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We present a system of session types based on adjoint logic which generalize standard binary ses-
sion types [13]. Our system allows us to uniformly capture several new behaviors in the space of
asynchronous message-passing communication, including multicast, where a process sends a single
message to multiple clients, replicable services, which have multiple clients and replicate themselves
on-demand to handle requests from those clients, and cancellation, where a process discards a chan-
nel without communicating along it. We provide session fidelity and deadlock-freedom results for
this system, from which we then derive a logically justified form of garbage collection.

1 Introduction

Binary session types [13] were designed to specify the communication behavior between two message-
passing processes. But there are patterns of communication that do not fall into this category. One
example is one provider of a replicable service with multiple clients. Another is a multicast, that is, a
process sending one message to multiple recipients. A third one is a client that no longer wishes to use a
service, a form of cancellation. In this paper we provide a uniform language and operational semantics
rooted in logic that captures such patterns of asynchronous communication. It generalizes the usual
binary session types by supporting multiple modes of communication. In each of these modes every
channel has a unique provider (which may send or receive), and possibly multiple clients. We identify
the following modes: linear (a unique client that must communicate, as with the usual binary session
types), affine (a unique client that may communicate or cancel), strict (multiple clients, each of which
must communicate), and unrestricted (multiple clients, each of which may or may not communicate,
which captures both replicable services and multicast).

A type system that uniformly integrates all of these patterns is not obvious if we want to preserve
the desirable properties of session fidelity and deadlock freedom that we obtain from binary session
types. Underlying our approach is adjoint logic [23, 14, 22], which generalizes intuitionistic linear
logic [11, 10] and LNL [2] by decomposing the usual exponential modality !A into two adjoint modal
operators and also affords individual control over the structural rules of weakening and contraction. We
provide a formulation of adjoint logic in which cut reduction corresponds to asynchronous communica-
tion, and from which session fidelity and deadlock freedom derive. Moreover, our formulation uses a
form of explicit structural rules embedded in a multicut, where weakening corresponds to cancellation
and contraction corresponds to duplication of a message or service.

Some of these patterns have been previously addressed with varying degrees of proximity to an
underlying logic. A replicable service with multiple clients can be achieved with access points [8] or
persistent services of type !A [3]. Cancellation can be addressed with affine types [16, 24, 18] further
developed for asynchronous communication and general handling of failure [7]. Closest to the present
proposal is a polarized formulation of asynchronous communication in adjoint logic [20] which had
several shortcomings that are addressed here. Specifically, the mode hierarchy was fixed to have only
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three modes (linear, affine, and unrestricted), and the unrestricted mode only allowed a single kind of
proposition ↑UmAm. This meant that, for example, multicast was not representable. Also, the rules left
weakening and contraction implicit, which means that there is no explicit cancellation or distributed
garbage collection, which is only briefly hinted at as a possibility [12].

The Curry-Howard correspondence relates propositions to types, proofs to programs, and proof re-
duction to computation. Cut reductions in a pure sequent calculcus for linear logic [3, 26] naturally
correspond to synchronous communication because both premises of the cut are reduced at the same
time. We reformulate adjoint logic with a nonstandard sequent calculus in which noninvertible rules
are presented as axioms, that is, rules with no premises. As our operational interpretation shows, an
axiom can be seen as a message and cut reduction in this sequent calculus corresponds to asynchronous
communication. Another unusual aspect of our sequent calculus is that we generalize cut to a sound
rule of multicut [9, 17], which operationally allows one provider to connect with multiple clients. Two
further consequences of this reformulation are that (a) no explicit rules are needed for weakening and
contraction, and yet (b) channels and resources are tracked with sufficient precision that computation in
a network of processes “leaves no garbage” (see section 4). This is the concurrent realization of the early
observation by Girard and Lafont [10] that functional computation based on intuitionistic linear logic
does not require a garbage collector. Cancellation [16, 7] is a natural consequence, without requiring any
special mechanism, but our system goes beyond it in the sense that processes with multiple clients will
also terminate once no clients are left.

We begin with a brief discussion of our type system (section 2), deferring discussion of the underly-
ing logic to appendix A, in order to focus on the programming system. We then present an operational
semantics (section 3): our first major contribution. It models a variety of asynchronous communication
behaviors, uniformly generalizing previous systems. We close by briefly presenting our results on ses-
sion fidelity and deadlock-freedom, along with a brief discussion of the “garbage-collection” result that
follows from them (section 4).

2 Language and Typing

Our typing judgment for processes P is based on intuitionistic sequents of the form

(x1 : A1) · · ·(xn : An) ` P :: (x : A)

where each of the xi are channels that P uses and x is a channel that P provides. All of these channels
must be distinct and we abbreviate the collection of antecedents as Ψ. The session types Ai and A specify
the communication behavior that the process P must follow along each of the channels.

Such sequents are standard for the intuitionistic approach to understanding binary session types
(e.g., [3]) where the channels are linear in that every channel in a network of processes has exactly one
provider and exactly one client. In the closely related formulation based on classical linear logic [26] all
channels are on the right-hand side of the turnstile, but each linear channel still has exactly two endpoints.

We generalize this significantly by assigning to each channel an intrinsic mode m. Each mode m
is assigned a set of structural properties σ(m) among W (for weakening) and C (for contraction). No
matter which structural properties are available for a channel, each active channel will still have exactly
one provider. Beyond that, a channel xm with W ∈ σ(m) may not have any clients. Furthermore, a
channel xm with C ∈ σ(m) may have multiple clients. All other properties of our system of session types
for processes derive systematically from these simple principles.
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(a : Am) ` c← a :: (c : Am)
id

Ψ≥ m≥ k |S| ∼ m Ψ ` P :: (x : Am) (S : Am) Ψ′ ` Q :: (c : Ck)

Ψ Ψ′ ` S← (νx)P;Q :: (c : Ck)
cut(S)

` ∈ I
(a : A`

m) ` c.`(a) :: (c : ⊕
i∈I

Ai
m)
⊕R0

`

Ψ (xi : Ai
m) ` Pi :: (c : Ck) for each i ∈ I

Ψ (a : ⊕
i∈I

Ai
m) ` case a (i(xi)⇒ Pi)i∈I :: (c : Ck)

⊕L

Ψ ` Pi :: (xi : Ai
m) for each i ∈ I

Ψ ` case c (i(xi)⇒ Pi)i∈I :: (c : N
i∈I

A j
m)

NR ` ∈ I
(a : N

i∈I
Ai

m) ` a.`(c) :: (c : A`
m)

NL0
`

(a : Am) (b : Bm) ` c.〈a,b〉 :: (c : Am⊗Bm)
⊗R0

Ψ (x : Am) (y : Bm) ` P :: (c : Ck)

Ψ (a : Am⊗Bm) ` case a(〈x,y〉 ⇒ P) :: (c : Ck)
⊗L

· ` c.〈〉 :: (c : 1m)
1R

Ψ ` P :: (c : Ck)

Ψ (a : 1m) ` case a(〈〉 ⇒ P) :: (c : Ck)
1L

(x : Am) Ψ ` P :: (y : Bm)

Ψ ` case c(〈x,y〉 ⇒ P) :: (c : Am( Bm)
(R

(a : Am) (c : Am( Bm) ` c.〈a,b〉 :: (b : Bm)
(L0

Ψ ` P :: (x : Ak)

Ψ ` case c(shift(x)⇒ P) :: (c : ↑m
k Ak)

↑R
(a : ↑m

k Ak) ` a.shift(c) :: (c : Ak)
↑L0

(a : Am) ` c.shift(a) :: (c : ↓m
k Am)

↓R0
Ψ (x : Am) ` P :: (c : C`)

Ψ (a : ↓m
k Am) ` case a(shift(c)⇒ P) :: (c : C`)

↓L

Figure 1: Process Assignment for Asynchronous Adjoint Logic

The modes are organized into a preorder where m ≥ k requires that σ(m) ⊇ σ(k), that is, m must
allow more structural properties than k. In order to guarantee session fidelity and deadlock freedom, for
any sequent Ψ ` P :: (xm : Am) is must be the case that for every yk : Bk ∈Ψ we have k≥m. For example,
if m permits contraction and therefore P may have multiple clients, then for any yk in Ψ, mode k must
also permit contraction because (intuitively) if xm is referenced multiple times then, indirectly, so is yk.
If k ≥ m then this is ensured. We express this with the presupposition that

Ψ ` P :: (xm : Am) requires Ψ≥ m

where Ψ≥ m simply means k ≥ m for every yk : Ak ∈Ψ. We will only consider sequents satisfying this
presupposition, so our rules, when they are used to break down a conclusion into the premises, must
preserve this fundamental property which we call the declaration of independence.

In our formulation, channels xm as well as types Am are endowed with modes which must always be
consistent between a channel and its type (xm : Am). We therefore often omit redundant mode annotations
on channels.

The complete set of rules for the typing judgment are given in Fig. 1. We first examine the judgmental
rules that explain the meaning of identity and composition. Identity (rule id) is straightforward: a process
c← a providing c defers to the provider of a, which is possible as long as a and c have the same type
and mode. This is usually called forwarding or identification of the channels a and c.

The usual logical rule of cut corresponds to the parallel composition of two processes with a single
private channel for communication between them. However, ordinary cut is insufficiently general to
describe the situation where a single provider of a channel xm may have multiple clients (C ∈ σ(m)) or
no clients (W ∈ σ(m)). We therefore generalize it to a form of multicut, where the channel xm provided
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by P is known by multiple aliases in the set of channels S in Q as long as the multiplicity of the aliases
is permitted by the mode. This is expressed as |S| ∼ m and is sufficient for static typing. Formally, we
define this condition by 0 ∼ m if W ∈ σ(m), 1 ∼ m always, and k ∼ m for k ≥ 2 if C ∈ σ(m). When
processes execute we will have an even more general situation where one provider has multiple separate
client processes, which is captured in the typing judgment for process configurations (section 3).

Next we come to the various session types. From the logical perspective, these are the propositions
of adjoint logic.

Am,Bm ::= pm | Am(m Bm | Am⊗m Bm | 1m | ⊕m
i∈I

Ai
m |Nm

i∈I
Ai

m | ↑m
k Ak | ↓`mA`

Here, pm stands for atomic propositions at mode m. The other connectives, other than ↑m
k and ↓`m, are

standard linear logic connectives, except that they are only allowed to combine types (propositions) at
the same mode. Since the mode of a connective can be inferred from the modes of the types it connects
(other than for shifts), we omit subscripts on connectives. The operational meaning of these connectives
(as discussed further in section 3) is largely similar to that in past work (e.g. [3]), with (m and ⊗m

sending channels along other channels, 1m sending an end-of-communication message, and ⊕m and Nm

sending labels. The shifts send a simple shift message to signal a transition between modes, either up
(↑m

k ) from k to some m≥ k or down (↓`m) from ` to some m≤ `.
We provide proof terms for the rules in our sequent calculus, as shown in Figure 1. We can then

interpret the proof terms as process expressions, and these rules are used to give the typing judgment for
such processes. Table 1 gives the informal meaning of each such process term.

In general, our process syntax represents an intermediate point between a programmer-friendly syn-
tax and a notation in which it is easy to describe the operational semantics and prove progress and
preservation. When compared to, for instance, SILL [25], the main revisions are that (1) we make chan-
nel continuations explicit in order to facilitate asynchronous communication while preserving message
order [6], and (2) we distinguish between an internal name for the channel provided by a process and
external names connecting it to multiple clients.

Some simple examples. We provide here some small examples with their types; additional examples
which highlight more interesting behavior can be found in appendix D.

First, we have a process that can be written at any mode m, which witnesses that ⊗m is commutative.

(x : Am⊗Bm) ` case x(〈y,x′〉 ⇒ z.〈x′,y〉) :: (z : Bm⊗Am)

If m is a mode that admits contraction, we can write the following process, which witnesses that
Am NBm proves Am⊗Bm in the presence of contraction. ‘%’ starts a comment.

(p : Am NBm) ` {p1, p2}← (νq)(q← p); % {p1, p2}← copy p
x← (νa) p1.π1(a);
y← (νb) p2.π2(b);
z.〈x,y〉 :: (z : Am⊗Bm)

If m is a mode that admits weakening, we can write the following process, which witnesses that
Am⊗Bm proves Am NBm in the presence of weakening.

(x : A⊗B) ` case p ( π1(p1)⇒ case x(〈y,z〉 ⇒
{}← (νa)(a← z); % drop z
p1← y)

|π2(p2)⇒ case x(〈y,z〉 ⇒
{}← (νa)(a← y); % drop y
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Process term Meaning

a← c Identify channels a and c.
S← (νx)P ; Q Spawn a new process P providing channels S to be used by Q. Here, x

is the internal name in P for the channel offered by P, and S is the set of
external names of the same channel as used in Q.

c.`(a) Send the label ` and the channel a along c.
case c(i(xi)⇒ Pi}i∈I) Receive a label i and a channel xi from c, continue as Pi.

c.〈a,b〉 Send the channels a and b along c.
case c(〈x,y〉 ⇒ P) Receive channels x and y from c to be used in P.

c.〈〉 End communication over c by sending a terminal message.
case c(〈〉 ⇒ P) Wait for c to be closed, continue as P.

cm.shift(ak) Send a shift, from mode m to mode k
case cm (shift(xk)⇒ P) Receive a shift from mode m to mode k

Table 1: Informal Meanings of Process Terms

p2← z))
:: (p : ANB)

Given modes k ≤ m, we can write the following processes, which witness that shifts distribute over
implication.

( f : ↓m
k (Am(m Bm)) ` case g (〈x,y〉 ⇒

case f (shift(w)⇒
case x (shift(v)⇒
{z}← (νz)y.shift(z);
w.〈v,z〉))

:: (g : ↓m
k Am(k ↓m

k Bm)

( f : ↑m
k (Am(m Bm)) ` case g (〈x,y〉 ⇒

case y (shift(z)⇒
{v}← (νv)x.shift(v);
{w}← (νw) f .shift(w);
w.〈v,z〉))

:: (g : ↑m
k Am(k ↑m

k Bm)

3 Operational Semantics

In order to describe the computational behavior of process expressions, we need to first give some syntax
for the computational artifacts, which are running processes proc(S,∆,a,P). Such a process executes P
and provides a channel it internally knows as a while using the channels in the channel set ∆. The set of
channels S connects this process to possibly multiple clients.

A process configuration is a multiset of processes:

C ::= proc(S,∆,a,P) | (·) | C C ′
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where we require that all the channels provided by the processes proc(S,∆,a,P) are distinct, i.e., given
objects proc(S,∆1,a,P) and proc(T,∆2,b,Q) in the same process configuration, S and T are disjoint.
We will specify the operational semantics in the form of multiset rewriting rules [5]. That means we
show how to rewrite some subset of the configuration while leaving the remainder untouched. This form
provides some assurance of the locality of the rules.

It simplifies the description of the operational semantics if for any process proc(S,∆,a,P), ∆ consists
of exactly the free channels (other than a) in P. This requires that we restrict the labeled internal and
external choices, ⊕

i∈I
Ai

m and N
i∈I

Ai
m to the case where I 6= /0. Since a channel of empty choice type can

never carry any messages, this is not a significant restriction in practice.
In order to understand the rules of the operational semantics, it will be helpful to understand the

typing of configurations. The judgment has the form Ψ �C :: Ψ′ which expresses that using the channels
in Ψ, configuration C provides the channels in Ψ′. This allows a channel that is not mentioned at all in
C to appear in both Ψ and Ψ′—we think of such a channel as being “passed through” the configuration.

Note that while the configuration typing rules induce an ordering on a configuration, the configuration
itself is not inherently ordered. The key rule is the first: for any object proc(S,∆,a,P) we require that P is
well-typed on some subset of the available channels while the others are passed through. Here we write
Ψ for the set of variables declared in Ψ, which must be exactly those used in the typing of P. Moreover,
externally such a process provides the channels S = {a1

m, . . . ,a
n
m}, all of the same type Am. We use the

abbreviation (S : Am) for a1
m : Am, . . . ,an

m : Am. Finally, we enforce that the number of clients must be
compatible with the mode m of the offered channel, which is exactly that |S| ∼m, as defined in section 2.

|S| ∼ m Ψ′ ` P :: (a : Am)

Ψ Ψ′ � proc(S,Ψ′,a,P) :: Ψ (S : Am)
Proc

Ψ � (·) :: Ψ
Id

Ψ � C :: Ψ′ Ψ′ � C ′ :: Ψ′′

Ψ � C C ′ :: Ψ′′
Comp

The identity and composition rules are straightforward. The empty context (·) provides Ψ if given Ψ,
since it does not use any channels in Ψ or provide any additional channels. Composition just connects
configurations with compatible interfaces: what is provided by C is used by C ′.

The computation rules we discuss in this section can be found in Figure 2. We have elided here the
straightforward rules for shifts which can be found in Appendix C. Remarkably, the computation rules
do not depend on the modes, although some of the rules will naturally only apply at modes satisfying
certain structural properties.

Judgmental rules. The identity rule (written as id
=⇒) describes how an identity process proc(S,{c},a,a←

c) can interact with other processes. We think of such a process as connecting the provider of c to clients
in S, and therefore sometimes call it a forwarding process. A forwarding process interacts with the
provider of c, telling it to replace c with S in its set of clients. In adding S to the set of clients, the
forwarding process accomplishes its goal of connecting the provider of c to S, and so it can terminate.

The cut rule steps by spawning a new process which offers along a fresh set of channels S′, all of
which are used in Q, the continuation of the original process. Here we write ∆P and ∆Q for the set of free
channels in P and Q, respectively.

Structural rules. A process with no clients can terminate (rule
drop
=⇒), but must notify all of the pro-

cesses it uses that they should also terminate. It does so by sending each one a forwarding message,
effectively embodying a cancellation. In concert with the identity rule this accomplishes cascading can-
cellation in the distributed setting. Note that the mode m of channel a must admit weakening in order for
the process on the left-hand side of the rule to be well-typed.
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proc(T ∪{c},∆,a,P)
proc(S,{c},b,b← c)

id
=⇒ proc(T ∪S,∆,a,P)

proc(T,∆P∪∆Q,a,S← (νx)P;Q)
(S′ a fresh set of channels matching S)

cut(S)
=⇒ proc(S′,∆P,x,P)

proc(T,∆Q∪{S′},a,Q[S′/S])

(P not an identity) proc( /0,∆,a,P)
drop
=⇒ proc( /0,{b},a,a← b)b∈∆

proc(S∪T,∆,a,P)
(P not an identity and S,T non-empty)

copy
=⇒

proc({b′,b′′},{b},a,a← b)b∈∆

proc(S,{b′}b∈∆,a,P)
proc(T,{b′′}b∈∆,a,P)

proc({b},{c},a,a.`(c))
proc(S,∆∪{b},a,case b(i(di)⇒ Pi)i∈I)

⊕C
=⇒ proc(S,∆∪{c},a, P̀ [c/d`])

proc({b},∆,a,case a(i(di)⇒ Pi)i∈I)
proc({c},{b},a,b.`(a))

N C
=⇒ proc({c},∆,a, P̀ [a/d`])

proc({b},{c,d},a,a.〈c,d〉)
proc(S,∆∪{b},a,case b(〈x,y〉 ⇒ P)

⊗C
=⇒ proc(S,∆∪{c,d},a,P[c/x,d/y])

proc({b},∆,a,case a(〈x,y〉 ⇒ P)
proc({c},{b,d},a,b.〈d,a〉)

(C
=⇒ proc({c},∆∪{d},a,P[d/x,a/y])

proc({b}, /0,a,a.〈〉)
proc(S,∆∪{b},a,case b(〈〉 ⇒ P))

1 C
=⇒ proc(S,∆,a,P)

Figure 2: Computation Rules for Asynchronous Adjoint Logic

Similarly, a process with multiple clients can spawn a copy of itself, each with a strictly smaller set of
clients (rule

copy
=⇒). If the process P is a replicable service, that is, if it has a negative type N,(, ↑m

k , then
this corresponds to actual process replication. If it has a positive type ⊕, ⊗, 1, ↓m

k , this corresponds to
duplicating a multicast message into copies for different subsets of recipients. The mode m of the channel
a must admit contraction in order for the process on the left-hand side of the rule to be well-typed.

Additive and multiplicative connectives. In the rule for ⊕, the process proc({b},{c},a,a.`(c))
represents the message ‘label ` with continuation c’. After this message has been received, the process
terminates since b was its only client. The recipient selects the appropriate branch of the case construct
and also substitutes the continuation channel c for the continuation variable d`.

The N computation rule is largely similar to that for ⊕, except that communication proceeds in the
opposite direction—messages are sent to providers from clients, rather than from providers to clients as
in the case of ⊕.

The multiplicative connectives ⊗ and( behave similarly to their additive counterparts, except that
rather than sending and receiving labels, they send and receive channels together with a continuation,
and so an extra substitution is required when receiving messages, while the 1 behaves as a nullary ⊗,
allowing us to signal that no more communication is forthcoming along a channel, and to wait for such a
signal before continuing to compute.

Shifts. Operationally, ↑ behaves essentially the same as unary N, while ↓ behaves as unary ⊕. Their
significance lies in the mode shift of the continuation channel that is transmitted, which is required for
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the configuration to remain well-typed.

4 Session Fidelity, Deadlock-Freedom, and Garbage Collection

While we can prove cut elimination for the form of adjoint logic presented in appendix A, from a pro-
grammer’s perspective we are not interested in eliminating all cuts (which would correspond to reducing
under λ -abstractions in a functional language) but rather we block when waiting to receive a message,
analogous to a λ -abstraction waiting for input before it can reduce. What we prove instead are session
fidelity and deadlock-freedom.

Session fidelity. The session fidelity theorem follows from a case analysis on the computation rule
used to get that C ⇒ C ′. In each case, we beak C down to find the processes on which the computation
rule acts, along with some collections of processes which are unaffected by the computation. From these
pieces, we build a proof that Ψ � C ′ :: Ψ′.
Theorem 1 (Session Fidelity). If Ψ � C :: Ψ′ and C ⇒ C ′, then Ψ � C ′ :: Ψ′.

Deadlock-freedom. The progress theorem for a functional language states that an expression is either
a value or it can make a step. Here we do not have values, but there is nevertheless a clear analogue
between, say, a value λx.e that waits for an argument, and a process case x(〈y,z〉 ⇒ P) that waits for an
input. We formalize this in the definition below.
Definition 1. We say that a process proc(S,∆,a,P) is poised on a if:

1. it is a process proc(S,∆,a,P) that sends on a — that is, P is of the form (a._), or

2. it is a process proc(S,∆,a,P) that receives on a — that is, P is of the form (case a (_)).
Intuitively, proc(S,∆,a,P) is poised on a if it is blocked trying to communicate along a. This defini-

tion allows us to state the following progress theorem:
Theorem 2 (Deadlock-Freedom). If (·) � C :: Ψ, then exactly one of the following holds:

1. There is a C ′ such that C ⇒ C ′.

2. Every proc(S,∆,a,P) in C is poised on a.
This follows from an induction on the derivation of (·) � C :: Ψ, although we need to first prove

a lemma that allows us to take advantage of the ordering induced by configuration typing. Writing
C = C ′ proc(S,Ψ′,a.P), we see that either C ′ can step, in which case so can C , or every process in C ′

is poised. Now we carefully distinguish cases on S (empty, singleton, or greater) and apply inversion to
the typing of P to see that in each case the process either is poised, can take a step independently, or can
interact with provider of a channel in Ψ′.

Garbage collection. As we can see from the preservation theorem, the interface to a configuration
never changes. While new processes may be spawned, they will have clients and are therefore not visible
at the interface. This is in contrast to the semantics of shared channels in prior work (for example,
in [3, 20]) where shared channels may show up as newly provided channels. Therefore they may be left
over at the end of a computation without any clients.

This cannot happen here. Initially, at the top level, we envision starting with the configuration below
on the left. Assuming this computation completes, by the progress property and the definition of poised,
computation could only halt with the configuration on the right. In other words: no garbage!

· � proc({c0}, ·,c,P0) :: (c0 : 1) · � proc({c0}, ·,c,c.〈〉) :: (c0 : 1)

One can generalize this to allow nontrivial output by allowing any purely positive type (that is, one
which only uses the fragment of the logic with connectives⊕, ⊗, 1, and ↓), such as ⊕{false : 1, true : 1}.
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5 Conclusion

At this point, our formulation of adjoint logic and its operational semantics seem to provide a good
explanation for a variety of patterns of asynchronous communication. The key behaviors which we can
model (and importantly, model in a uniform fashion) are cancellation, replication, and multicast. We
also obtain a foundation for a system of distributed garbage collection. Moreover, if used linearly, our
semantics coincides with the purely linear semantics developed in prior work.

In parallel work we have also provided a shared memory semantics for a closely related formulation
of adjoint logic with implicit structural rules [21]. In future work, we plan to investigate if the declaration
of independence is sufficient to allow a modular combination of different operational interpretations for
different modes. Of particular interest here would be the semantics with manifest sharing [1].
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A proof of Ak may only depend on hypotheses Bm for m≥ k.
The form of a sequent is

Ψ ` Ak where Ψ≥ k

where Ψ is a collection of antecedents of the form (xi : Bi
mi
) with each mi≥ k, where all the variables xi are

distinct. This critical presupposition is abbreviated as Ψ ≥ k. Furthermore, the order of the antecedents
does not matter since we always allow exchange.

In addition, we require the preorder between modes to be compatible with their structural properties:
that is, m≥ k implies σ(m)⊇ σ(k). This is necessary to guarantee cut elimination.

Finally, we may define fragments by restricting the set of propositions we consider for a given mode.
The propositions at each mode are constructed uniformly, remaining within the same mode, except

for the shift operators that move between modes. They are ↑m
k Ak (pronounced up), which is a proposition

at mode m and requires m ≥ k; and ↓`mA` (down), which is also a proposition at mode m, and which
requires `≥ m.

At this point we can already write out the syntax of propositions.

Am,Bm ::= pm | Am(m Bm | Am⊗m Bm | 1m | ⊕m
i∈I

Ai
m |Nm

i∈I
Ai

m | ↑m
k Ak | ↓`mA`

Here pm stands for atomic propositions at mode m. Due to the needs of our operational interpretation,
we generalize internal and external choice to n-ary constructors parameterized by an index set I. So we
write A1

m⊕A2
m = ⊕

i∈{1,2}
Ai

m.

Remarkably, the right and left rules in the sequent calculus defining the logical connectives are the
same for each mode and are complemented by the permissible structural rules.

A.1 Judgmental and structural rules

The rules for adjoint logic can be found in fig. 3, in which we give a more standard presentation of the
logic than that used by the operational semantics (fig. 1). We begin with the judgmental rules of identity
and cut, which express the connection between antecedents and succedents. Identity says that if we
assume Am we are allowed to conclude Am. Cut says the opposite: if we can conclude Am we are allowed
to assume Am as long as the declaration of independence is respected.

As is common for the sequent calculus, we read the rules in the direction of bottom-up proof con-
struction. For the cut rule, this means we should assume that the conclusion Ψ Ψ′ `Ck is well-formed
and, in particular, that Ψ ≥ k and Ψ′ ≥ k. Therefore, if we check that m ≥ k, then we know that the
second premise, (x : Am) Ψ′ `Ck, will also be well-formed. For the first premise to be well-formed, we
need to check outright that Ψ≥ m.

The structural rules of weakening and contraction just need to verify that the mode of the principal
formula permits the rule.

A.2 Additive and multiplicative connectives

The logical rules defining the additive and multiplicative connectives are simply the linear rules for all
modes, since we have separated out the structural rules. Except in one case,(L, the well-formedness of
the conclusion implies the well-formedness of all premises.

As for(L, we know from the well-formedness of the conclusion that Ψ ≥ k, Ψ′ ≥ k, and m ≥ k.
These facts by themselves already imply the well-formedness of the second premise, but we need to
check that Ψ′ ≥ m in order for the first premise to be well-formed.
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(x : Am) ` Am
id

Ψ≥ m≥ k Ψ ` Am (x : Am) Ψ′ `Ck

Ψ Ψ′ `Ck
cut

W ∈ σ(m) Ψ `Ck

Ψ (x : Am) `Ck
weaken

C ∈ σ(m) Ψ (y : Am) (z : Am) `Ck

Ψ (x : Am) `Ck
contract

` ∈ I Ψ ` A`
m

Ψ ` ⊕
i∈I

Ai
m
⊕R`

Ψ (y : Ai
m) `Ck for each i ∈ I

Ψ (x : ⊕
i∈I

Ai
m) `Ck

⊕L

Ψ ` Ai
m for each i ∈ I

Ψ ` N
i∈I

Ai
m

NR
` ∈ I Ψ (y : A`

m) `Ck

Ψ (x : N
i∈I

Ai
m) `Ck

NL`

Ψ ` Am Ψ′ ` Bm

Ψ Ψ′ ` Am⊗Bm
⊗R

Ψ (y : Am) (z : Bm) `Ck

Ψ (x : Am⊗Bm) `Ck
⊗L · ` 1m

1R
Ψ `Ck

Ψ (x : 1m) `Ck
1L

(x : Am) Ψ ` Bm

Ψ ` Am( Bm
(R

Ψ′ ≥ m Ψ′ ` Am Ψ (y : Bm) `Ck

Ψ Ψ′ (x : Am( Bm) `Ck
(L

Ψ ` Ak

Ψ ` ↑m
k Ak

↑R
k ≥ ` Ψ (y : Ak) `C`

Ψ (x : ↑m
k Ak) `C`

↑L Ψ≥ m Ψ ` Am

Ψ ` ↓m
k Am

↓R
Ψ (y : Am) `C`

Ψ (x : ↓m
k Am) `C`

↓L

Figure 3: Rules of Adjoint Logic

A.3 Shifts

The shifts represent the most interesting aspects of the rules. Recall that in ↑m
k Ak and ↓m

k Am we require
that m ≥ k. We first consider the two rules for ↑. We know from the conclusion of the right rule that
Ψ ≥ m and from the requirement of the shift that m ≥ k. Therefore, as ≥ is transitive, Ψ ≥ k and the
premise is always well-formed. This also means (although we do not prove it here) that this rule is
invertible.

From the conclusion of the left rule, we know Ψ ≥ `, m ≥ `, and m ≥ k. This does not imply that
k ≥ `, which we need for the premise to be well-formed and thus needs to be checked. Therefore, this
rule is non-invertible.

The downshift rules are constructed analogously, taking only the declaration of independence and
properties of the preorder ≤ as guidance. Note that in this case the left rule is always applicable (that is,
invertible), while the right rule is non-invertible.

A.4 Multicut

Because we have an explicit rule of contraction, cut elimination does not follow by a simple structural
induction. However, we can follow Gentzen [9] and allow multiple copies of the same proposition to be
removed by the cut, which then allows a structural induction argument. In anticipation of the operational
interpretation, we have labeled our antecedents with unique variables, so the generalized form of cut
called multicut (see, for example, [17]) can remove n ≥ 0 copies. Of course, such cuts are only legal if
the propositions that are removed satisfy the necessary structural rules. For n = 0, we require that the



K. Pruiksma, F. Pfenning 13

mode m support weakening.

Ψ≥ m≥ k W ∈ σ(m) Ψ ` Am Ψ′ `Ck

Ψ Ψ′ `Ck
cut( /0)

For n = 1, we obtain the usual cut rule and no special requirements are needed.

Ψ≥ m≥ k Ψ ` Am (x : Am) Ψ′ `Ck

Ψ Ψ′ `Ck
cut({x})

For n≥ 2, the mode of the cut formula must admit contraction.

C ∈ σ(m)
Ψ≥ m≥ k Ψ ` Am (S∪{x,y} : Am) Ψ′ `Ck

Ψ Ψ′ `Ck
cut(S∪{x,y})

Here, we have used the abbreviation ({x1, . . . ,xn} : Am) to stand for (x1 : Am) . . .(xn : Am).
Note that each of these rules has a side condition that can be interpreted informally as stating that the

number of antecedents cut must be compatible with the mode m: if there are no antecedents removed, m
must admit weakening, and if we remove two or more, m must admit contraction. This is exactly |S| ∼m
as defined in section 2.

This allows us to write down a single rule encompassing all three of the above cases for multicut:

Ψ≥ m≥ k |S| ∼ m Ψ ` Am (S : Am) Ψ′ `Ck

Ψ Ψ′ `Ck
cut(S)

Note that the standard cut rule is the instance of the multicut rule where |S|= 1, and so proving multicut
elimination for adjoint logic also yields cut elimination for the standard cut rule.

A.5 Identity Expansion and Cut Elimination

We present standard identity expansion and cut elimination results as evidence for the correctness of
the sequent calculus as capturing the meaning of the logical connectives via their inference rules. Cut-
free proofs will always decompose propositions when read from conclusion to premise and thus yield a
conservative extension result. Finally, the fine detail of the proof is significant because the cut reductions,
which constitute the essence of the proof, are the basis for the operational semantics.

Theorem 3 (Identity Expansion). If Ψ ` Am, then there exists a proof that Ψ ` Am using identity rules
only at atomic propositions, which is cut-free if the original proof is.

Proof. We begin by proving that for any formula Am, there is a cut-free proof that (x : Am) ` Am using
identity rules only at atomic propositions. This follows easily from an induction on Am.

Now, we arrive at the theorem by induction over the structure of the given proof that Ψ ` Am.

Theorem 4 (Cut Elimination). If Ψ ` Am, then there is a cut-free proof of Ψ ` Am.

Proof. This proof follows the structure of many cut-elimination results. First we prove admissibility of
multicut in the cut-free system. This is established by a straightforward nested induction, first on the
proposition Am and then simultaneously on the structure of the deductions D and E . This is followed
by a simple structural induction to prove cut elimination, using the admissibility of (multi)cut when it is
encountered. If we ignore the modes, this proof is very similar to the original proof of Gentzen [9].
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Corollary 1. Adjoint logic is a conservative extension of each of the logics at a fixed mode. That is, if
Ψ ` Am is a sequent purely at mode m (in that every type in Ψ is at mode m and neither Am nor the types
in Ψ make use of shifts), then Ψ ` Am is provable using the rules of adjoint logic iff it is provable using
the rules which define the logic at mode m.

A.6 Adjunction properties

As yet, we have not discussed the meaning of the name “adjoint logic”. This can be justified by showing
that for fixed k ≤ m, ↓m

k and ↑m
k yield an adjoint pair of functors ↓m

k a ↑m
k . Since prior results (see [2] and

[15]) already establish this property and we have little new to contribute here, we omit the details here.

B Asynchronous Adjoint Logic

As has been observed before, intuitionistic and classical linear logics can be put into a Curry–Howard
correspondence with session-typed communicating processes [3, 26, 4]. A linear logical proposition
corresponds to a session type, and a sequent proof to a process expression. The transition rules of the
operational semantics derive from the cut reductions.

Under the intuitionistic interpretation a sequent proof1 of

(x1 : A1
L) · · ·(xn : An

L) ` (x : AL)

corresponds to a process P that provides channel x and uses channels xi. The types of the channels
prescribe the pattern of communication: in the succedent, positive types (⊕,⊗,1) will send and nega-
tive types (N,() will receive. In the antecedent, the roles are reversed. Cut corresponds to parallel
composition of two processes, with a private channel between them, while identity simply equates two
channels.

B.1 Enforcing Asynchronous Communication

Under this interpretation, a cut of a right rule against a matching left rule allows computation to proceed
by mimicking the cut reduction from the proof of Theorem 4. For example, a cut at type ⊕

i∈I
Ai

L is replaced

by a cut at type A`
L for some `∈ I. This corresponds to passing a message (‘`’) from the process providing

x : ⊕
i∈I

Ai
L to the process using x. By its very nature, this form of cut reduction is synchronous: both provider

and client proceed simultaneously because the channel x : A` connects the two process continuations.
For realistic languages, and also for the paradigm to smoothly extend to the case of adjoint logic

where some modes permit weakening and contraction, we would like to prescribe asynchronous commu-
nication instead.

We observe that the asynchronous π-calculus replaces the usual action prefix for output x〈y〉.P by a
process expression x〈y〉 without a continuation, thereby ensuring that communication is asynchronous.
Such a process represents the message y sent along channel x. Under our interpretation, the continuation
process corresponds to the proof of the premise of a rule. Therefore, if we can restructure the sequent
calculus so that the rules that send (⊕R, 1R, ⊗R, ↓R, NL, (L, ↑L) have zero premises, then we may
achieve a similar effect.

1for now on the linear fragment, and also labeling the succedent with a fresh variable
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As an example, we consider the two right rules for ⊕. Reformulated as axioms, they become

A ` A⊕B
⊕R0

1 B ` A⊕B
⊕R0

2

In the presence of cut, these two rules together produce the same theorems as the usual two right rules.
In one direction, we use cut

∆ ` A A ` A⊕B
⊕R0

1

∆ ` A⊕B
cutA

∆ ` B B ` A⊕B
⊕R0

2

∆ ` A⊕B
cutB

and in the other direction we use identity

A ` A
idA

A ` A⊕B
⊕R1

B ` B
idB

B ` A⊕B
⊕R2

to derive the other rules.
Returning to the π-calculus, instead of explicitly sending a message a〈b〉.P we spawn a new process

in parallel a〈b〉 |P. This use of parallel composition corresponds to a cut; receiving a message is achieved
by cut reduction:

A ` A⊕B
⊕R0

1

Q1
∆′,A `C

Q2
∆′,B `C

∆′,A⊕B `C
⊕L

∆′,A `C
cutA⊕B

=⇒
Q1

∆′,A `C

We see the cut reduction completely eliminates the cut in one step, which corresponds precisely to
receiving a message. In this example the message would be π1 since the axiom ⊕R0

1 was used; for ⊕R0
2

it would be π2.
In summary, if we restructure the sequent calculus so that the non-invertible rules (those that send)

have zero premises, then (1) messages are proofs of axioms, (2) message sends are modeled by cut, and
(3) message receives are a new form of cut reduction with a single continuation.

In the process we give something up, namely the traditional cut elimination theorem. For example,
the sequent · ` 1⊕1 has no cut-free proof since no rule matches this conclusion. The saving grace is that
we can reach a normal form where each cut just simulates the usual rules of the sequent calculus. This
can be shown by translation to the ordinary sequent calculus, applying cut elimination, and translating
the result back. Proofs in this normal form have the subformula property. Perhaps more importantly, we
have session fidelity and deadlock freedom (section 4) for the corresponding process calculus even in
the presence of recursive types and processes, which is ultimately what we care about for the resulting
concurrent programming language.

B.2 Eliminating Weakening and Contraction

We have introduced multicut entirely with the standard motivation of providing a simple proof of the
admissibility of cut using structural induction. Surprisingly, we can streamline the system further by
using multicut to eliminate weakening and contraction from the logic altogether, as in the system we use
as the basis for our typing rules (fig. 1).
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Consider a mode m with C∈σ(m). Then contraction is a simple instance of multicut with an instance
of the identity rule.

(x : Am) ` Am
id

Ψ (y : Am) (z : Am) `Ck

Ψ (x : Am) `Ck
cut({y,z})

Similarly, for a mode m with W ∈ σ(m), weakening is also an instance of multicut.

(x : Am) ` Am
id

Ψ `Ck

Ψ (x : Am) `Ck
cut( /0)

Cut reductions in the presence of contraction entail many residual contractions, as is evident already
from Gentzen’s original proof. Under our interpretation of contraction above, these residual contractions
simply become multicuts with the identity. The operational interpretation of identities then plays three
related roles: with one client, an identity achieves a renaming, redirecting communication; with two
or more clients, an identity implements copying; with zero clients, its effect is cancellation or garbage
collection. The central role of identities can be seen in full detail in Figure 2, once we have introduced
our notation for processes and process configurations.

C Computation Rules for Shifts

proc({bk},{cm},ak,ak.shift(cm))
proc(S,∆∪{bk},e,case bk(shift(dm)⇒ P))

↓m
k C
=⇒ proc(S,∆∪{cm},e,P[cm/dm])

proc({bm},∆,em,case em(shift(dk)⇒ P))
proc({ck},{bm},ak,bm.shift(ak))

↑m
k C
=⇒ proc({ck},∆,ak,P[ak/dk])

Figure 4: Computation Rules for Shifts

We present the computation rules for shifts with modes marked explicitly on the relevant channels
(fig. 4). Channels whose modes are unmarked may be at any mode (provided, of course, that the decla-
ration of independence is respected).

The messages shift(ak) or shift(cm) should be thought of as signaling a transition between modes —
to mode k for the former, and to mode m for the latter. Whether the transition is up or down depends on
which direction the message is being sent in. As with other messages (in particular, the messages for ⊕
and N), the continuation channels are made explicit.

D Program Examples

In the examples that follow, we will work with two modes, L and U, with L < U, σ(L) = /0, and
σ(U) = {W,C}. In these examples we also use recursively defined types and processes without formally
defining these constructs, since they are well-known from the literature and orthogonal to our concerns
(see, for example, [25]).
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D.1 Example: Circuits

We call channels cU that are subject to weakening and contraction shared channels. As an example that
requires shared channels we use circuits. We start by programming a nor gate that processes infinite
streams of zeros and ones.
bits∞

U =⊕{b0 : bits∞
U ,b1 : bits∞

U }
x : bits∞

U ,y : bits∞
U ` nor :: (z : bits∞

U )

z← nor← x,y =
casex (b0(x′)⇒ casey (b0(y′)⇒ z′← z.b1(z′) ;

z′← nor← x′,y′

| b1(y′)⇒ z′← z.b0(z′) ;
z′← nor← x′,y′ )

| b1(x′)⇒ casey (b0(y′)⇒ z′← z.b0(z′) ;
z′← nor← x′,y′

| b1(y′)⇒ z′← z.b0(z′) ;
z′← nor← x′,y′ ))

This is somewhat verbose, but note that all channels here are shared. For this particular gate they could
also be linear because they are neither reused nor canceled. This illustrates that programming can be
uniform at different modes, which is a significant advantage of our system over systems of session types
based on linear logic with an exponential !A. Our implementation of nor has the property that for bits A,
B, and C with C = ¬(A∨B), the following transitions are possible and characterize nor:
proc({a},{a′},a,a.A(a′)),proc({b},{b′},b,b.B(b′)),proc(S,{a,b},c,c← nor← a,b)
−→∗ proc(c′,{a′,b′},c′,c′← nor← a′,b′),proc(S,{c′},c,c.C(c′)) (c′ fresh)

When we build an or-gate out of a nor-gate we need to exploit sharing to implement simple negation.
In the example below, u and u′ are both names for the same shared channel. The process invoked as
nor← x,y will multicast a message to the clients of u and u′.
x : bits∞

U ,y : bits∞
U ` or :: (z : bits∞

U )

z← or← x,y =
{u,u′}← nor← x,y
z← nor← u,u′

An analogous computation to the above is possible, except that at an intermediate stage of the computa-
tion, we will also have a shared channel d carrying the (multicast) message proc({u,u′},{d′},d,d.D(d′))
with D = ¬(A∨B).

D.2 Example: Map

Mapping a process over a list allows us to demonstrate the use of replicable services, as well as cancella-
tion. We define a whole family of types indexed by a type A, which is not formally part of the language
but is expressed at the metalevel.
listA =⊕{cons : A⊗ listA,nil : 1}
Such a list should not be viewed as a data structure in memory. Instead, it is a behavioral description
of a stream of messages. A process that maps a channel of type A to one of type B will itself have type
A( B. However, this process must be shared since it needs to be applied to every element. We therefore
obtain the following type and definition, where all channels not annotated with a mode subscript are at
mode L.
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fU : ↑UL (AL( BL), l : listA ` map :: (k : listB)
k← map← fU, l =
case l (cons(l′)⇒ 〈x, l′′〉 ← l′ ; % receive element x : A with continuation l′′

{ f ′U, f ′′U }← (νa)a← fU % duplicate the channel fU
f ′← f ′U.shift( f ′) ; % obtain a fresh linear instance f ′ of f ′U
y← f ′.〈x,y〉 ; % send x to f ′, response will be along fresh y
k′← k.cons(k′) ; % select cons
k′′← k′.〈y,k′′〉 ; % send y with continuation k′′

k′′← map← f ′′U , l
′′ % recurse with continuation channels

| nil(l′)⇒ /0← (νa)a← fU % Cancel the channel fU
k′← k.nil(k′) ; % select nil
〈〉 ← l′ ; % wait for l′ to close
k′.〈〉) % close k′ and terminate

In this example, fU is a replicable and cancelable service. In the case of a nonempty list, we create two
names for the channel fU — one to use immediately and one to pass to the recursive call. Note that the
service itself remains a single service with two clients until the message shift( f ′) is sent to it, at which
point it replicates itself, creating one copy to handle this request and leaving another to deal with future
requests. In the case of an empty list, we have no elements to map over, and so we do not need to use fU.
As such, we cancel it before continuing.
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