1, in a standard sequent calculus form with explicit
rules of weakening and contraction. When we come to the operational semantics (Section 4), we will use a

3

slightly different formulation (briefly discussed in Section 3).
We begin with the judgmental rules of identity and cut, which express the connection between antecedents

and succedents. Identity says that if we assume Am we are allowed to conclude Am. Cut says the opposite:
if we can conclude Am we are allowed to assume Am as long as the declaration of independence is respected.

As is common for the sequent calculus, we read the rules in the direction of bottom-up proof construction.
For the cut rule, this means we should assume that the conclusion Ψ Ψ′ ` Ck is well-formed and, in
particular, that Ψ ≥ k and Ψ′ ≥ k. Therefore, if we check that m ≥ k, then we know that the second
premise, (x : Am) Ψ′ ` Ck, will also be well-formed. For the first premise to be well-formed, we need to
check outright that Ψ ≥ m.

The structural rules of weakening and contraction just need to verify that the mode of the principal
formula permits the rule.

2.2. Additive and multiplicative connectives

The logical rules defining the additive and multiplicative connectives are simply the linear rules for all
modes, since we have separated out the structural rules. Except in one case, (L, the well-formedness of
the conclusion implies the well-formedness of all premises.

As for (L, we know from the well-formedness of the conclusion that Ψ ≥ k, Ψ′ ≥ k, and m ≥ k. These
facts by themselves already imply the well-formedness of the second premise, but we need to check that
Ψ′ ≥ m in order for the first premise to be well-formed.

2.3. Shifts

The shifts represent the most interesting aspects of the rules. Recall that in ↑mk Ak and ↓`mA` we require
that m ≥ k and ` ≥ m. We first consider the two rules for ↑. We know from the conclusion of the right
rule that Ψ ≥ m and from the requirement of the shift that m ≥ k. Therefore, as ≥ is transitive, Ψ ≥ k
and the premise is always well-formed. This also means (although we do not prove it here) that this rule is
invertible.

From the conclusion of the left rule, we know Ψ ≥ `, m ≥ `, and m ≥ k. This does not imply that
k ≥ `, which we need for the premise to be well-formed and thus needs to be checked. Therefore, this rule
is non-invertible.

The downshift rules are constructed analogously, taking only the declaration of independence and prop-
erties of the preorder ≥ as guidance. Note that in this case the left rule is invertible, while the right rule is
not.

A simple but important property of the shifts is that they are well-behaved with respect to the preorder
— in particular, we have the following reflexivity and transitivity properties (using the notation a` for
interprovability):

↑kkAk a` Ak ↑`m↑
m
k Ak a` ↑`kAk

↓kkAk a` Ak ↓mk ↓
`
mA` a` ↓`kA`

Using these properties, we are able to combine any sequence of up-shifts into either a single shift or no shifts
(from a purely logical perspective), and similarly for down-shifts. Note, however, that we cannot combine
up-shifts with down-shifts — sequences of up and down can yield modalities that are not captured by just
a single shift.

2.4. Multicut

Because we have an explicit rule of contraction, cut elimination does not follow by a simple structural
induction. However, we can follow Gentzen [18] and allow multiple copies of the same proposition to be
removed by the cut, which then allows a structural induction argument. In anticipation of the operational
interpretation, we have labeled our antecedents with unique variables, so the generalized form of cut called
multicut (see, for example, [19]) can remove n ≥ 0 copies. Of course, such cuts are only legal if the

4

propositions that are removed satisfy the necessary structural rules. For n = 0, we require that the mode
m support weakening.

Ψ ≥ m ≥ k W ∈ σ(m) Ψ ` Am Ψ′ ` Ck

Ψ Ψ′ ` Ck
cut({})

Observe that since Ψ ≥ m and W ∈ σ(m), each antecedent in Ψ must also admit weakening.
For n = 1, we obtain the usual cut rule and no special requirements are needed.

Ψ ≥ m ≥ k Ψ ` Am (x : Am) Ψ′ ` Ck

Ψ Ψ′ ` Ck
cut({x})

For n ≥ 2, the mode of the cut formula must admit contraction.

Ψ ≥ m ≥ k C ∈ σ(m) Ψ ` Am (S ∪ {x, y} : Am) Ψ′ ` Ck

Ψ Ψ′ ` Ck
cut(S ∪ {x, y})

Here, we have used the abbreviation ({x1, . . . , xn} : Am) to stand for (x1 : Am) . . . (xn : Am).
Note that each of these rules has a side condition that can be interpreted informally as stating that the

number of antecedents cut must be compatible with the mode m: if there are no antecedents removed, m
must admit weakening, and if we remove two or more, m must admit contraction. To formulate multicut as
a single rule, we define the multiplicities of m (µ(m) ⊆ N)

µ(m) = {n | (n = 0 ∧W ∈ σ(m)) ∨ n = 1 ∨ (n ≥ 2 ∧ C ∈ σ(m))}

and summarize
Ψ ≥ m ≥ k |S| ∈ µ(m) Ψ ` Am (S : Am) Ψ′ ` Ck

Ψ Ψ′ ` Ck
cut(S)

Note that the standard cut rule is the instance of the multicut rule where |S| = 1, and so proving multicut
elimination for adjoint logic also yields cut elimination for the standard cut rule.

2.5. Identity Expansion and Cut Elimination

We present standard identity expansion and cut elimination results as evidence for the correctness of
the sequent calculus as capturing the meaning of the logical connectives via their inference rules. Cut-
free proofs will always decompose propositions when read from conclusion to premise and thus yield a
conservative extension result. Finally, the fine detail of the proof is significant because the cut reductions,
which constitute the essence of the proof, are the basis for the operational semantics.

Theorem 1 (Identity Expansion). If Ψ ` Am, then there exists a proof that Ψ ` Am using identity rules
only at atomic propositions, which is cut-free if the original proof is.

Proof. We begin by proving that for any formula Am, there is a cut-free proof that (x : Am) ` Am using
identity rules only at atomic propositions. This follows easily from an induction on Am.

Now, we arrive at the theorem by induction over the structure of the given proof that Ψ ` Am.

Theorem 2 (Cut Elimination). If Ψ ` Am, then there is a cut-free proof of Ψ ` Am.

Proof. This proof follows the structure of many cut-elimination results. First we prove admissibility of
multicut in the cut-free system. This is established by a straightforward nested induction, first on the
proposition Am and then simultaneously on the structure of the deductions D and E . This is followed
by a simple structural induction to prove cut elimination, using the admissibility of (multi)cut when it is
encountered. If we ignore the modes, this proof is very similar to the original proof of Gentzen [18].

Corollary 1. Adjoint logic is a conservative extension of each of the logics at a fixed mode. That is, if
Ψ ` Am is a sequent purely at mode m (in that every type in Ψ is at mode m and neither Am nor the types
in Ψ make use of shifts), then Ψ ` Am is provable using the rules of adjoint logic iff it is provable using the
rules which define the logic at mode m.

5

2.6. Adjunction properties

As yet, we have not discussed the meaning of the name “adjoint logic”. This can be justified by showing
that for fixed k ≤ m, ↓mk and ↑mk yield an adjoint pair of functors ↓mk a ↑

m
k . Since prior results (see [20] and

[21]) already establish this property and we have little new to contribute here, we omit the details.

3. The Semi-Axiomatic Sequent Calculus

As has been observed before, intuitionistic and classical linear logics can be put into a Curry–Howard
correspondence with session-typed communicating processes [2, 22, 23]. A linear logical proposition corre-
sponds to a session type, and a sequent proof to a process expression. The transition rules of the operational
semantics derive from the cut reductions.

For the moment, we restrict ourselves to a single mode L with no structural properties (σ(L) = { }).
Each proposition in this instance of adjoint logic corresponds to a binary session type, where a proof of the
sequent2

(x1 : A1
L) · · · (xn : An

L) ` (x : AL)

corresponds to a process P that provides channel x and uses channels xi. The types of the channels
prescribe the pattern of communication: in the succedent, positive types (⊕,⊗,1) will send and negative
types (N,() will receive. In the antecedent, the roles are reversed. Cut corresponds to parallel composition
of two processes, with a private channel between them, while identity equates two channels.

3.1. Enforcing Asynchronous Communication

Under this interpretation, a cut of a right rule against a matching left rule allows computation to proceed
by mimicking the cut reduction from the proof of Theorem 2. For example, a cut at type ⊕

i∈I
Ai

L is replaced

by a cut at type A`
L for some ` ∈ I. This corresponds to passing a message (‘`’) from the process providing

x : ⊕
i∈I

Ai
L to the process using x. By its very nature, this form of cut reduction is synchronous: both provider

and client proceed simultaneously because the channel x : A` connects the two process continuations.
For realistic languages, and also for the paradigm to smoothly extend to the case of adjoint logic where

some modes permit weakening and contraction, we would like to prescribe asynchronous communication
instead.

We observe that the asynchronous π-calculus replaces the usual action prefix for output x〈y〉.P by a
process expression x〈y〉 without a continuation, thereby ensuring that communication is asynchronous. Such
a process represents the message y sent along channel x. Under our interpretation, the continuation process
corresponds to the proof of the premise of a rule. Therefore, if we can restructure the sequent calculus so
that the rules that send (⊕R, 1R, ⊗R, ↓R, NL,(L, ↑L) have zero premises, then we may achieve a similar
effect.

As an example, we consider the two right rules for ⊕. Reformulated as axioms (and omitting variables,
for brevity), they become

A ` A⊕B ⊕R
0
1 B ` A⊕B ⊕R

0
2

In the presence of cut, these two rules together produce the same theorems as the usual two right rules. In
one direction, we use cut

∆ ` A A ` A⊕B ⊕R
0
1

∆ ` A⊕B
cutA

∆ ` B B ` A⊕B ⊕R
0
2

∆ ` A⊕B
cutB

and in the other direction we use identity

A ` A idA

A ` A⊕B ⊕R1
B ` B idB

B ` A⊕B ⊕R2

2also labeling the succedent with a fresh variable

6

to derive the other rules.
Returning to the π-calculus, instead of explicitly sending a message a〈b〉. P we spawn a new process in

parallel a〈b〉 | P . This use of parallel composition corresponds to a cut; receiving a message is achieved by
cut reduction:

A ` A⊕B ⊕R
0
1

Q1

∆′, A ` C
Q2

∆′, B ` C
∆′, A⊕B ` C ⊕L

∆′, A ` C
cutA⊕B

=⇒
Q1

∆′, A ` C

We see the cut reduction completely eliminates the cut in one step, which corresponds precisely to receiving
a message. In this example the message would be π1 since the axiom ⊕R0

1 was used; for ⊕R0
2 it would be

π2.
In summary, if we restructure the sequent calculus so that the non-invertible rules (those that send)

have zero premises, then (1) messages are proofs of axioms, (2) message sends are modeled by cut, and (3)
message receives are a new form of cut reduction with a single continuation. For reference, the rules are
those in Figure 2 ignoring the process expressions given in red.

In the process we give something up, namely the traditional cut elimination theorem. For example, the
sequent · ` 1⊕1 has no cut-free proof since no rule except cut matches this conclusion. Fortunately, we can
still prove an analogue of cut elimination in which all remaining cuts (called snips) satisfy the subformula
property. This has been explored in some depth by DeYoung and the authors [6] in a calculus called Sax
for (nonlinear) intuitionistic logic. We believe these properties generalize to the setting of adjoint logic, but
we do not explore it further here.

Perhaps more importantly, we have session fidelity and deadlock freedom (Section 7) for the corresponding
process calculus even in the presence of recursive types and processes, which is ultimately what we care about
for the resulting concurrent programming language.

3.2. Eliminating Weakening and Contraction

We have introduced multicut entirely with the standard motivation of providing a simple proof of the
admissibility of cut using structural induction. Surprisingly, we can streamline the system further by using
multicut to eliminate weakening and contraction from the logic altogether, which will be convenient when
we look to use the logic as a type system (Figure 2).

Consider a mode m with C ∈ σ(m). Then contraction is a simple instance of multicut with an instance
of the identity rule.

(x : Am) ` Am
id

Ψ (y : Am) (z : Am) ` Ck

Ψ (x : Am) ` Ck
cut({y, z})

Similarly, for a mode m with W ∈ σ(m), weakening is also an instance of multicut.

(x : Am) ` Am
id

Ψ ` Ck

Ψ (x : Am) ` Ck
cut({})

Cut reductions in the presence of contraction entail many residual contractions, as is evident already from
Gentzen’s original proof. Under our interpretation of contraction above, these residual contractions simply
become multicuts with the identity. The operational interpretation of identities then plays three related
roles: with one client, an identity achieves a renaming, redirecting communication; with two or more clients,
an identity implements copying; with zero clients, its effect is cancellation. The central role of identities
can be seen in full detail in Figure 3, once we have introduced our notation for processes and process
configurations.

7

4. Language and Typing

We now introduce our language of process expressions, typed with propositions from adjoint logic as
explained in Section 2 and adapted to asynchronous communication in Section 3. We review some of the
basic logical components from the viewpoint of types so that this section is more self-contained.

Our typing judgment for processes P is based on intuitionistic sequents of the form

(x1 : A1) · · · (xn : An) ` P :: (x : A)

where each of the xi are channels that P uses and x is a channel that P provides. All of these channels
must be distinct and we abbreviate the collection of antecedents as Ψ. The session types Ai and A specify
the communication behavior that the process P must follow along each of the channels.

Such sequents are standard for the intuitionistic approach to understanding binary session types (e.g., [2])
where the channels are linear in that every channel in a network of processes has exactly one provider and
exactly one client. In the closely related formulation based on classical linear logic [22] all channels are on
the right-hand side of the turnstile, but each linear channel still has exactly two endpoints.

We generalize this significantly by assigning to each channel an intrinsic mode m (see Section 2). Each
mode m is assigned a set of structural properties σ(m) among W (for weakening) and C (for contraction).
Separating m from σ(m) allows us to have multiple modes with the same set of structural properties.3 No
matter which structural properties are available for a channel, each active channel will still have exactly
one provider. Beyond that, a channel xm with W ∈ σ(m) may not have any clients and a channel xm with
C ∈ σ(m) may have multiple clients. All other properties of our system of session types for processes derive
systematically from these simple principles.

The modes are organized into a preorder where m ≥ k requires that σ(m) ⊇ σ(k), that is, m must allow
more structural properties than k. In order to guarantee session fidelity and deadlock freedom, for any
sequent Ψ ` P :: (xk : Ak) it must be the case that for every ym : Bm ∈ Ψ we have m ≥ k. For example,
if k permits contraction and therefore P may have multiple clients, then for any ym in Ψ, mode m must
also permit contraction because (intuitively) if xk is referenced multiple times then, indirectly, so is ym. If
m ≥ k then this is ensured. We express this with the presupposition that

Ψ ` P :: (xk : Ak) requires Ψ ≥ k

where Ψ ≥ k simply means m ≥ k for every ym : Am ∈ Ψ. We will only consider sequents satisfying this
presupposition, so our rules, when they are used to break down a conclusion into the premises, must preserve
this fundamental property which we call the declaration of independence.

In our formulation, channels xm as well as types Am are endowed with modes which must always be
consistent between a channel and its type (xm : Am). We therefore often omit redundant mode annotations
on channels.

The complete set of rules for the typing judgment are given in Figure 2, and we informally describe the
meanings of process expressions in Table 1. When we ignore the process expressions we obtain the sequent
calculus for adjoint logic in its semi-axiomatic presentation (see Section 3). We first examine the judgmental
rules that explain the meaning of identity and composition. Identity (rule id) is straightforward: a process
c ← a providing c defers to the provider of a, which is possible as long as a and c have the same type and
mode. This is usually called forwarding or identification of the channels a and c.

The usual logical rule of cut corresponds to the parallel composition of two processes with a single
private channel for communication between them. However, ordinary cut is insufficiently general to describe
the situation where a single provider of a channel xm may have multiple clients (C ∈ σ(m)) or no clients
(W ∈ σ(m)). We therefore generalize it to a form of multicut4, where the channel xm provided by P is

3This allows us, for example, to model the modal logic S4 or lax logic (the logical origins of comonadic and monadic pro-
gramming), each with two modes both satisfying weakening and contraction, as well as linear analogues of these constructions.

4The term “multicut” has been used in the literature for different rules. We follow here the proof theory literature [19,
Section 5.1], where it refers to a rule that cuts out some number of copies of the same proposition A, as in Gentzen’s original
proof of cut elimination [18], where he calls it “Mischung”.

8

(a : Am) ` c← a :: (c : Am)
id

Ψ ≥ m ≥ k |S| ∈ µ(m) Ψ ` P :: (x : Am) (S : Am) Ψ′ ` Q :: (c : Ck)

Ψ Ψ′ ` S ← (νx)P ;Q :: (c : Ck)
cut(S)

` ∈ I
(a : A`

m) ` c.`(a) :: (c : ⊕
i∈I

Ai
m)
⊕R0

`

Ψ (xi : Ai
m) ` Pi :: (c : Ck) for each i ∈ I

Ψ (a : ⊕
i∈I

Ai
m) ` case a (i(xi)⇒ Pi)i∈I :: (c : Ck)

⊕L

Ψ ` Pi :: (xi : Ai
m) for each i ∈ I

Ψ ` case c (i(xi)⇒ Pi)i∈I :: (c : N
i∈I

Aj
m)

NR
` ∈ I

(a : N
i∈I

Ai
m) ` a.`(c) :: (c : A`

m)
NL0

`

(a : Am) (b : Bm) ` c.〈a, b〉 :: (c : Am ⊗Bm)
⊗R0

Ψ (x : Am) (y : Bm) ` P :: (c : Ck)

Ψ (a : Am ⊗Bm) ` case a (〈x, y〉 ⇒ P) :: (c : Ck)
⊗L

· ` c.〈〉 :: (c : 1m)
1R

Ψ ` P :: (c : Ck)

Ψ (a : 1m) ` case a (〈〉 ⇒ P) :: (c : Ck)
1L

Ψ (x : Am) ` P :: (y : Bm)

Ψ ` case c (〈x, y〉 ⇒ P) :: (c : Am (Bm)
(R

(a : Am) (c : Am (Bm) ` c.〈a, b〉 :: (b : Bm)
(L0

Ψ ` P :: (x : Ak)

Ψ ` case c (shift(x)⇒ P) :: (c : ↑mk Ak)
↑R

(a : ↑mk Ak) ` a.shift(c) :: (c : Ak)
↑L0

(a : Am) ` c.shift(a) :: (c : ↓mk Am)
↓R0

Ψ (x : Am) ` P :: (c : C`)

Ψ (a : ↓mk Am) ` case a (shift(x)⇒ P) :: (c : C`)
↓L

Figure 2: Process Assignment for Adjoint Logic in Semi-Axiomatic Form

known by multiple aliases in the set of channels S in Q as long as the multiplicity of the aliases is permitted
by the mode. This is expressed as |S| ∈ µ(m) as defined in Section 2. Briefly, 0 ∈ µ(m) if m admits
weakening, 1 ∈ µ(m) (always), and i ∈ µ(m) for i ≥ 2 if m admits contraction. When processes execute we
will have an even more general situation where one provider has multiple separate client processes, which is
captured in the typing judgment for process configurations (Section 5).

Next we come to the various session types. From the logical perspective, these are the propositions of
adjoint logic.

Am, Bm ::= pm | Am(m Bm | Am ⊗m Bm | 1m | ⊕m
i∈I

Ai
m | Nm

i∈I
Ai

m | ↑
m
k Ak | ↓`mA`

Here, pm stands for atomic propositions at mode m. The other connectives, besides the shifts ↑mk and ↓`m,
are standard linear logic connectives, except that they are only allowed to combine types (propositions) at
the same mode. Since the mode of a connective can be inferred from the modes of the types it connects
(other than for shifts), we omit subscripts on connectives. Note also that N and ⊕ have been generalized
to n-ary forms from the usual binary forms, which is convenient for programming. We will use a label set
I = {π1, π2} when working with the binary forms Am N Bm and Am ⊕ Bm, where π1 selects the left-hand
type and π2 selects the right-hand type (see, for instance, Example 2). The operational meaning of these
connectives (discussed further in Section 5) is largely similar to that in past work (e.g., [2]), with (m and
⊗m sending channels along other channels, 1m sending an end-of-communication message, and ⊕m and Nm

sending labels.
The shifts send a simple shift message to signal a transition between modes, either up (↑mk) from k to

some m ≥ k or down (↓`m) from ` to some m ≤ `. From the perspective of the provider, an up shift then
corresponds to a suspension (or quotation) of its continuation, while the shift message from the client forces
(or evaluates) it. The restriction of the structural properties of the modes prohibit a process of mode k
(that is, providing a channel ck : Ak) to be evaluated inside a process of mode m. This is important for
the soundness of the operational semantics. For example, assume we have affine and linear modes, F and
L, respectively (so that F > L, σ(F) = {W}, and σ(L) = { }). Then an affine process P may be cancelled

9

Process term Meaning

a← c Identify channels a and c.
S ← (νx)P ; Q Spawn a new process P providing channel x with

aliases S to be used by Q. Here, x is the internal
name in P for the channel offered by P , and S is
the set of external names of the same channel as
used in Q.

c.`(a) Send the label ` and the channel a along c.
case c (i(xi)⇒ Pi)i∈I Receive a label i and a channel xi from c, continue

as Pi.

c.〈a, b〉 Send the channels a and b along c.
case c (〈x, y〉 ⇒ P) Receive channels x and y from c to be used in P .

c.〈〉 End communication over c by sending a terminal
message.

case c (〈〉 ⇒ P) Wait for c to be closed, continue as P .

cm.shift(ak) Send a shift, from mode m to mode k
case cm (shift(xk)⇒ P) Receive a shift from mode m to mode k

Table 1: Informal Meanings of Process Terms

(by its only client) while a linear process Q may not. But if Q were allowed to execute, providing a linear
channel used by P , then the cancellation of P would (implicitly or explicitly) also cancel Q, thereby violating
linearity. In combination, the shifts model comonads (2A = ↓↑A) and strong monads (3A = ↑↓A), with
specific meanings depending on the modes involved.

Remarkably, the operational meaning of all connectives is again uniform, independent of the mode and
the structural properties it may admit. For example, sending a label along a linear or affine channel with
two endpoints is the same as a multicast. The differences are concentrated in the rules of identity and cut,
as explained in more detail in Section 5.

In general, our process syntax represents an intermediate point between a programmer-friendly syntax
and a notation in which it is easy to describe the operational semantics and prove progress and preservation.
When compared to, for instance, SILL [24], the main revisions are that (1) we make channel continuations
explicit in order to facilitate asynchronous communication while preserving message order [5], and (2) we
distinguish between an internal name for the channel provided by a process and external names connecting
it to multiple clients.

We close the section with some small examples with their types; additional examples which highlight
more interesting behavior can be found in Section 6.

First, we have process that witnesses that ⊗m is commutative at an arbitrary mode.

Example 1. At any mode m,

(x : Am ⊗Bm) ` case x (〈y, x′〉 ⇒ z.〈x′, y〉) :: (z : Bm ⊗Am)

The following process exemplifies how messages are represented by small processes (y.π2(w) and (y.π1(w)),
and how the intuitive operation of sending a message corresponds to a cut.

Example 2. At any mode m,

(x : Am ⊕Bm) (y : Am NBm) ` P :: (z : Am ⊕Bm)

P , case x (π1(x′)⇒ {y′} ← (νw) y.π2(w);
z.〈x′, y′〉

|π2(x′)⇒ {y′} ← (νw) y.π1(w);

10

z.〈y′, x′〉
)

Our next few examples highlight the differences between modes. The following process witnesses that
Am NBm proves Am ⊗Bm in the presence of contraction. ‘%’ starts a comment.

Example 3. For any mode m admitting contraction (i.e., C ∈ σ(m)),

(p : Am NBm) ` P :: (z : Am ⊗Bm)

P , {p1, p2} ← (νq) (q ← p); % {p1, p2} ← copy p
x← (νa) p1.π1(a);
y ← (νb) p2.π2(b);
z.〈x, y〉

The converse entailment holds in the presence of weakening.

Example 4. For any mode m admitting weakening (i.e., W ∈ σ(m)),

(x : Am ⊗Bm) ` P :: (p : Am NBm)

P , case p (π1(p1)⇒ case x (〈y, z〉 ⇒
{ } ← (νa) (a← z); % drop z
p1 ← y)

|π2(p2)⇒ case x (〈y, z〉 ⇒
{ } ← (νa) (a← y); % drop y
p2 ← z))

Examples 3 and 4 show that we can copy and drop propositions provided that their modes allow it.
Moreover, we can write processes which can copy and drop shifted propositions (e.g. ↓mk ↑

m
k Ak) as well,

provided only that mode m allows it. In particular, we do not need any condition on the mode k. We can
therefore use the shifts to allow a proposition at mode k to behave in some ways like one at mode m. We
can use this to model the exponential modality !A of linear logic with two modes, U with σ(U) = {W,C}
and L with σ(L) = { } and U > L. Then !A corresponds to ↓UL↑

U

LAL, which means that two messages
will be exchanged when moving between shared and linear channels. The direct treatment of !A in prior
work [2, 22, 23] is less elegant because it is the only connective requiring two messages in a somewhat
asymmetric fashion.

As an example, a considerable generalization of the linear logic equivalence !(A N B) a` (!A) ⊗ (!B) is
then expressed by the following two properties.

• If k ≤ m and m admits contraction, then, whether k admits contraction or not,

↓mk ↑
m
k (Ak NBk) ` (↓mk ↑

m
k Ak)⊗k (↓mk ↑

m
k Bk)

• If k ≤ m and m admits weakening, then, whether k admits weakening or not,

(↓mk ↑
m
k Ak)⊗k (↓mk ↑

m
k Bk) ` ↓mk ↑

m
k (Ak NBk)

We will not show these processes explicitly, as they are similar in their overall structure to the previous
examples, but require a significant amount of bookkeeping to handle the shifts.

Throughout our next series of examples, we will use comments after (almost) each line of a process to
describe the channels (and their session types) that are in scope at that point in the program. We omit
these comments after lines which terminate computation, as after these lines, there are no channels left in
scope.

The following process witnesses that down shifts distribute over implication.

Example 5. For modes k ≤ m with arbitrary structural properties,

11

(f : ↓mk (Am(m Bm)) ` P :: (g : ↓mk Am(k ↓mk Bm)

P , case g (〈x, y〉 ⇒ % (f : ↓mk (Am(m Bm)), (x : ↓mk Am) ` (y : ↓mk Bm)
case f (shift(w)⇒ % (w : Am(m Bm), (x : ↓mk Am) ` (y : ↓mk Bm)
case x (shift(v)⇒ % (w : Am(m Bm), (v : Am) ` (y : ↓mk Bm)
{z} ← (νz) y.shift(z); % (w : Am(m Bm), (v : Am) ` (z : Bm)
w.〈v, z〉))

A very similar process shows that upwards shifts distribute over implication. However, we omit this
processes here, only showing the sequent which it witnesses, due to this similarity:

(f : ↑mk (Ak (k Bk)) ` (g : ↑mk Ak (m ↑mk Bk)

In fact, every well-formed sequence of shifts distributes over implication. We make this precise with the
following theorem:

Theorem 3. Suppose we are given modes k and m, and that mmk is a sequence of shifts from k to m:

mmk Ak ::= mm` ↑
`
k Ak | mm` ↓

k
` Ak | Ak

where the last case is only permitted if k = m.
Then, for any Ak, Bk, mmk (Ak (k Bk) ` (mmk Ak)(m (mmk Bk).

This theorem follows from a simple induction over the structure of mmk . The resulting process looks
much like the example shown, except that each additional shift adds three communication steps between
the initial case and the final send, and the precise nature of those steps depends on whether the shift is an
up shift or a down shift.

The final example highlights the symmetry between N and ⊕ from the intuitionistic perspective. We will
revisit this later example in Section 5, where we will discuss the computation that these examples perform.
We provide witnesses that (x : (Am ⊕Bm)(Cm) a` (y : (Am(Cm) N (Bm(Cm)).

Example 6. For any mode m,

(x : (Am ⊕Bm)(Cm) ` P :: (y : (Am(Cm) N (Bm(Cm))

P , case y (π1(ac)⇒ % (x : (Am ⊕Bm)(Cm) ` (ac : Am ⊕ Cm)
case ac (〈a, c〉 ⇒ % (x : (Am ⊕Bm)(Cm), (a : Am) ` (c : Cm)
{ab} ← (νab)ab.π1(a); % (x : (Am ⊕Bm)(Cm), (ab : Am ⊕Bm) ` (c : Cm)
x.〈ab, c〉)
| π2(bc)⇒ % (x : (Am ⊕Bm)(Cm) ` (bc : Bm(Cm)
{ab} ← (νab)ab.π2(b); % (x : (Am ⊕Bm)(Cm), (ab : Am ⊕Bm) ` (c : Cm)
x.〈ab, c〉))

And in the reverse direction:

(y : (Am(Cm) N (Bm(Cm)) ` Q :: (x : (Am ⊕Bm)(Cm)

Q , case x (〈ab, c〉 ⇒ % (y : (Am(Cm) N (Bm(Cm)), (ab : Am ⊕Bm) ` (c : Cm)
case ab (π1(a)⇒ % (y : (Am(Cm) N (Bm(Cm)), (a : Am) ` (c : Cm)

{ac} ← (νac)y.π1(ac); % (ac : (Am(Cm)), (a : Am) ` (c : Cm)
ac.〈a, c〉
| π2(b)⇒ % (y : (Am(Cm) N (Bm(Cm)), (b : Bm) ` (c : Cm)
{bc} ← (νbc)y.π2(bc); % (bc : (Bm(Cm)), (b : Am) ` (c : Cm)
bc.〈b, c〉))

12

5. Operational Semantics

In order to formally define the computational behavior of process expressions, we need to first give some
syntax for the computational artifacts, which are running processes proc(S,∆, a, P). Such a process executes
P and provides a channel a while using the channels in the set ∆. S is a set of aliases for the channel a,
which can be referred to by one or more clients. Each alias c ∈ S is used by at most one client, but one
client may use multiple such aliases. Note that as the aliases in S are the only way to interact with the
channel a from an external process, the objects proc(S,∆, a, P) and proc(S,∆, b, P [b/a]) are equivalent —
changing the internal name (here a) of a process has no effect on its interactions with other processes. We
write processes in this order for practical reasons — the process terms P are the longest part of a running
process in typical use cases, and so by placing this last in the tuple, we can both easily abbreviate process
terms and easily see the first three elements of a tuple, even when P is very long.5

A process configuration is a multiset of processes:

C ::= proc(S,∆, a, P) | (·) | C C′

where we require that all the aliases or names provided by the processes proc(S,∆, a, P) are distinct, i.e.,
given two objects proc(S,∆1, a, P) and proc(T,∆2, b, Q) in the same process configuration, S and T are
disjoint. We will specify the operational semantics in the form of multiset rewriting rules [25]. That means
we show how to rewrite some subset of the configuration while leaving the remainder untouched. This form
provides some assurance of the locality of the rules.

It simplifies the description of the operational semantics if for any process proc(S,∆, a, P), ∆ consists
of exactly the free channels (other than a) in P . This requires that we restrict the labeled internal and
external choices, ⊕

i∈I
Ai

m and N
i∈I

Ai
m to the case where I 6= ∅. To see why, consider the following process:

Γ ` case x () :: (x : N
i∈∅

Ai
m)

This process uses all channels in Γ, while providing x, but has only x as a free channel. Similar processes
can be written using ⊕

i∈∅
Ai

m as well. Since a channel of empty choice type can never carry any messages,

this is not a significant restriction in practice.
In order to understand the rules of the operational semantics, it will be helpful to understand the typing

of configurations. The typing judgment for a configuration C has the form Ψ � C :: Ψ′ which expresses
that using the channels in Ψ, configuration C provides the channels in Ψ′. This allows a channel that is not
mentioned at all in C to appear in both Ψ and Ψ′— we think of such a channel as being “passed through”
the configuration. We define this judgment with the following rules:

|S| ∈ µ(m) Ψ′ ` P :: (a : Am)

Ψ Ψ′ � proc(S,Ψ′, a, P) :: Ψ (S : Am)
Proc

Ψ � (·) :: Ψ
Id

Ψ � C :: Ψ′ Ψ′ � C′ :: Ψ′′

Ψ � C C′ :: Ψ′′
Comp

Note that while the configuration typing rules induce an ordering on a configuration, the configuration
itself is not inherently ordered. The key rule is the Proc rule: for any object proc(S,∆, a, P) we require
that P is well-typed on some subset of the available channels while the others are passed through. Here
we write Ψ′ for the set of channels declared in Ψ′, which must be exactly those used in the typing of P .
Moreover, externally such a process provides the channels S = {a1

m, . . . , a
n
m}, all of the same type Am.

We use the abbreviation (S : Am) for a1
m : Am, . . . , a

n
m : Am. Finally, we enforce that the number of

clients must be compatible with the mode m of the offered channel, which is exactly that |S| ∈ µ(m), as
defined in Section 2.4. The identity (Id) and composition (Comp) rules are straightforward. The empty
context (·) provides Ψ if given Ψ, since it does not use any channels in Ψ or provide any additional channels.
Composition just connects configurations with compatible interfaces: what is provided by C is used by C′.

5A side benefit of placing the process term last is that when we look at a running process proc(S,∆, a, P), we first see the
interface of the process — it provides channels S and uses channels in ∆. We then see the internal name a, allowing us to read
the process term P with the full context of which channels it uses and provides (∆ and a, respectively).

13

proc(T ∪ {c},∆, x, P)
proc(S, {c}, y, y ← c)

id
=⇒ proc(T ∪ S,∆, x, P)

proc(T,∆P ∪∆Q, y, S ← (νx)P ;Q)
(S′ a fresh set of channels matching S)

cut(S)
=⇒ proc(S′,∆P , x, P)

proc(T,∆Q ∪ {S′}, y,Q[S′/S])

(P not an identity) proc({},∆, x, P)
drop
=⇒ proc({}, {b}, y, y ← b)b∈∆

proc(S ∪ T,∆, x, P)
(P not an identity and S, T non-empty)

copy
=⇒

proc({b′, b′′}, {b}, y, y ← b)b∈∆

proc(S, {b′}b∈∆, x, P [b′/b])
proc(T, {b′′}b∈∆, x, P [b′′/b])

proc({b}, {c}, x, x.`(c))
proc(S,∆ ∪ {b}, z, case b(i(yi)⇒ Pi)i∈I)

⊕ C
=⇒ proc(S,∆ ∪ {c}, z, P`[c/y`])

proc({b},∆, x, case x(i(yi)⇒ Pi)i∈I)
proc({c}, {b}, z, b.`(z))

N C
=⇒ proc({c},∆, z, P`[z/y`])

proc({b}, {c, d}, w, w.〈c, d〉)
proc(S,∆ ∪ {b}, z, case b(〈x, y〉 ⇒ P)

⊗ C
=⇒ proc(S,∆ ∪ {c, d}, z, P [c/x, d/y])

proc({b},∆, w, case w(〈x, y〉 ⇒ P)
proc({c}, {b, d}, z, b.〈d, z〉)

(C
=⇒ proc({c},∆ ∪ {d}, z, P [d/x, z/y])

proc({b}, {}, x, x.〈〉)
proc(S,∆ ∪ {b}, y, case b(〈〉 ⇒ P))

1 C
=⇒ proc(S,∆, y, P)

proc({bk}, {cm}, xk, xk.shift(cm))
proc(S,∆ ∪ {bk}, y, case bk(shift(zm)⇒ P))

↓mk C
=⇒ proc(S,∆ ∪ {cm}, y, P [cm/zm])

proc({bm},∆, xm, case xm(shift(zk)⇒ P))
proc({ck}, {bm}, yk, bm.shift(yk))

↑mk C
=⇒ proc({ck},∆, yk, P [yk/zk])

Figure 3: Computation Rules for Asynchronous Adjoint Logic

The computation rules we discuss in this section can be found in Figure 3. Remarkably, the computation
rules do not depend on the modes, although some of the rules will naturally only apply at modes satisfying
certain structural properties.

5.1. Judgmental rules

The identity rule (written as
id

=⇒) describes how an identity process (for instance, proc(S, {c}, a, a← c))
may interact with other processes. We think of such a process as connecting the provider of c to clients in
S, and therefore sometimes call it a forwarding process. A forwarding process interacts with the provider of
c, telling it to replace c with S in its set of clients. In adding S to the set of clients, the forwarding process
accomplishes its goal of connecting the provider of c to S, and so it can terminate.

The cut rule steps by spawning a new process which offers along a fresh set of channels S′, all of which
are used in Q, the continuation of the original process. Here we write ∆P and ∆Q for the set of free channels
in P and Q, respectively.

5.2. Structural rules

A process with no clients can terminate (rule
drop
=⇒), but must notify all of the processes it uses that

they should also terminate. It does so by sending each one a forwarding message, effectively embodying a
cancellation. In concert with the identity rule this accomplishes cascading cancellation in the distributed
setting. Note that the mode m of channel x must admit weakening in order for the process on the left-hand
side of the rule to be well-typed.

14

Similarly, a process with multiple clients can spawn a copy of itself, each with a strictly smaller set of

clients (rule
copy
=⇒). If the process P is a replicable service, that is, if it has a negative type N, (, ↑mk , then

this corresponds to actual process replication. If it has a positive type ⊕, ⊗, 1, ↓mk , this corresponds to
duplicating a multicast message into copies for different subsets of recipients. The mode m of the channel
x must admit contraction in order for the process on the left-hand side of the rule to be well-typed.

While both the drop and copy rules can be applied to any process with no or multiple clients, respectively,
this does not cause any problems as long as we forbid them from executing on identity processes. If we apply
drop or copy to an identity process, we end up with another process of the same form on the right-hand
side of the rule, and so we could repeatedly apply drop or copy and not make any progress. We therefore
disallow this use of the copy and drop rules to ensure that we can prove a progress theorem. 6

For any other type of process, regardless of whether we drop/copy first or execute another communication
rule first, we can eventually reach the same state, and so we do not need to make additional restrictions
(though an actual implementation would likely pick either a maximally eager or a maximally lazy strategy
for applying these rules).

5.3. Additive and multiplicative connectives

In the rule for ⊕, the process proc({b}, {c}, x, x.`(c)) represents the message ‘label ` with continuation
channel c’. After this message has been received, the process terminates since b was its only client. The
recipient selects the appropriate branch of the case construct and also substitutes the continuation channel
c for the continuation variable y`.

The N computation rule is largely similar to that for ⊕, except that communication proceeds in the
opposite direction—messages are sent to providers from clients, rather than from providers to clients as in
the case of ⊕.

The multiplicative connectives ⊗ and (behave similarly to their additive counterparts, except that
rather than sending and receiving labels, they send and receive channels together with a continuation
channel, and so an extra substitution is required when receiving messages. 1 behaves as a nullary ⊗,
allowing us to signal that no more communication is forthcoming along a channel, and to wait for such a
signal before continuing to compute.

5.4. Shifts

We present the computation rules for shifts with modes marked explicitly on the relevant channels.
Channels whose modes are unmarked may be at any mode (provided, of course, that the declaration of
independence is respected).

Operationally, ↑ behaves essentially the same as unary N, while ↓ behaves as unary ⊕. Their significance
lies in the mode shift of the continuation channel that is transmitted, which is required for the configuration
to remain well-typed. Example 10 demonstrates how multiple modes, connected with the shifts, can be used
to accomplish something useful that cannot be expressed with a single mode — in this case, mapping a
linear function over a list of elements, which may require replicating or cancelling the function.

The messages shift(ak) or shift(cm) should be thought of as signaling a transition between modes — to
mode k for the former, and to mode m for the latter. Whether the transition is up or down depends on
which direction the message is being sent in. As with other messages (in particular, the messages for ⊕ and
N), the continuation channels are made explicit.

5.5. Some Examples, Operationally

We now reexamine two examples in light of the operational interpretation. The first one is reminiscent of
a simple (non-recursive) instance of the visitor pattern (as described by Palsberg and Jay [26], for example)
of object-oriented programming.

6While there are cut reductions in the logic that correspond to applying cut and drop to identities, when giving our semantics,
we impose an evaluation strategy by restricting which cut reductions are allowed. Similarly, the so-called “commuting”
reductions are not used as evaluation rules in the semantics.

15

Example 7 (Revisiting Example 6). For any mode m,

(y : (Am(Cm) N (Bm(Cm)) ` P :: (x : (Am ⊕Bm)(Cm)

P , case x (〈ab, c〉 ⇒ % (y : (Am(Cm) N (Bm(Cm)), (ab : Am ⊕Bm) ` (c : Cm)
case ab (π1(a)⇒ % (y : (Am(Cm) N (Bm(Cm)), (a : Am) ` (c : Cm)

{ac} ← (νac)y.π1(ac); % (ac : (Am(Cm)), (a : Am) ` (c : Cm)
ac.〈a, c〉
| π2(b)⇒ % (y : (Am(Cm) N (Bm(Cm)), (b : Bm) ` (c : Cm)
{bc} ← (νbc)y.π2(bc); % (bc : (Bm(Cm)), (b : Am) ` (c : Cm)
bc.〈b, c〉))

If we think of C as an operation to be done, then x : (Am ⊕ Bm)(Cm is a simple visitor which performs
the operation (or prepares it to be performed) on either As or Bs. This process then shows how a visitor
object can be implemented “piecewise”, by specifying how to create a suitable C given an A, and separately,
how to create a C from a B. We can then think of y : (Am (Cm) N (Bm (Cm) as an object providing
these two methods, and the process above gives us a way to build a visitor out of its component pieces.

We now revisit our example of weakening in order to highlight how cancellation propagates through a
configuration of processes.

Example 8 (Revisiting Example 4). For any mode m admitting weakening,

(x : Am ⊗Bm) ` P :: (p : ANB)

P , case p (π1(p1)⇒ case x (〈y, z〉 ⇒
{ } ← (νa) (a← z); % drop z
p1 ← y)

|π2(p2)⇒ case x (〈y, z〉 ⇒
{ } ← (νa) (a← y); % drop y
p2 ← z))

We will (loosely) step through one possible evaluation of this program. We will be precise about the steps
taken by the process P , but will take some liberties with the rest of the configuration — in particular, we will
only show the process object corresponding to P , as well as process objects which are imminently relevant to
P . This allows us to focus on the computation being done by P . At each step, we have highlighted in red
the process(es) that are about to transition, and we abbreviate process terms for brevity.

(1) proc({x}, {y, z}, x, x.〈y, z〉), proc({b}, {x}, p, case p . . .), proc(S, {b}, b1, b.π1(b1))
N C
=⇒

(2) proc({x}, {y, z}, x, x.〈y, z〉), proc(S, {x}, b1, case x . . .)
⊗ C
=⇒

(3) proc({y},∆R1
, c, R1), proc({z},∆R2

, d, R2), proc(S, {y, z}, b1, { } ← (νa) . . .)
cut({ })
=⇒

(4) proc({y},∆R1 , c, R1), proc({z},∆R2 , d, R2), proc({ }, {z}, a, a← z), proc(S, {y}, b1, b1 ← y)
id

=⇒

(5) proc({y},∆R1
, c, R1), proc({ },∆R2

, d, R2), proc(S, {y}, b1, b1 ← y)
drop
=⇒

(6) proc({y},∆R1 , c, R1), proc({ }, {b}, b̂, b̂← b)b∈∆R2
, proc(S, {y}, b1, b1 ← y)

id
=⇒

(7) proc(S,∆R1
, c, R1), proc({ }, {b}, b̂, b̂← b)b∈∆R2

Lines (3), (4), and (5) of this computation trace highlight how cancellation propagates. In line (3), we
create a new process whose sole purpose is to mark z as no longer needed by P . Then, in line (4), this
process informs the provider of z, R2, that it may terminate. This triggers, in line (5), the propagation of
this cancellation message back along the channels that R2 uses. While we only show this single step of the
propagation, subsequent steps look much the same, alternating between applications of the id and drop rules
in order to pass the cancellation backwards through a chain of dependencies. The last step is an application
of identity unrelated to cancellation, just forwarding references to channels in S to process R1.

16

6. Examples with Recursion

We now step slightly outside of our system to present some examples involving recursively defined types
and processes, which allow for a richer set of programs. We do not formally define recursive types or processes
here, as they are well-known from the literature and orthogonal to our concerns (see, for example, [24]).

Since we are already deviating slightly from our system to use recursion, we will, for simplicity of
presentation, also write x← P ; Q in place of the (more verbose) {x} ← (νy)P [y/x] ; Q[y/x] in the specific
case of cuts with a singleton set of new channels. We will continue to make the new channel explicit in cuts
with non-singleton sets.

In these examples, we will work with two modes, L and U, with L < U, σ(L) = {}, and σ(U) = {W,C}.
This is sufficient for the examples we present, but not necessary — some of the examples will use only one
of the two modes, and several of the examples using U will not take advantage of both contraction and
weakening.

6.1. Example: Circuits

We call channels cU that are subject to weakening and contraction shared channels. As an example that
requires shared channels we use circuits. We start by programming a nor gate that processes infinite streams
of zeros and ones.

Example 9.

bits∞U = ⊕{b0 : bits∞U , b1 : bits∞U }
(x : bits∞U) (y : bits∞U) ` nor :: (z : bits∞U)

z ← nor← x y =
casex (b0(x′)⇒ case y (b0(y′)⇒ z′ ← z.b1(z′) ;

z′ ← nor← x′ y′

| b1(y′)⇒ z′ ← z.b0(z′) ;
z′ ← nor← x′ y′)

| b1(x′)⇒ case y (b0(y′)⇒ z′ ← z.b0(z′) ;
z′ ← nor← x′ y′

| b1(y′)⇒ z′ ← z.b0(z′) ;
z′ ← nor← x′ y′))

This is somewhat verbose, but note that all channels here are shared. For this particular gate they
could also be linear because they are neither reused nor canceled. This illustrates that programming can
be uniform at different modes, which is a significant advantage of our system over systems of session types
based on linear logic with an exponential !A. Our implementation of nor has the property that for bits bi,
bj, and bk with bk = ¬(bi ∨ bj), the following transitions are possible and characterize nor:

proc({a}, {a′}, x, x.bi(a′)), proc({b}, {b′}, y, y.bj(b′)), proc(S, {a, b}, z, z ← nor← a, b)
−→∗ proc(c′, {a′, b′}, z′, z′ ← nor← a′, b′), proc(S, {c′}, z, z.bk(c′)) (c′ fresh)

This multi-step reduction is shown in full (one step at a time) below. We only show the initial portion
of each process term, which is enough to disambiguate where in the program we are, as otherwise process
terms become unwieldy and reduce clarity. We also assume the existence of a rule call that lets us invoke a
defined process, replacing the call with the process definition, after appropriate substitution. At each step,
we have highlighted in red the process(es) that are about to transition.

17

proc({a}, {a′}, x, x.bi(a′)), proc({b}, {b′}, y, y.bj(b′)), proc(S, {a, b}, z, z ← nor← a, b)
call

=⇒

proc({a}, {a′}, x, x.bi(a′)), proc({b}, {b′}, y, y.bj(b′)), proc(S, {a, b}, z, case a . . .) ⊕ bk
=⇒

proc({b}, {b′}, y, y.bj(b′)), proc(S, {a′, b}, z, case b . . .) ⊕ bk
=⇒

proc(S, {a′, b′}, z, z′ ← . . .)
cut({z′})

=⇒
proc({c′}, {a′, b′}, z′, z′ ← nor← a′, b′), proc(S, {c′}, z, z.bk(c′))

When we build an or-gate out of a nor-gate we need to exploit sharing to implement simple negation.
In the example below, u and u′ are both names for the same shared channel. The process invoked as
w ← nor← x y will multicast a message to the clients of u and u′.

x : bits∞U , y : bits∞U ` or :: (z : bits∞U)

z ← or← x, y =
{u, u′} ← (νw)(w ← nor← x, y) ;
z ← nor← u, u′

An analogous computation to that for nor is possible, except that at an intermediate stage of the compu-
tation, we will also have a shared channel w carrying the (multicast) message proc({u, u′}, {d′}, w, w.bl(d′))
with bl = ¬(bi ∨ bj).

6.2. Example: Map

Mapping a process over a list allows us to demonstrate the use of replicable services, cancellation, and
shifts. We define a whole family of types indexed by a type A, which is not formally part of the language
but is expressed at the metalevel.

listA = ⊕{cons : A⊗ listA, nil : 1}

Note that such a list should not be viewed as a data structure in memory, despite its similarity to a memory-
based definition of a list. Instead, it is a behavioral description of a stream of messages.

A process that maps a channel of type A to one of type B will have type A(B. However, in order to
use such a process on every element of a list, it must be shared. We therefore obtain the following type and
definition for map, where all channels not explicitly annotated with a mode subscript are at mode L.

Example 10.

(fU : ↑UL (AL (BL)) (l : listA) ` map :: (k : listB)
k ← map← fU l =

case l (cons(l′)⇒ case l′(〈x, l′′〉 ⇒ % receive element x : A with continuation l′′

{f ′U, f ′′U } ← (νa)a← fU % duplicate the channel fU

f ′ ← f ′U.shift(f
′) ; % obtain a fresh linear instance f ′ of f ′U

y ← f ′.〈x, y〉 ; % send x to f ′, response will be along fresh y
k′ ← k.cons(k′) ; % select cons
k′′ ← k′.〈y, k′′〉 ; % send y with continuation k′′

k′′ ← map← f ′′U l
′′) % recurse with continuation channels

| nil(l′)⇒ {} ← (νa)a← fU % cancel the channel fU

k′ ← k.nil(k′) ; % select nil
case l′(〈〉 ⇒ % wait for l′ to close
k′.〈 〉)) % close k′ and terminate

18

In this example, fU is a replicable and cancelable service. In the case of a nonempty list, we create two
names for the channel fU — one to use immediately and one to pass to the recursive call. Note that the
service itself remains a single service with two clients until the message shift(f ′) is sent to it, at which point
it replicates itself, creating one copy to handle this request and leaving another to deal with future requests.
In the case of an empty list, we have no elements to map over, and so we do not need to use fU. As such,
we cancel it before continuing.

7. Session Fidelity, Deadlock-Freedom, and Garbage Collection

While we can prove cut elimination for the form of adjoint logic presented in Section 2, from a program-
mer’s perspective we are not interested in eliminating all cuts (which would correspond to reducing under
λ-abstractions in a functional language) but rather we block when waiting to receive a message, analogous
to a λ-abstraction waiting for input before it can reduce. What we prove instead are session fidelity and
deadlock-freedom.

7.1. Session fidelity

Session fidelity is the message-passing analogue of type preservation under the rules of the operational
semantics. Here, it expresses that the interfaces to a configuration remain unchanged as computation
proceeds.

Theorem 4 (Session Fidelity). If Ψ � C :: Ψ′ and C ⇒ C′, then Ψ � C′ :: Ψ′.

Sketch. The proof proceeds by a case analysis on the computation rule used to conclude C ⇒ C′. In each
case, we break C down to find the processes on which the computation rule acts, along with some collections
of processes which are unaffected by the computation. From these pieces, we build a proof that Ψ � C′ :: Ψ′.

As a sample case, suppose C drop
=⇒ C′. We then know that C is of the form C1, proc({},∆, x, P), where P

is not an identity x← a, and that C′ has the form C1, proc({}, {b}, y, y ← b)b∈∆.
Examining the derivation of Ψ � C :: Ψ′, we find the following subtree (where Ψ2 = ∆):

0 ∈ µ(k) Ψ2 ` P :: (x : Ak)

Ψ1 Ψ2 � proc({},Ψ2, x, P) :: Ψ1

Proc

In order to show that Ψ � C′ :: Ψ′, we can simply take the proof that Ψ � C :: Ψ′ and replace the above
segment with a proof that

Ψ1 Ψ2 � proc({}, {b}, y, y ← b)b∈∆ :: Ψ1.

Such a proof is easily constructed by composing (with Comp) a collection of proofs of the following form,
one for each b ∈ ∆:

0 ∈ µ(m) (b : Bm) ` y ← b :: (y : Bm)
id

Ψ1 (b : Bm) � proc({}, {b}, y, y ← b) :: Ψ1
Proc

Because b ∈ ∆, (b : Bm) is in Ψ2, so we know (by independence) that m ≥ k — otherwise, Ψ2 ` P :: (x : Ak)
would be ill-formed. Then, as m ≥ k, σ(m) ⊇ σ(k), and so 0 ∈ µ(m) follows from 0 ∈ µ(k).

While the copy case involves a few more parts (the two copies of P need to be typed as well as all of the
newly created identity processes), it follows the same pattern as the drop case. The remaining cases are also
similar, but are simplified by dealing with a fixed number of processes, rather than the arbitrary number
that the drop and copy rules can create.

19

7.2. Deadlock-freedom

The progress theorem for a functional language states that an expression is either a value or it can take
a step. Here we do not have values, but there is nevertheless a clear analogue between, say, a value λx.e
that waits for an argument, and a process case x (〈y, z〉 ⇒ P) that waits for an input. We formalize this in
the definition below.

Definition 1. We say that a process proc(S,∆, a, P) is poised on a channel c if:

1. it is a process proc(S,∆, a, P) that sends on c — that is, P is of the form (c._), or

2. it is a process proc(S,∆, a, P) that receives on c — that is, P is of the form (case c (_)).

Intuitively, proc(S,∆, a, P) is poised on c if it is blocked trying to communicate along c. Of particular
interest is the special case where proc(S,∆, a, P) is poised on the channel a that it provides. Such processes
serve as our analogue of values in the following progress theorem:

Theorem 5 (Deadlock-Freedom). If (·) � C :: Ψ, then exactly one of the following holds:

1. There is a C′ such that C ⇒ C′.

2. Every proc(S,∆, a, P) in C is poised on a. 7

In order to prove this theorem, we first prove a lemma allowing us to take advantage of the ordering
induced by configuration typing. We note that a client must occur to the right of the provider in the
ordering, and so if we can analyze a configuration from right to left, we consider each process before (or
after, depending on your view of the induction) all of its dependencies. To formalize this, we present a
second set of rules defining another form of configuration typing (which will turn out to prove the same
judgments as the original form).

Ψ �′ (·) :: Ψ
Empty

|S| ∈ µ(m) Ψ �′ C :: Ψ′ Ψ′′ Ψ′ ` P :: (a : Am)

Ψ �′ C proc(S,Ψ′, a, P) :: Ψ′′ (S : Am)
Extend

It is clear that if � and �′ are the same, then we can perform induction using the Empty and Extend rules
rather than the Id, Comp, and Proc rules, allowing us to analyze a configuration from right to left. We
formalize this as Lemma 1.

Lemma 1. Ψ � C :: Ψ′ if and only if Ψ �′ C :: Ψ′.

This lemma is nearly immediate — all of the rules for �′ are derivable from the rules of �, and all rules
of � but Comp are derivable from the rules of �′. We therefore need only show (by an induction over the
right-hand premise) that the version of the Comp rule with � replaced by �′ is admissible.

The proof of deadlock-freedom then proceeds by an induction on the derivation of (·) � C :: Ψ, using
Lemma 1 to work right to left. Writing C = C′ proc(S,Ψ′, a, P), we see that either C′ can step, in which
case so can C, or every process in C′ is poised. Now we carefully distinguish cases on S (empty, singleton,
or greater) and apply inversion to the typing of P to see that in each case the process either is poised, can
take a step independently, or can interact with provider of a channel in Ψ′.

7As such, there can be no cyclic waits — each process is poised on the channel that it provides, and so cannot be waiting
as the client of any other process.

20

7.3. Garbage collection

As we can see from the preservation theorem, the interface to a configuration never changes. While new
processes may be spawned, they will have clients and are therefore not visible at the interface. This is in
contrast to the semantics of shared channels in prior work (for example, in [2, 11]) where shared channels
may show up as newly provided channels. Therefore they may be left over at the end of a computation
without any clients.

This cannot happen here. Initially, at the top level, we envision starting with the configuration below
on the left. Assuming this computation completes, by the progress property and the definition of poised,
computation could only halt with the configuration on the right. In other words: no garbage!

· � proc({c0}, ·, c, P0) :: (c0 : 1) · � proc({c0}, ·, c, c.〈〉) :: (c0 : 1)

Some of the prior work on affine session types [10, 7] addresses the problem of garbage collection by using
equivalence rules which allow canceled channels to be cleaned up. These approaches, particularly that of
Fowler et al. [10], are similar to ours, with a major distinguishing feature being that our system allows for
one client of a shared (multi-client) service to cancel its connection to that service. In such affine systems,
there is no mechanism for canceling shared channels. Most of the other differences are technical in nature,
such as cancellation needing to wait for all prior messages to be received (whereas in our system, cancellation
can overtake the processes that serve as messages).

One can generalize the garbage collection property discussed above to allow nontrivial output by allowing
any purely positive type (that is, one which only uses the fragment of the logic with connectives ⊕, ⊗, 1,
and ↓), such as ⊕{false : 1, true : 1}.

We can formalize this intuition by defining an observable configuration C which corresponds to our
intuitive notion of garbage-free. We only define what it means for a configuration with purely positive type
to be observable.

A configuration C for which there is Ψ composed entirely of purely positive types such that · � C :: Ψ is
observable at Ψ if, when we repeatedly receive messages from all channels we know about, starting from a
state where we only know about Ψ, we eventually receive a message from every process in C. If we do not
care about the particular channels in Ψ, we may say simply that C is observable.

Definition 2. We define what it means for a configuration C to be observable at Ψ (written C�Ψ) inductively
over the structure of C.

1. proc({c}, ·, x, x.〈〉) � (c : 1).

2. If C � Ψ (d : A`
m), then C proc({c}, {d}, x, x.`(d)) � Ψ (c : ⊕

i∈I
Ai

m).

3. If C � Ψ (d : Am), then C proc({c}, {d}, x, x.shift(d)) � Ψ (c : ↓mk Am).

4. If C � Ψ (d : Am) (e : Bm), then C proc({c}, {d, e}, x, x.〈d, e〉) � Ψ (c : Am ⊗Bm).

We can then give the following corollary of our deadlock-freedom theorem:

Corollary 2. If · � C :: Ψ for some Ψ consisting entirely of purely positive types and C cannot take any
steps, then C � Ψ.

This proof proceeds by a simple induction on the derivation of · � C :: Ψ, using (Lemma 1) to work
from right to left. At each step, we note that the rightmost process is poised. Because Ψ consists only
of purely positive types, the rightmost process must therefore be sending a positive message. Moreover, it
can only use channels of purely positive type. Well-typedness of the configuration then lets us apply the
inductive hypothesis to the remainder of the configuration, at which point we can simply apply the definition
of observability.

Now, using this theorem, we can give an example of garbage collection for a non-1 but still purely positive
type.

21

Example 11. Consider the (recursive) type

bitsm = ⊕{b0 : bitsm, b1 : bitsm, e : 1m}.

This is similar to our type of infinite bit-streams from Section 6, but we have added a terminal label e
indicating the end of a bit stream, and we allow the mode m to be arbitrary.

Now, if we begin with the configuration

· � proc({c0}, ·, c, P) :: (c0 : bitsm),

and reach a final configuration (one which cannot take any further computation steps), we must end in an
observable configuration. Note that while our progress and preservation theorems extend to the setting with
recursion, we are not guaranteed termination, and so can say little about what garbage may remain in a
non-terminating computation.

Examining the type bitsm and applying inversion on the definition of observability, we see that such
a configuration must be a sequence of messages proc({cn}, {cn+1}, c, c.bi(cn+1)), terminated by a pair of
messages of the form proc({d}, {}, e, e.〈〉), proc({ck}, {d}, c, c.e(d)) — in other words, it must be exactly a
well-formed bit string, with no left-over garbage.

8. Related Work

Various items of related work have already been mentioned in the preceding sections either in examples
or technical cross-references.

The line of work on using adjoint modal operators to combine logics with different structural properties
originated with Benton’s LNL [20] that combines (nonlinear) intuitionistic logic and linear logic. This was
generalized in unpublished work by Reed [12], who introduces an arbitrary preorder on modes with a uniform
logical language and sequent calculus rules. Our formulation is based on a currently unpublished follow-
up [14]; a different formulation with categorical semantics without a built-in notion of independence can be
found in work by Licata et al. [13, 21].

The formulation of adjoint logic in its semi-axiomatic form supporting asynchronous communication
originated in the earlier workshop version of this paper [17]. It builds upon earlier work introducing a
theory of session-typed asynchronous communication either using explicit message buffers [3] or encoding it
in an asynchronous calculus [5, 11]. The intuitionistic (nonlinear) semi-axiomatic sequent calculus SAX has
since been studied in more depth from the proof-theoretic perspective, establishing a form of cut elimination
and a write-once shared memory semantics [6].

At the core of our work is the theory of binary session types [1, 27]. More recent introductions are
provided by Vasconcelos [28] and Honda et al. [29]. A Curry-Howard correspondence between session types
and intuitionistic linear logic was established by Caires et al. [2, 23], with classical variants by Wadler [22]
and Caires et al. [23]. Processes here are expressed in the the π-calculus, with its natural synchronous
communication behavior. The interpretation of !A in these languages allows for replicable services, modeling
and extending access points in prior work on session types.

Affine session types to allow for cancellation go back to Mostrous et al. [7] and have since been used in a
number of ways [8, 9, 10]. Several of these systems use cancellation as a way of working with exceptions, which
we believe could also be done in our system, but is left for future work. The Curry-Howard correspondence
was extended to encompass affine types by the second author and Griffith [11], which also introduced
three fixed modes, connected by shifts as in the present paper. However, only the linear mode had a full
complement of session types, while the others were populated only by shifts. This has turned out to be
tedious for programming in SILL [24, 30, 31] (a language that combines ordinary functional and session-typed
concurrent programming) and furthermore did not support multicast.

Caires and Pérez [32] extend earlier work to integrate control effects and, in particular, nondeterminism
and failure. As such, their system models a form of affinity and cancellation, controlled by two dual
modalities, but is otherwise orthogonal to our concerns. For example, our language does not explicitly

22

model any nondeterminism and we conjecture that our language remains deterministic.8 It is an interesting
item for future work to investigate if the adjoint approach is compatible with an intuitionistic version of
their system.

Using linearity to avoid garbage collection goes back to Girard and Lafont [33] and has since been consid-
ered mostly in the case of functional languages (for example, Wadler [34] and Igarashi and Kobayashi [35]).
It has recently found its way into Rust, a widely used programming language with affine types [36, 37].
Explicit distributed garbage collection was also discussed by Griffith [31] in the context of SILL.

9. Conclusion

At this point, our formulation of adjoint logic and its operational semantics seem to provide a good
explanation for a variety of patterns of asynchronous communication. The key behaviors which we can
model (and importantly, model in a uniform fashion) are cancellation, replication, and multicast. We also
obtain a foundation for a system avoiding the need for distributed garbage collection. Moreover, if used
linearly, our semantics coincides with the purely linear semantics developed in prior work.

In parallel work we have also provided a shared memory semantics for a closely related formulation of
adjoint logic with implicit structural rules [38, 6]. In future work, we plan to investigate if the declaration
of independence is sufficient to allow a modular combination of different operational interpretations for
different modes. Of particular interest here would be the semantics with manifest sharing [39].

Acknowledgments

We wish to thank the anonymous reviewers of a previous version of this paper for their feedback, and
William Chargin for his work on earlier versions of adjoint logic and its semantics. This materials is based
upon work supported by the National Science Foundation under Grant No. CCF-1718267.

[1] K. Honda, Types for dyadic interaction, in: 4th International Conference on Concurrency Theory, CONCUR’93, Springer
LNCS 715, 1993, pp. 509–523. doi:10.1007/3-540-57208-2 35.

[2] L. Caires, F. Pfenning, Session types as intuitionistic linear propositions, in: Proceedings of the 21st International Confer-
ence on Concurrency Theory (CONCUR 2010), Springer LNCS 6269, Paris, France, 2010, pp. 222–236. doi:10.1007/978-
3-642-15375-4 16.

[3] S. J. Gay, V. T. Vasconcelos, Linear type theory for asynchronous session types, Journal of Functional Programming 20 (1)
(2010) 19–50. doi:10.1006/inco.1994.1093.

[4] N. Kobayashi, B. C. Pierce, D. N. Turner, Linearity and the pi-calculus, in: H.-J. Boehm, G. Steele (Eds.), Proceedings
of the 23rd Symposium on Principles of Programming Languages (POPL’96), ACM, St. Petersburg Beach, Florida, USA,
1996, pp. 358–371.

[5] H. DeYoung, L. Caires, F. Pfenning, B. Toninho, Cut reduction in linear logic as asynchronous session-typed communica-
tion, in: P. Cégielski, A. Durand (Eds.), Proceedings of the 21st Conference on Computer Science Logic, CSL 2012, 2012,
pp. 228–242. doi:10.4230/LIPIcs.CSL.2012.228.

[6] H. DeYoung, F. Pfenning, K. Pruiksma, Semi-axiomatic sequent calculus, in: 5th International Conference on Formal
Structures for Computation and Deduction, Paris, France, 2020, to appear.

[7] D. Mostrous, V. Vasconcelos, Affine sessions, in: E. Kühn, R. Pugliese (Eds.), 16th International Conference on Coordina-
tion Models and Languages, Springer LNCS 8459, Berlin, Germany, 2014, pp. 115–130. doi:10.1007/978-3-662-43376-8 8.

[8] A. Scalas, N. Yoshida, Lightweight session programming in scala, in: Proceedings of the 30th European
Conference on Object-Oriented Programming (ECOOP 2016), LICIcs 56, Rome, Italy, 2016, pp. 21:1–21:28.
doi:10.4230/LIPIcs.ECOOP.2016.21.

[9] L. Padovani, A simple library implementation of binary sessions, Journal of Functional Programming 27 (e4) (2017).
doi:10.1016/0304-3975(83)90059-2.

[10] S. Fowler, S. Lindley, J. G. Morris, S. Decova, Exceptional asynchronous session types, in: Proceedings of the 46th
Symposium on Programming Languages (POPL 2019), ACM, Cascais, Portugal, 2019, pp. 28:1–28:29.

[11] F. Pfenning, D. Griffith, Polarized substructural session types, in: A. Pitts (Ed.), Proceedings of the 18th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2015), Springer LNCS 9034,
London, England, 2015, pp. 3–22, invited talk. doi:10.1007/978-3-662-46678-0 1.

[12] J. Reed, A judgmental deconstruction of modal logic, unpublished manuscript (May 2009).
URL http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf

8This property is not immediate due to the possible interactions between cancellation and message receipt.

23

[13] D. R. Licata, M. Shulman, Adjoint logic with a 2-category of modes, in: International Symposium on Logical Foundations
of Computer Science (LFCS), Springer LNCS 9537, 2016, pp. 219–235. doi:10.1007/978-3-319-27683-0 16.

[14] K. Pruiksma, W. Chargin, F. Pfenning, J. Reed, Adjoint logic, unpublished manuscript (Apr. 2018).
URL http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf

[15] C. Palamidessi, Comparing the expressive power of the synchronous and the asynchronous π-calculus, Mathematical
Structures in Computer Science 13 (5) (2003) 685–719.

[16] T. Tu, X. Liu, L. Song, Y. Zhang, Understanding real-world concurrency bugs in Go, in: Architectural Support for
Programming Languages and Operating Systems (ASPLOS’19), ACM, Providence, RI, USA, 2019, pp. 865–878.

[17] K. Pruiksma, F. Pfenning, A message-passing interpretation of adjoint logic, in: F. Martins, D. Orchard (Eds.), Proceedings
Programming Language Approaches to Concurrency- and Communication-cEntric Software, Prague, Czech Republic, 7th
April 2019, Vol. 291 of Electronic Proceedings in Theoretical Computer Science, Open Publishing Association, 2019, pp.
60–79. doi:10.4204/EPTCS.291.6.

[18] G. Gentzen, Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39 (1935) 176–210, 405–431, en-
glish translation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.
doi:10.1007/BF01201353.

[19] S. Negri, J. von Plato, Structural Proof Theory, Cambridge University Press, 2001. doi:10.1017/CBO9780511527340.
[20] N. Benton, A mixed linear and non-linear logic: Proofs, terms and models, in: L. Pacholski, J. Tiuryn (Eds.), Se-

lected Papers from the 8th International Workshop on Computer Science Logic (CLS’94), Springer LNCS 933, Kazimierz,
Poland, 1994, pp. 121–135, an extended version appears as Technical Report UCAM-CL-TR-352, University of Cambridge.
doi:10.1007/BFb0022251.

[21] D. R. Licata, M. Shulman, M. Riley, A fibrational framework for substructural and modal logics, in: International Con-
ference on Formal Structures for Computation and Deduction, LIPIcs, Oxford, 2017. doi:10.4230/LIPIcs.FSCD.2017.25.

[22] P. Wadler, Propositions as sessions, in: Proceedings of the 17th International Conference on Functional Programming,
ICFP 2012, ACM Press, Copenhagen, Denmark, 2012, pp. 273–286. doi:10.1145/2364527.2364568.

[23] L. Caires, F. Pfenning, B. Toninho, Linear logic propositions as session types, Mathematical Structures in Computer
Science 26 (3) (2016) 367–423. doi:10.1016/j.tcs.2010.01.028.

[24] B. Toninho, L. Caires, F. Pfenning, Higher-order processes, functions, and sessions: A monadic integration, in: M.Felleisen,
P.Gardner (Eds.), Proceedings of the European Symposium on Programming (ESOP’13), Springer LNCS 7792, Rome,
Italy, 2013, pp. 350–369. doi:10.1007/978-3-642-37036-6 20.

[25] I. Cervesato, A. Scedrov, Relating state-based and process-based concurrency through linear logic, Information and Com-
putation 207 (10) (2009) 1044–1077. doi:10.1016/j.ic.2008.11.006.

[26] J. Palsberg, C. B. Jay, The essence of the visitor pattern, in: Proceedings. The Twenty-Second Annual International
Computer Software and Applications Conference (Compsac’98) (Cat. No. 98CB 36241), IEEE, 1998, pp. 9–15.

[27] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based
programming, in: C. Hankin (Ed.), 7th European Symposium on Programming Languages and Systems (ESOP 1998),
Springer LNCS 1381, 1998, pp. 122–138.

[28] V. T. Vasconcelos, Fundamentals of session types, Information and Computation 217 (2012) 52–70.
[29] K. Honda, R. Hu, R. Neykova, T.-C. Chen, R. Demangeon, P.-M. Deniélou, N. Yoshida, Structuring communcation with

session types, in: Concurrent Objects and Beyond (COB 2014), Springer LNCS 8665, 2014, pp. 105–127.
[30] B. Toninho, A logical foundation for session-based concurrent computation, Ph.D. thesis, Carnegie Mellon University and

Universidade Nova de Lisboa, available as Technical Report CMU-CS-15-109 (May 2015).
[31] D. Griffith, Polarized substructural session types, Ph.D. thesis, University of Illinois at Urbana-Champaign (Apr. 2016).
[32] L. Caires, J. A. Pérez, Linearity, control effects, and behavioral types, in: European Symposium on Programming, Springer,

2017, pp. 229–259. doi:10.1007/978-3-662-54434-1 9.
[33] J.-Y. Girard, Y. Lafont, Linear logic and lazy computation, in: H. Ehrig, R. Kowalski, G. Levi, U. Montanari (Eds.),

Proceedings of the International Joint Conference on Theory and Practice of Software Development, Vol. 2, Springer-Verlag
LNCS 250, Pisa, Italy, 1987, pp. 52–66. doi:10.1007/BFb0014972.

[34] P. Wadler, Linear types can change the world, in: IFIP TC, Vol. 2, 1990, pp. 347–359.
[35] A. Igarashi, N. Kobayashi, Garbage collection based on a linear type system, in: Preliminary Proceedings of the 3rd ACM

SIGPLAN Workshop on Types in Compilation (TIC’00), Vol. 152, 2000.
[36] J. A. Tov, R. Pucella, Practical affine types, in: T. Ball, M. Sagiv (Eds.), Proceedings of the 38th Symposium on Principles

of Programming Languages (POPL 2011), ACM Press, 2011, pp. 447–458.
[37] Available at www.rust-lang.org.
[38] F. Pfenning, K. Pruiksma, A shared memory semantics for session types, Invited talk at the Workshop on Linearity/TLLA,

Oxford, UK (Jul. 2018).
[39] S. Balzer, F. Pfenning, Manifest sharing with session types, in: International Conference on Functional Programming

(ICFP), ACM, 2017, pp. 37:1–37:29. doi:10.1145/3110281.

24

