
Outlier Detection Bias Busted: Understanding Sources of
Algorithmic Bias through Data-centric Factors

Xueying Ding

Carnegie Mellon University

Pittsburgh, PA, USA

xding2@cs.cmu.edu

Rui Xi

Carnegie Mellon University

Pittsburgh, PA, USA

rxi2@andrew.cmu.edu

Leman Akoglu

Carnegie Mellon University

Pittsburgh, PA, USA

lakoglu@cs.cmu.edu

ABSTRACT
The astonishing successes of ML have raised growing concern

for the fairness of modern methods when deployed in real world

settings. However, studies on fairness have mostly focused on su-

pervised ML, while unsupervised outlier detection (OD), with nu-

merous applications in finance, security, etc., have attracted little

attention. While a few studies proposed fairness-enhanced OD

algorithms, they remain agnostic to the underlying driving mech-

anisms or sources of unfairness. Even within the supervised ML

literature,there exists debate on whether unfairness stems solely

from algorithmic biases (i.e. design choices) or from the biases

encoded in the data on which they are trained.

To close this gap, this work aims to shed light on the possible

sources of unfairness in OD by auditing detection models under

different data-centric factors.By injecting various known biases

into the input data—as pertain to sample size disparity, under-

representation, feature measurement noise, and group membership

obfuscation—we find that the OD algorithms under the study all

exhibit fairness pitfalls, although differing in which types of data

bias they are more susceptible to. Most notable of our study is to

demonstrate that OD algorithm bias is not merely a data bias prob-

lem. A key realization is that the data properties that emerge from

bias injection could as well be organic—as pertain to natural group

differences w.r.t. sparsity, base rate, variance, and multi-modality.

Either natural or biased, such data properties can give rise to un-

fairness as they interact with certain algorithmic design choices.

Ourwork provides a deeper understanding of the possible sources

of OD unfairness, and serves as a framework for assessing the un-

fairness of future OD algorithms under specific data-centric factors.

It also paves the way for future work on mitigation strategies by

underscoring the susceptibility of various design choices.
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1 INTRODUCTION
With ML claiming its unprecedented place in the society, there

exists growing concern for its responsible use and potential harm

to already under-served societal groups that may exacerbate the

pre-existing inequities. While much work has been dedicated to

measuring and mitigating unfairness of ML algorithms, they remain

mostly agnostic to the underlying sources of unfairness—treating

the symptom rather than the cause. In fact, the literature is quite

short on understanding the underlying sources of algorithmic un-
fairness, i.e. what drives unfairness to emerge in the first place.

Data is widely acknowledged as the key influencer of the fairness

of the algorithms that are trained on it [4, 28]. However, what kind

of data-centric factors give rise to certain algorithmic behavior is

not well understood. Moreover, the community has mainly focused

on supervised ML while the fairness of unsupervised algorithms

such as for outlier detection (OD) has attracted significantly less

attention, despite the numerous applications and punitive decision-

making scenarios that OD algorithms are employed in, such as

fraud detection, policing and surveillance, to name a few.

In this paper, we aim to contribute to a deeper understanding of

the possible sources of algorithmic unfairness for unsupervised OD.

Specifically, we empirically investigate the role of various types of

data bias as potential contributors to OD unfairness. Our findings

highlight the shortcomings of several established OD algorithms

in the presence of four different carefully injected data biases in

a controlled simulation framework. Data biases that we study are

namely, group sample size disparity, target under-representation,

feature measurement noise, and group membership obfuscation.

In addition, we identify certain data-centric properties—in par-

ticular, those related to group-wise differences in sparsity, base

rate, variance, and multi-modality—that emerge as a result of each

specific data bias, making it easier to understand the interaction

between such data properties and the underlying working assump-

tions of a given OD algorithm. Perhaps more importantly, we re-

mark that such data properties as pertain to group differences that

emerge from data bias could as well be organic, i.e. natural charac-

teristics of the input data. Then our results, when seen through the

lens of data-centric factors (and not just from the perspective of data

bias), provide evidence toward moving beyond the “algorithmic

bias is a data problem” debate [17].

Our work is one of the few that presents a rigorous empirical

framework toward understanding the effect of various data-centric

factors on algorithmic bias, and the first one specifically focusing

on unsupervised OD algorithms. We summarize our main contri-

butions as follows. Fig. 1 provides an overview.

• Data bias as possible source of harm (§2): We curate a

list of potential data biases in the real world that may lead

to OD unfairness; as pertain to group sample size disparity

(inducing minority samples), target under-representation

(distorting base rates), feature measurement noise (leading

to extreme values), and group membership obfuscation (giv-

ing rise to within-group subpopulations/multi-modality).

• Fairness (stress-)testing popular OD models (§3): In

extensive controlled simulation settings whereby we in-

ject known data biases, we (stress-)test several established

OD techniques (both fairness-unaware as well as fairness-

enhanced) w.r.t. both fairness and performance metrics.

• Extensive empirical analysis (§4): Our analysis shows

that all OD methods under study are susceptible to data
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Figure 1: Overview of our study: Starting with simulated unbiased data containing outliers, we inject known types of bias
into the data in a controlled setup. We then evaluate the fairness and performance of outlier detection (OD) models under
various measures and report any vulnerabilities. We study four different OD models (both shallow&deep, and both fairness-
unaware&fairness-enhanced), under four different types of data bias with potential implications on OD: size disparity, target
under-representation, measurement error, membership obfuscation (§2.2). These data biases are graphically illustrated when
data points (shown with ◦) are composed of two protected groups (in color; red & blue). Outliers are shown with cross-marks (✗).

bias, although their robustness vary notably depending on

the type of bias. This suggests that without a clear under-

standing of the type of biases a dataset may exhibit, it would

be a challenge to choose an effective OD model to employ.

Further, not only data bias may be a source of OD unfair-

ness, but in some cases it also severely harms the overall

detection performance.

• Theoretical analysis (§5): We provide detailed analyses

of how certain data biases interact with the working mecha-

nism of various OD models, leading them to incur disparate

impact on different populations in the data.

• Evidence to move beyond “(OD) algorithm bias is a
data problem” (§5): A key understanding derived from

our study is that what drives OD algorithm bias is mainly

the misalignment between an algorithm’s working assump-

tions/design choices and certain input data characteristics;

e.g. whether the detector respects density variability in the

feature space or is susceptible to outlier masking (the notion

that outliers get hidden when clustered). Crucially, while

such data-centric factors may arise as a result of data bias,

they could also simply be organic. This implies that OD

algorithm bias can arise due to reasons beyond data bias.

Accessibility and Reproducibility: All code and datasets are

open-sourced at https://anonymous.4open.science/r/ODbias.

2 DATA BIAS: TYPES AND SOURCES
2.1 Preliminaries
In general, algorithmic decisions could be punitive (e.g. impris-

oning) or assistive (e.g. loan approval). Our work focuses on the

former, considering the scenarios where outlier detection (OD) is

often applied on population data to flag risky individuals.

For simplicity, we represent a population as composed of two

protected groups, associated with a sensitive attribute𝐺 ∈ {𝑎, 𝑏}.
We assume group 𝑏 is the underprivileged. We denote by X ∈ R𝑑
and 𝑌 ∈ {0, 1} the sets of input features and the target, respectively.

In OD scenarios𝑌 translates to true risk, and the task is to effectively
flag the individuals with 𝑌 = 1. Let 𝑆 ∈ R indicate the output

outlierness score of an OD algorithm and 𝑂 ∈ {0, 1} is the decided
outlier label based on 𝑆 given a threshold.

Given the shorthand notation, the base rate (also, prevalence) of
a group is defined as 𝑏𝑟𝐺 = 𝑃 (𝑌 = 1|𝐺). On the other hand, the

flag rate of a group by a detector is given as 𝑓 𝑟𝐺 = 𝑃 (𝑂 = 1|𝐺).

2.2 Four Types of Data Bias
Based on a survey of the algorithmic fairness literature that covers

possible sources of algorithmic harm [3, 28, 38, 42], we curated a

list of data biases most relevant to OD applications in the real world.

We provide an overview of four such biases in the context of OD

as follows. We also discuss possible sources—the data collector, the

measurement instrument or the population—that may drive the

presence of each type of bias in the data. Fig. 1 presents a flowchart

of our work, along with a graphical illustration of the data biases

discussed in this section.

2.2.1 Group sample size bias: This type of bias reflects the

real-world scenarios with data scarcity for the underprivileged sub-

population (group 𝑏 in our study). In effect, group 𝑏 with a smaller

size constitutes the statistical minority samples in the dataset. It is

easy to see that OD would be susceptible to this bias as its goal is

identifying outliers, i.e. statistically rare instances in the data.

The presence of sample size bias can be attributed to the data

collector whom might have failed to collect enough samples for

some group(s). It may also be driven by the population itself, where

some groups are in minority by nature.

2.2.2 Target under-representation bias: This type of bias is

similar to the sample size bias, but only impacting the positively-
labeled (i.e. target) individuals in the underprivileged group 𝑏. In

particular, the rate of positive instances (i.e. the base rate) appear

smaller in group 𝑏 than that in group 𝑎. In effect, base rates are

purported and the assumption of equal base rates across groups

may no longer hold.

https://anonymous.4open.science/r/ODbias
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This bias could stem in the real world from the measurement

instrument doing a poor job in “sensing” such individuals, as well

as from the fact that such individuals may be better at “hiding” from

being sampled. Alternately, the base rates may simply be different

between the groups by nature.

2.2.3 Featuremeasurement or response bias: This type of bias

is reflective of systematically erroneous or noisy measurements in

the real world associated with individuals from the underprivileged

group. Such errors and noise may inflate the variance of certain

features, and thereby increasing the propensity of extreme values.

Extreme values appearing as outliers, in turn, makes OD susceptible

to this type of data bias.

The measurements for some group(s) may also display system-

atic under- or over-estimations for certain features. Consider for

example the number of (re)arrests when used as a feature for risk

assessment in various domains, which could be over-represented

for African-Americans due to racial disparities in arrests [35]. An-

other example is the systematically under-estimated SAT scores for

African-American students due to implicit biases in the questions

that lead to racial disparities in outcomes [32].

The source of this bias is often the measurement instrument

(such as questions in the survey or test, the camera, the lab test,

etc.) which, for various reasons, is not well tuned to measuring

underprivileged individuals accurately. In other cases, the source

could be the population itself due to self-reporting; for example,

when surveys are used to collect the measurements, some group(s)

may provide more erroneous or noisy responses.

2.2.4 Group-membership obfuscation bias: This bias mimics

the real world scenarios in which some underprivileged individuals

misreport their group membership for various reasons including

fear of disclosure or discrimination [42]. In addition to obfuscating

race/gender/etc., we expect them to also alter several of their demo-

graphic/proxy features that correlate with the sensitive attribute,

to camouflage and better align with this obfuscation. For example,

individuals who falsify race may also misreport their country of

origin, often trying to resemble in some aspects to those individuals

in privileged groups. While obfuscation may occur in all groups,

we assume it to be more prevalent for the underprivileged.

This bias, stemming from the population forging various feature

values, induces “fragments” in the data, i.e. subgroups within a

group. In the presence of obfuscation, an underprivileged group

would break into smaller subgroups, resembling other groups in

some ways but not others. This can be considered as heterogeneity

or multi-modal distribution within the group. Interestingly, such

heterogeneity, i.e. a group composed of various different subpopu-

lations, could be an organic property (e.g. in a large country like

India, not all Indians are alike). In such a case, it can be seen as

a labeling misstep attributed to the data collector to file multiple

heterogeneous subgroups under a single sensitive attribute value.

Remarks. The four data biases we focus on in this study are not

necessarily comprehensive. While there may be other OD-relevant

data issues that may trigger unfair OD outcomes, there are also

other known data biases that are not applicable in OD settings. For

example, the problem of “tainted” (historical) labels does not apply,

since unsupervised OD algorithms do not train on 𝑌 . Moreover,

train/test data distribution mismatch problem is not a concern, as

we consider transductive OD wherein outliers are to be detected in

a given dataset, with test data being the same as train data. While

all possible sources of algorithmic harm are not fully understood,

it is our plan to expand our current list in the future.

3 OD UNDER DATA BIAS: SANDBOX SETUP
Our goal is to study the effectiveness of OD algorithms under

counterfactually injected bias into the simulated unbiased data.

Thus, we restrict our study to simulated data. This choice is inten-

tional, because real-world datasets lack an in-depth understanding

of whether they exhibit any data bias or what types of bias(es) they

may exhibit if any. In this regard, our work parallels the study by

Akpinar et al. [3] which performed similar fairness and fidelity

analyses on simulated controlled environments for classification.

In this section, we present the details of our (unbiased) data

simulation (§3.1), bias injection steps (§3.2), the OD models under

study (§3.3), and the evaluation metrics (§3.4).

3.1 Data Simulation
To ensure we start with an unbiased dataset (into which we will

inject specific, known biases), we simulate a population with the

input features and the target described as follows.

The individuals are represented in a feature space consisting of

three types of variables; X = X𝑔 ∪ X𝑐 ∪ X𝑜 , where
• 𝑋𝑔 ∈ X𝑔 denotes the set of proxy variables that correlate

with 𝐺roup membership 𝐺 , but not with the target 𝑌 ;

• 𝑋𝑐 ∈ X𝑐 depicts the “𝐶ulprit” or incriminating variables

that are relevant (to the OD task) and hence correlate with

or are reflective of the target 𝑌 ; and

• 𝑋𝑜 ∈ X𝑜 capturing the non-incriminating 𝑂cclusion (or

irrelevant) variables that neither correlate with 𝐺 nor 𝑌 .

The inclusion of such attributes make the OD task more

realistic and non-trivial, as outliers often hidewithin feature

subspaces, i.e. they stand out only w.r.t. a few relevant (but

not all) features (in this case 𝑋𝑐 ).

Note that the culprit variables associate with true risk (i.e. the

target) by design, while the proxy variables do not. This implies that

we assume equal base rates across groups in the unbiased dataset.

As we will discuss later, this may not always be the case in real

world OD settings, where unequal base rates across groups (e.g.

Internet crime propensity by ethnicity) may exist by nature.

Definition 1 (Fair Outlier Detection). In terms of𝑋𝑔, 𝑋𝑐 and
𝑋𝑜 , the output of an OD algorithm is considered fair as long as

𝑃 (𝑂 = 1|𝑋𝑐 , 𝑋𝑔, 𝑋𝑜 ) = 𝑃 (𝑂 = 1|𝑋𝑐 ) , (1)

that is, when the assigned outlier labels are independent of group
membership/proxy variables as well as irrelevant features, given the
incriminating variables.

To stress-test the fairness of OD algorithms in a controlled set-

ting, we simulate an equal number of (1000) samples per group,

and also set equal base rates, 𝑏𝑟𝑎 = 𝑏𝑟𝑏 at 0.05 or 0.1, since outliers

are rare. We use Gaussians to simulate the inliers, with group-wise

means respectively at 5 and 20 for X𝑔 , and zero-mean for X𝑐 , both
with unit standard deviation.X𝑜 is drawn from a standard Gaussian

uniformly at random.
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We create two separate datasets by injecting clustered (repet-

itive or collusive) and scattered outliers, respectively. Clustered

outliers have the same distribution forX𝑔 andX𝑜 as with the inliers,

but in X𝑐 they are drawn from a Gaussian with a higher mean of

3. Scattered outliers are created by randomly sampling a subset of

the dimensions in X𝑐 , and inflating the variance (originally, 1) by a

factor of {3, 6, 9, 12, 15} chosen uniformly at random per outlier.

Finally, we set an equal number of dimensions (5) for X𝑔 , X𝑐 ,
and X𝑜 . While it remains a valuable direction to investigate the

severity of unfairness that data bias may drive as a function of

the relative number of the proxy and irrelevant variables to the

number of incriminating variables, we focus on unfairness for the

case when they all have equal proportions in the feature space.

3.2 Data Bias Injection
The crux of our sandbox is the study of OD algorithms under differ-

ent types of known data biases, as discussed in §2. We describe the

steps for injecting our unbiased data with each bias type as follows.

For brevity, additional details are given in Apdx. §A.

1. Group sample size bias: With probability 𝛽𝑠 , we inde-

pendently exclude samples from the dataset where 𝐺 = 𝑏.

This leads to sample size disparity between groups.

We inject varying degrees of sample size disparity using

𝛽𝑠 ∈ {0.01, 0.05, 0.10, 0.2, 0.4, 0.6, 0.8}.
2. Target under-representation bias: With probability

𝛽𝑢 , we independently exclude samples where 𝐺 = 𝑏 and
𝑌 = 1. This is sample size bias impacting only the positively-

labeled (i.e. target) individuals in the underprivileged group.

We study bias 𝛽𝑢 ∈ {0.01, 0.05, 0.10, 0.2, 0.4, 0.6, 0.8}.
3. Feature measurement or response bias: To reflect mea-

surement noise, we inject variance-shift; where we inflate

(i.e. multiply) the variance of the distributions of X𝑔 and X𝑐
for 𝐺 = 𝑏 by a factor of 𝛽𝑣 . To ensure that the supports of

the group-wise distributions remain separate after variance

inflation, we set the means ofX𝑔 to 5 and 20 for group 𝑎 and
𝑏, respectively. Similarly, to be able to distinguish outlier-

vs-inlier distributions upon inflation, we set the means of

X𝑐 to 0 and 10 for inliers and outliers, respectively. We vary

𝛽𝑣 ∈ {0, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, 6}.
To mimic systematic over-estimation of task-relevant vari-

ables, we also experiment with mean-shift bias, where the

mean ofX𝑐 is shifted additively for𝐺 = 𝑏 by 𝛽𝑚 ∈ {0, 2, 4, 6, 8}.
4. Group-membership obfuscation bias: With probability

𝛽𝑔 , we flip/swap the group membership of individuals with

𝐺 = 𝑏 to𝐺 = 𝑎. Note that following un-awareness, ODmod-

els do not use the group membership indicator/variable 𝐺

for detection. Thus, for individuals in𝐺 = 𝑏 whose member-

ship has been flipped, we also swap/draw a random subset

of their feature values inX𝑔 from the distributions of𝐺 = 𝑎,

which alters the input data.

This bias mimics the real world scenarios in which some

underprivileged individuals misreport their group mem-

bership for various reasons including fear of disclosure or

discrimination [42], in addition to altering several of their

demographic/proxy features in X𝑔 to better align with this

obfuscation. While obfuscation may occur in both groups,

we assume more prevalent obfuscation in the underprivi-

leged group; setting the rate for 𝐺 = 𝑎 to be zero for sim-

plicity, and performing our study as 𝛽𝑔 varies for 𝐺 = 𝑏, in

{0.05, 0.1, 0.15, 0.2, 0.3, 0.4}.

3.3 Outlier Detection Models
In this work, we aim to stress-test the performance and fairness

of OD algorithms in the face of data bias. There is a long list of

algorithms for OD [2], including the modern deep neural network

models [30]. The vast majority of these do not consider fairness,

while only recently a handful of fairness-enhanced OD algorithms

are proposed (see §6).

To be representative of the literature while keeping the computa-

tional effort of our study feasible, we consider four OD models com-

prising both “shallow”&deep, and both fairness-unaware&fairness-

enhanced detectors: Local Outlier Factor (LOF) [7], Isolation Forest

(iForest) [24], DeepAE [47], and FairOD [36]. LOF and iForest are

two popular shallow techniques that have been shown to be most

effective on benchmark evaluations [14]. Those two are also mech-
anistic, i.e. directly model/define what an outlier is

1
. On the other

hand, DeepAE and FairOD are learning-based and leverage deep

neural networks with end-to-end learnable parameters. Moreover,

FairOD is fairness-enhanced while others are standard detectors.

We present more details as follows. (Further details on LOF and

iForest can be found in Apdx. §D.2, based on which we theoretically

analyze these mechanistic OD models later in §5 and Apdx. §D.3.)

3.3.1 Local Outlier Factor. LOF outlier score is based on the

reachability distance of a point to its 𝑘 nearest neighbors (NN)

relative to those distances for its NNs. As its name suggests, LOF

evaluates a point w.r.t. the local density in the vicinity it resides.

3.3.2 Isolation Forest. iForest makes random threshold cuts se-

quentially on features chosen at random, thus building an ensemble

of extremely randomized trees, and considers the average number

of steps required to isolate a point from others as its outlier score.

3.3.3 DeepAE. Based on a deep autoencoder architecture, DeepAE
employs compression followed by decompression of the data points,

where the reconstruction error is taken as the outlier score. The

working assumption is that the majority of the data (i.e. inliers)

exhibit patterns which can be compressed well while minimizing

the total (reconstruction) loss, while outliers that do not obey such

patterns receive poor reconstruction.

3.3.4 FairOD. Finally, the fairness-enhanced FairOD also uses a

deep autoencoder as a base model but enhances its loss objective

with two additional terms for fairness regularization; one enforcing

statistical parity and another toward achieving a heuristic approxi-

mation of the equality of opportunity (a.k.a. recall or TPR parity).

Hyperparameter (HP) tuning. OD algorithms come with HPs;

e.g. number of nearest neighbors 𝑘 for LOF and many others for

deep models including architectural (depth and width), regulariza-

tion (e.g. dropout rate) and optimization (e.g. learning rate) HPs.

Critically, OD model performance is quite sensitive to HP choices

[12, 26], which is nontrivial to set without any labeled data.

1
For LOF, a point with larger reachability distance than its neighbors is an outlier. For

iForest, an outlier is a point that can be isolated with few randomized axis-splits.
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Table 1: Qualitative summary of results for fairness stress-
testing of various OD algorithms (columns) when different
type data bias (rows) is applied on group 𝑏 with clustered
outliers. Shades of colors red and blue depict the degree of
unfairness, when disproportionately inflicted on group 𝑎

or group 𝑏, respectively; blank implying no notable differ-
ence. Arrow counts reflect relative change in overall detec-
tion performance; no arrows implying no notable change.

Bias type / OD model LOF iForest DeepAE FairOD

Size disparity (Fig. 2) ↓↓ ↓↓↓
Under-repres. (§C.1.2)

Meas. noise (§C.1.3)

Obfuscation (§C.1.4) ↓↓ ↓

Notably, we search for the best HP configuration on each testbed,

to prevent the situation where poor HP setting becomes a possible

confounding source of unfairness. In other words, we carefully

tune the HP(s) on the overall input population (without considering

group memberships), to be able to attribute observed unfairness

solely to (injected) data bias, rather than to poor HP tuning.

For standard algorithms LOF, iForest and DeepAE, we set HPs

that yield the highest overall performance, and for fairness-aware

FairOD we pick the HPs that yield the best performance-fairness

trade-off. Details on HP configurations for each model is given

in Apdx. §B. Interestingly, even under optimal HPs, we observe

negative implications of data bias not only on fairness but also on

detection performance, as we present results shortly in §4.

3.4 Evaluation Metrics
We evaluate detection performance by AUROC; area under the ROC

curve as well as F1; the harmonic mean of Precision and Recall.

AUROC quantifies the overall ranking, while F1 requires a threshold

on the outlier scores. We set a threshold on 𝑆 to obtain as many

flagged outliers with 𝑂 = 1 as number of true outliers with 𝑌 = 1.

We evaluate fairness based on group-wise ratios w.r.t. (𝑖) positive
or flag rates (FR), (𝑖𝑖) true positive rates (TPR), (𝑖𝑖𝑖) false positive

rates (FPR) and (𝑖𝑣) positive predictive values (PPV, a.k.a. Precision).

When FR ratio
𝑓 𝑟𝑎
𝑓 𝑟𝑏

is equal to 1, demographic or statistical parity

is satisfied. One caveat is when group base rates differ, i.e. 𝑏𝑟𝑎 ≠ 𝑏𝑟𝑏 .

Then, it is suitable to measure bias amplification [22] as the ratio

between FR ratio and the ground truth base rate ratio. For all other

ratios, the ideal/unbiased value is 1. Unequal rates imply over/under-

policing in monitoring for punitive OD settings.

For shallow and deep models, we report results averaged over 10

and 5 independent simulation runs, respectively, as the latter take

longer to train and tune (more HPs).

4 OD ON BIASED DATA: EMPIRICAL FINDINGS
Starting with the unbiased datasets containing an equal number

of samples in each group as well as equal group base rates, we

create different biased datasets by varying 𝛽𝑠 , 𝛽𝑢 , 𝛽𝑣 (or 𝛽𝑚), and

𝛽𝑔 , depending on the type of bias being injected. Note that the bias

is always injected on group 𝑏. Each model’s hyperparameters are

tuned as described in §3.3 for each resulting dataset separately.

Tables 1 and 2 (best in color) provide a qualitative summary

of our results across OD models and bias types for datasets with

Table 2: Qualitative summary of results for fairness stress-
testing of various OD algorithms (columns) when different
type data bias (rows) is applied on group 𝑏 with scattered
outliers. Shades of red and blue depict the degree of unfair-
ness, if disproportionately inflicted on group 𝑎 or group 𝑏,
respectively; blank implying no notable difference. Arrows
reflect the relative change in detection performance; no ar-
rows implying no notable change.

Bias type / OD model LOF iForest DeepAE FairOD

Size disparity (§C.2.1) ↓ ↓↓
Under-repres. (§C.2.2)

Meas. noise (§C.2.3) ↓ ↓↓ ↓↓ ↓↓
Obfuscation (§C.2.4) ↓ ↓ ↓ ↓

clustered and scattered outliers, respectively. We discuss several of

our notable findings in this section, while the detailed results are

given in Apdx. §C for brevity.

Overall, as depicted by the varying shades of blue, we see that

the bias-injected group 𝑏 is impacted disproportionately across

models and bias types (with a couple of exceptions), although the

severity of unfairness against 𝑏 varies. Moreover, data bias impacts

not only fairness but also detection performance of OD models;

in fact, there are cases when performance drops considerably, as

depicted by downward arrows.

It is interesting to note the stark difference between the detectors

in regard to susceptibility to different biases. For example, LOF is

most susceptible to Obfuscation in the clustered-outliers setting and

to Measurement bias for scattered outliers. iForest is susceptible to

Sample size disparity, while DeepAE is most sensitive to Obfusca-

tion in both settings. Fairness-enhanced FairOD is no exception;

as it remains comparably brittle under Obfuscation. These suggest

the lack of a “winner” detector.

In addition, we find that the models behave quite differently

against a certain bias depending on the dataset characteristics. No-

table is the Measurement bias, where models are fairly robust when

outliers are clustered, which however lead to considerable unfair-

ness as well as performance drop on datasets with scattered outliers.

We present a detailed analysis of the findings in the following

subsections, respectively for each type of data bias.

4.1 Group sample size bias
When samples from group 𝑏 are dropped at random to inject size

disparity, the inliers and outliers both sparsify relative to group 𝑎.

We find that OD models react to density differences in the feature

space differently. The stark contrast can be explained based on

the modeling assumptions of these models, as they interact with

density variation (see §3.3).

As shown in Fig. 2, LOF’s flag rate for group 𝑏 drops, which
in turn disadvantages group 𝑎 with increased FPR and decreased

Precision (top row). In contrast, iForest behaves in the opposite
fashion, disadvantaging group 𝑏 with significantly higher flag rate,

higher FPR and lower Precision (2nd row). This contrast is due to

these models treating density locally or globally. LOF evaluates

outlierness locally, by comparing points to their neighbors. When

group 𝑏 inliers sparsify, the clustered 𝑏-outliers “hide” better due

to masking [18]. Isolation-based iForest, on the other hand, can

more quickly isolate now-globally-sparser points in group 𝑏, overly
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Figure 2: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
sample size bias on clustered outliers.

flagging them, hence maintaining high TPR, but larger FPR and

lower Precision. iForest’s brittleness is also evident from its overall

performance falling more drastically with increasing bias.

Among the deep models, DeepAE (3rd row) behaves similar to

iForest in terms of group fairness, although through a different

mechanism. Since subsampling group 𝑏 renders them rare minority
samples, their impact on the total loss of the compression-based

DeepAE diminishes. As a result, their poor reconstruction reflects

as higher flag rate, larger FPR and lower Precision. As these group-

wise differences are less extreme than for iForest, DeepAE overall

detection performance remains relatively stable. Finally, we find

FairOD (bottom row) to be robust against size disparity, where it

achieves statistical as well as TPR parity through explicit optimiza-

tion. The other quantities (FPR and Precision) follow suit, with

negligible impact on performance.

These findings on clustered outliers continue to hold on scattered

outliers as given in Apdx. §C.2.1 Fig. 11.

4.2 Target under-representation bias
The algorithm behaviors change considerably when exposed to the

under-representation bias, where we drop only the target (positive)

samples from group 𝑏. Results are given for all models in Apdx.

§C.1.2 Fig. 6 and Apdx. §C.2.2 Fig. 12 in the clustered and scattered

outliers settings, respectively.

Note that dropping outlier samples from 𝑏 renders group 𝑎’s ob-

served base rate higher. With a higher base rate, group 𝑎’s clustered

outliers are slightly masked for LOF, which reduces group 𝑎’s flag

rate and TPR, while increasing those for 𝑏. FPR increases for both

groups, proportionate to the overall increase. The masking effect

goes away when outliers are scattered, with no notable TPR and

FPR difference between groups. However, Precision is specifically

lower for group𝑏 in both cases, mainly because𝑏’s flag rate is larger

than its base rate. iForest, on the other hand, is robust to masking as

it can find cuts in the feature space that isolate the outlier clusters

at once, with higher TPR but lower Precision for group 𝑏.

In fact, lower Precision (due to higher flag rate than base rate)

for group 𝑏 is a common trend across all models, including the

compression-based DeepAE and FairOD. Group 𝑏 outliers continue

to stand out for both models as dropping few outlier samples does

not change the bulk of the data and hence the compression quality

of group 𝑏’s inliers. However, because group 𝑎’s base rate and hence

frequency is higher, its flag rate is relatively lower. This translates to

a higher flag rate for 𝑏 at the cost of lower Precision. These results

showcase the vulnerability of all OD models in our study in the

face of unequal base rates.

We see that the overall detector performances remain quite ro-

bust against this type of data bias, in both settings with clustered

and scattered outliers, likely because the overall data distribution

is not impacted much, especially compared to the other types of

data biases we studied.

4.3 Feature measurement bias
4.3.1 Variance shift for measurement noise. In the clustered

setting (see Apdx. §C.1.3 Fig. 7), feature variance loosens the clus-

ters among both inliers and outliers in group 𝑏. As a result, LOF

ranks group 𝑎 outliers strictly above those from group 𝑏 as they

showcase a starker contrast to their relative inliers, while still re-

taining the ability to correctly flag almost all true outliers. iForest

is similarly robust with only slightly higher FPR and slightly lower

TPR and Precision for group 𝑏 than for 𝑎, while retaining high
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overall performance. Moreover, both DeepAE and FairOD maintain

high performance as the smaller outlier clusters do not compress

as well as the inliers despite higher variance. As such, deep models

are similarly robust with no notable disparity between groups.

While we find all detectors to be quite robust against feature

variance disparity on clustered outliers, the results differ consid-

erably when outliers are scattered (see Apdx. §C.2.3 Fig. 13). We

show DeepAE as a representative case in Fig. 3 on clustered versus

scattered outliers for comparison.

In the scattered outliers setting, feature variance loosens the dis-

tribution of group 𝑏 leading to extreme-valued inliers and outliers

that are both the at the “skirts” of the distribution. As a result, as

group 𝑏 data sparsifies, LOF tends to blur the inliers and outliers at

the periphery, with higher FPR, and lower TPR and Precision for

group 𝑏. Performance also drops accordingly with increasing bias

levels. Results are similar for iForest, which overly flags the now-

sparser group 𝑏 samples. Both deep models are also sensitive in this

case, yielding unfair outcomes for group 𝑏 along with reduced per-

formance. While clustered outliers, despite larger variance, form a

separate modality in the data that is hard to compress (hence easier

to detect), scattered outliers are harder to detect as they are more

similar to the inliers at the outskirts of the inlier distribution.

The different behavior ofmodels between the two settings demon-

strates that unfairness may arise from the interaction between the

data distribution, the type of bias, as well as the model assumptions.

4.3.2 Mean shift for over-estimation. We find that the OD

models are not impacted by mean-shifting group 𝑏, provided that

the groups are sufficiently apart along the proxy variables. Specifi-

cally, the shift does not impact the locality of points for LOF, the

axis-cuts of iForest that isolate the outliers simply shift accordingly

once the groups are cut separate along the proxy variable axes, and

the compression-based deep models remain intact when one of the

modalities shifts in the feature space. Results are shown for LOF

and iForest for brevity in Apdx. §C.1.3 Fig. 8 and Apdx. §C.2.3 Fig.

14 in the clustered and scattered outliers settings, respectively.

4.4 Membership obfuscation bias
Different from earlier bias scenarios in which the data collector or

their instrument may be inflicting the bias, here the individuals

in the population themselves bias the data distribution. They do

so by inducing mixed-up subpopulations, which resemble in some

parts to group 𝑏 and in other parts disguising as group 𝑎. As the

obfuscation variables are randomized, this leads to multi-modality
within group 𝑏, comprising many small subpopulations. Results

can be found in Apdx. §C.1.4 Fig. 9 and Apdx. §C.2.4 Fig. 15 in the

clustered and scattered outliers settings, respectively.

As shown in Fig. 4 (top), LOF is extremely sensitive to this type

of bias as it mistakenly flags more and more of those small micro-

clusters in group 𝑏. In fact, it seizes to flag any group 𝑎 instances

beyond a certain bias level as group 𝑏 breaks down into more

subpopulations. This leads to reduced TPR for both groups, and high

FPR and low Precision for group 𝑏. LOF’s overall performance also

drops with increasing levels of bias. iForest, on the other hand, is

relatively more robust because it is subspace-based; that is, it is able
to isolate outliers as long as it makes axis-cuts on the incriminating

variables. Put differently, as long as it does not solely pick proxy

variables, it does not wrongly flag group 𝑏 micro-clusters. The

probability of this event is low, hence the slight unfairness against

group 𝑏, with high overall performance retained.

Similar to LOF, DeepAE is sensitive to the presence of small

micro-clusters as more variability in data patterns imply harder

compression. Thus its overall performance drops, with higher flag

rate, higher FPR and lower Precision for group 𝑏. Higher FPR and

lower Precision for group 𝑏 are common across models including

FairOD, as shown in Fig. 4 (bottom), which better balances flag rate

and TPR rates between groups thanks to explicit regularization.

5 ALGORITHMIC BIAS IS NOT MERELY A
DATA (BIAS) PROBLEM

When data that is comprised of multiple protected groups is in-

flicted with data bias on some but not all group(s), it often leads to

differences in the observed data distributions between the groups.

While this can be interpreted as a data bias problem, it is important

to note that differences in data distributions between groups may

as well be natural. In fact, assuming the data is not stripped off of all

the proxy variables (which is unlikely), it is perhaps easier to imag-

ine that different groups would follow different data distributions

organically, at least with respect to the proxy variables.

In the following subsections, we aim to make connections be-

tween specific data properties that emerge as a result of bias and

how such properties may also appear in the real world organically.

These connections support the argument toward moving beyond

the “algorithmic bias is a data (bias) problem” debate [17]. That is,

algorithmic bias can arise solely from the interaction between mod-

eling assumptions and certain properties the input data exhibits,

without the data being necessarily inflicted with any bias.

In a nutshell, we argue that group-wise differences in certain

data properties (as pertain to sparsity, prevalence or base rate, vari-

ance, and multi-modality) — either induced by data bias or exhibited
naturally — could result in unfair outcomes. Whichever the source

may be, it is useful to understand which OD algorithms are more

prone to unfairness in the face of such group-wise differences.

Theoretical Analysis. Wemathematically show the (in)sensitivity

of the mechanistic (i.e. non-learning based) models, LOF and iFor-

est, in the presence of sparsity difference and multi-modality in

the clustered outliers setting (Propositions 1–4). Analysis can be

repeated for scattered outliers, e.g. Proposition 5. We refer to Apdx.

D for preliminaries, notation, and the detailed proofs.

5.1 Group Sample Size Bias mimics Sparsity
Difference between Groups

In injecting group sample size bias, the process of downsampling

data from one group creates a population that is sparsely sampled

from its underlying manifold. This induces density variation in the

feature space where one group’s distribution is relatively sparser

(see Fig. 1). As presented in §4.1, we observed that this property

makes isolation-based iForest quite brittle, as it tends to more easily

(yet mistakenly) isolate the samples in sparser regions.

However, it may as well be natural that different groups exhibit

different distributions with unequal sparsity. This would be espe-

cially realistic for proxy variables. For example hair length, a proxy

for gender, could follow distributions with varying density between
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Figure 3: (best in color) Group-wise fairness metrics and AUROC for DeepAE under feature measurement bias (variance shift)
on (top) clustered and (bottom) scattered outliers.

Figure 4: (best in color) Group-wise fairness metrics and AUROC for (top) LOF and (bottom) FairOD under
membership obfuscation bias on clustered outliers.

groups. A similar argument can be made for income, a potential

proxy for race, with different group-wise density distributions.

Note that in group size bias injection, down- or sparsely-sampling

group 𝑏’s distribution, which is the same as group 𝑎’s, induced not

only size disparity but also sparsity disparity. Here we argue that

ODmodels could remain prone to producing unfair outcomes when

group 𝑎 and 𝑏 exhibit different density distributions even in the

absence of any group size disparity.

Proposition 1: In the clustered outliers setting, let groups 𝑎 and 𝑏
have equal size𝑛𝑎 = 𝑛𝑏 and equal base rate 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 = 1|𝑏).
Let 𝑑 and𝐷 denote intra-group distance between inlier pairs (same for
outlier pairs) for group 𝑎 and 𝑏, respectively, where 𝐷 > 𝑑 as group
𝑏 is sparser. Also denote by Δ𝑎 and Δ𝑏 the average distance between
outliers and inliers in each group (See Fig. 17). Then, assuming LOF
hyperparameter 𝑘 is set s.t. 𝑘 > 𝑛𝑎 · 𝑃 (𝑌 = 1|𝑎) and Δ𝑎 = Δ𝑏 , LOF
tends to assign higher scores to group 𝑎-outliers, increasing flag rate
𝑃 (𝑂 = 1|𝑎). Further, when Δ𝑏 ≈ 𝐷 , LOF score of 𝑏-outliers is ≈ 1, i.e.
close to inlier scores, leading to low TPR for group 𝑏 due to masking.

In plain words, in the presence of group-wise sparsity variation,

the proposition states that the local reachability distance (i.e. LOF

score) of 𝑎-outliers tends to be larger since their inlier neighbors’

reachability distance is smaller when/because group 𝑎 is denser.

Further, as group 𝑏 continues to sparsify such that the gap between

inlier and outlier clusters of group 𝑏 shrinks, 𝑏-outliers get harder

for LOF to distinguish from inliers, decreasing TPR. Proposition 5

in Apdx. D.3.7 shows a similar result for LOF for scatter outliers.

Proposition 2: In the clustered outliers setting, let 𝑠𝑝 denote an
iTree’s split, and 𝑃 (𝑥𝑎 < 𝑠𝑝 < 𝑥𝑏 ) denote the probability for a split to
occur between points 𝑥𝑎 and 𝑥𝑏 . Let groups 𝑎 and 𝑏 have equal base
rate 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 = 1|𝑏) and equal average distance between
outliers and inliers Δ𝑎 = Δ𝑏 . As group 𝑏 is sparser, 𝑑 < 𝐷 denotes
the intra-group distances between inlier and outlier pairs for groups
𝑎 and 𝑏, respectively (See Fig. 20). Let {O𝑎 , I𝑎}, {O𝑏 , I𝑏 } represent
the outliers, inliers sets for groups 𝑎 and 𝑏. Then, for 𝑜𝑏 , 𝑝𝑏 ∈ O𝑏 ,
and 𝑜𝑎, 𝑝𝑎 ∈ O𝑎 , we have 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) > 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎),
indicating an iTree is more likely to split among group-𝑏 outliers.
The difference between 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) and 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎)
becomes larger when iTree is built in higher dimensions. In addition,
for 𝑞𝑏 ∈ I𝑏 , 𝑞𝑎 ∈ I𝑎 , 𝑃 (𝑜𝑏 < 𝑠𝑝 < 𝑞𝑏 ) = 𝑃 (𝑜𝑎 < 𝑠𝑝 < 𝑞𝑎), i.e. an
iTree is equally likely to split between the inlier and outlier clusters.

iForest assigns higher outlier scores to points that can be easily

isolated with few axis splits. The proposition shows that an iTree

is more likely to split among the sparser 𝑏-outliers than 𝑎-outliers,

yielding higher flag rate and FPR for group 𝑏. The discrepancy is

more notable in higher dimensional splits. iTree is equally likely to

split between the inliers and outliers for both groups. Due to this

special split that isolates the clustered outliers at once, iForest can

flag some fraction of 𝑎-outliers, retaining TPR for group 𝑎.

Empirically, variance shift experiments could serve as a similar

scenario where samples of group 𝑏 are more sparsely scattered than

those of 𝑎 due to inflated variance, which we observed is subject

to higher FPR and lower TPR and Precision, consistent across all

models (see Apdx. §C.2.3 Fig. 13). This shows one possible scenario,



Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors

wherein group 𝑏 organically exhibits greater sparsity, and group-

wise sparsity difference leads to disparate OD outcomes.

5.2 Target Under-Representation Bias mimics
Base-Rate Difference between Groups

In injecting target under-representation bias, the process of down-

sampling group 𝑏 outliers induces its population to have a lower

observed base rate than group 𝑎. Here we argue that the protected

groups may as well exhibit unequal base rates naturally, where

𝑃 (𝑌 = 1|𝐺 = 𝑎) ≠ 𝑃 (𝑌 = 1|𝐺 = 𝑏).
For example, it could be the case that some group(s) are more

inclined to criminal activities (such as Internet crime, human traf-

ficking, money laundering, click farming, etc.) than others by nature.

In fact, this is arguably one of the key differences between puni-

tive OD settings and assistive ML settings. While it may be more

ethical to provide equal assistance (hiring, loan approval, etc.) by

ML algorithms across various protected groups where there is no

reason or evidence to suggest one group should necessarily be more

deserving than the other, it could be appropriate to penalize various

protected groups at different rates when there is evidence or reason

to believe that the group base rates indeed differ.

Then, in the presence of (natural) unequal base rates, unfair

OD outcomes observed in §4.2 continue to hold. To demonstrate

this phenomenon, we repeat our experiments by varying the base

rates between groups while keeping the total number of outliers

(and group-wise inliers) the same. Results are shown in Fig. 5 (top)

for LOF for brevity, which remain qualitatively similar to those

under target under-representation bias as shown in Fig. 5 (bottom).

Results for all models are in Apdx. §C.1.5 Fig. 10 and Apdx. §C.2.5

Fig. 16 in the clustered and scattered outliers settings, respectively.

5.3 Feature Measurement Bias mimics
Variance Difference between Groups

Variance-shift reflectingmeasurement noisemay change the propen-

sity of extreme values and low-frequency observations. As studied

in §4.3, this may induce unfair OD outcomes for the high-variance

group especially when the outliers are scattered.

In the real world, certain features could also exhibit natural vari-

ation between groups. For example, biomarker features when used

for screening may exhibit natural genetic variation by age, gender,

or race. Another, classical example is the Nymwars controversy
2
in

2011, where Google, Facebook, and other tech companies aimed to

block users who used uncommon (hence, presumably fake) names.

While the policy has been criticized for various reasons, one could

see the potential discrimination it could cause given the inherent

variability in African first names.

We argue that variance difference between groups mimics the

scenario when such difference is induced by additive measurement

noise inflicted on some group(s) but not others. This is true for

Gaussians; Gaussian noise added to a Gaussian distribution yields

another Gaussian with larger variance. In fact, for any distribution

from the stable distribution family, a linear combination of two

distributions remains in the same distribution, only with different

location and scale parameters [27]. This implies that the unfair OD

2
https://en.wikipedia.org/wiki/Nymwars

outcomes observed in §4.3 would continue to hold when one group

exhibits naturally higher-variance distribution for certain features.

5.4 Membership Obfuscation Bias mimics
Multi-modality within Groups

Membership obfuscation – where members of a group disguising

as those from another group – creates (sub)groups within groups,

where each subgroup disguises somewhat differently within the

proxy feature space. In effect, obfuscation fragments a population,

inducing multi-modality within the group.

Arguably, members of a group may exhibit within-group hetero-

geneity naturally. That is, some group(s) may be composed of many

more natural clusters than others. In such cases, it is perhaps a

negligence of the analyst to assign them to a single broad sensitive

attribute. Consider the Asian or Hispanic ethnicity; those are very

coarse classifications of large populations of individuals that in fact

break down to many natural, more coherent subpopulations.

When a protected group comprises multiple smaller subgroups,

the risk increases that each may stand out as a minority micro-

cluster. As we presented in §4.4, OD models are typically tuned to

flagging micro-clusters as (clustered) outliers, leading to many false

positives at the expense of low recall for the multi-modal group. In

the following, we mathematically show that LOF is quite vulnerable

in the presence of this data characteristic, supporting the empirical

observations in Fig. 4 (top). (See all proofs in Apdx. D.3).

Proposition 3: In the clustered outliers setting, let groups 𝑎 and 𝑏
have equal size𝑛𝑎 = 𝑛𝑏 and equal base rate 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 = 1|𝑏).
Assume group𝑏-inliers form 𝑓 smaller populations,I𝑖

𝑏
, for 𝑖 ∈ [[1, 𝑓 ]],

and group 𝑏-outliers form 𝑔 smaller populations, O 𝑗

𝑏
for 𝑗 ∈ [[1, 𝑔]].

Let 𝑑 and𝐷 denote intra-group distance between inlier pairs (same for
outlier pairs) for group 𝑎 and each sub-population in 𝑏, respectively,
where 𝐷 = 𝑑 . Denote Δ𝑎 as the average distance between outliers
and inliers in group 𝑎, and Δ𝑏 as the average distance between each
subpopulation in group 𝑏 for both inliers and outliers (See Fig. 19).
Then, assuming LOF hyperparameter 𝑘 is set s.t. 𝑘 > 𝑛𝑎 · 𝑃 (𝑌 = 1|𝑎),
and Δ𝑎 = Δ𝑏 while Δ𝑎 > 𝑑 and Δ𝑏 > 𝐷 , LOF tends to assign higher
scores to group 𝑏-outliers, increasing flag rate 𝑃 (𝑂 = 1|𝑏). Further,
when |I 𝑗

𝑏
| < |O𝑖

𝑏
| < 𝑘 , LOF score of 𝑏-inliers is larger than of 𝑏-

outliers, leading to both high FPR and low TPR for group 𝑏.

We also show via Proposition 4 in Appx. D.3.6 that iForest is rel-

atively more robust than LOF against within-group multi-modality

since, unlike LOF that relies on nearest neighbor distances in the

full feature space, it seeks outliers in subspaces. As protected groups
form clusters only w.r.t. proxy features, iForest is prone to false

positives when axis-splits are limited to proxy features, yet, making

axis-splits along the incriminating features allows iForest to isolate

true outliers and hence maintain recall.

6 RELATEDWORK
A vast body of algorithmic fairness literature is on the measures and

mitigation of unfairness, with less attention to the driving mech-

anisms and sources of unfairness. Our work focuses on the latter.

Further, while most work considers supervised ML/classification,

we study unfairness in unsupervised ML/outlier detection (OD).

Measuring and mitigating unfairness: Various work studied

possible definitions and measures of ML fairness [5, 16, 20, 39, 41],

https://en.wikipedia.org/wiki/Nymwars
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Figure 5: (best in color) Group-wise fairness metrics and AUROC for LOF under (top) unequal base rates and (bottom)
target under-representation on clustered outliers. The results are qualitatively similar.

fairness auditing [15, 21, 34], with most emphasis on mitigation

in ML [28, 33], through optimization [43], regularization [19], con-

straints [44], adversarial learning [11], and representation learning

[45], to name a few. In contrast, only a handful of work studied

auditing [10] and mitigation [1, 25, 36, 37, 46] for unsupervised OD.

Sources of unfairness: On developing a deeper understanding

of what drives discrimination by ML, various work studied the

impact of data collection [8], algorithmic factors [6], as well as

model and data interactions [31], while others aimed to identify

and list possible sources of harm [28, 38]. Our work is inspired by

the testbed by Akpinar et al. [3] that studied the explicit impact of

counterfactually injected biases on supervised MLmodels. In similar

vein, our study is the first to demonstrate that popular unsupervised
OD models are susceptible to certain forms of data bias.

7 CONCLUSION AND DISCUSSIONS
Summary. We presented a descriptive measurement study that

stress-tested the fairness and performance of various OD models

when exposed to certain data biases. Our analyses have been exposi-

tory, unearthing the pitfalls of various algorithmic design choices as

they interact with certain data characteristics—such as group-wise

differences in sparsity, prevalence, variance and multi-modality.

Among the findings, those that stand out are as follows.

All models (shallow/deep, fairness un/aware) are prone to yield

disparate impact that is stacked against the underprivileged group.

The impact varies depending on the relation between the type of

data bias (and the data characteristics it induces) and the model as-

sumptions. In our study, the shallow detectors directly model/define

what an outlier is, and yield unfair results when these definitions

do not align with the data. On the other hand, the deep models aim

to identify what is normal/compressible and flag outliers indirectly

as the samples that do not obey the normal patterns. When more

than one normal is present and the normal pattern(s) are more

dominant/coherent for some protected group(s) than others, these

detectors also tend to produce unfair outcomes.

While our study initially looked at OD unfairness through the

lens of data bias, we realized that what is really at play is certain

data characteristics that do not “play well” with certain algorithmic

assumptions and design choices. Therefore, it is worthy to note that

while data bias may induce such data characteristics, they could also

be natural. This implies that OD models can naturally fall into the

same pitfalls we underscored, even when the analyst, measurement

instrument and the population are not at fault of inflicting bias.

Limitations. Our paper presents a controlled measurement study,

limited to simulated data. This is motivated by the fact that it is

not known which type(s) of data bias, if any, real-world datasets

exhibit. We studied datasets injected with one (known) type of data

bias at a time. Our simulations also included simple data and outlier

distributions. While simulations are an excellent way to understand

the basics, the design of our simulations may not align too closely

with real-world datasets, which limits the external validity of our

observations. Nevertheless, even in these simple scenarios, we are

able to showcase key shortcomings of various modeling choices

that we argued may occur naturally in the real world.

We did not perform experiments on real-world datasets inten-

tionally. Our aim has been to study which data bias gives rise

to unfair outcomes in a controlled setup. Explaining unfairness

observed in the wild by pinpointing the root-causes would be a

reverse-engineering effort, which is not our intended scope. Our

work lays out possible sources for investigation, although our bias

list is not necessarily comprehensive. Further limitations pertain to

our theoretical analyses, as discussed in Apdx. D.4.

Future directions. Our work paves the way to identifying other

types of data biases that may adversely impact fair OD outcomes,

and developing remediation strategies toward mitigating the poten-

tial pitfalls we underscored. We briefly discuss possible directions

here, while a deeper investigation is left as future work.

Fairness interventions are often grouped as pre-, post-, and in-

processing, which respectively, modify the input data, modify the

output scores or decisions, and account for fairness during model

training. As discussed in §5, OD unfairness can stem from algo-

rithmic bias alone when group-wise differences are natural. Then,

pre-processing strategies become voided as it is not clear how to

modify organic, unbiased data. Post-processing could select differ-

ent thresholds for each group separately [9, 29], where the group-

specific thresholds could either be selected in a data-driven fashion,

or optimized for demographic parity if it is a desired fairness metric

(e.g. assuming equal base rates). Note that metrics based on true

labels cannot be optimized (at least directly) due to lack of ground

truth in training unsupervised OD. In-processing techniques are

also limited to only enforcing demographic parity, which as we

showed, remain susceptible to unfairness. A strategy that has not
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been applied to OD is decoupling [13, 40], where a different detector

is trained for each group, while optimizing a joint loss.

We remark that post-processing and decoupling exhibit treat-

ment disparity; they both assume it is ethical and legal to use the

sensitive attribute at decision time – in particular, to select which

threshold or detector to employ on a new sample. When there are

differences between groups, coming to terms with disparate treat-

ment might be the only way to get around disparate impact, as

argued in [23]. These, however, do not address unfairness against

multi-modal subpopulations within groups, i.e. within-group dis-

crimination. Here, one direction is to explore clustering-based OD.

Alternative could be establishing a more nuanced or granular sen-

sitive attribute, assigning a different value for each subpopulation.
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APPENDIX
A DATA BIAS INJECTION DETAILS
A.1 Datasets with Clustered Outliers
A.1.1 Group sample size bias.

Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑠 ∈ [0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8]
Outlier counts in groups (𝑎, 𝑏) respectively for varying 𝛽𝑠 :

[(100, 100), (100, 97), (100, 87), (100, 80), (100, 56), (100, 33), (100, 24)]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑠 :

[240, 237, 227, 220, 196, 173, 154]
DeepAE selected hyperparameters respectively for varying 𝛽𝑠 :

𝛽 HP

0.01 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.05 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.1 {num_layer: 4, input_decay: 2.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.2 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.6 {num_layer: 2, input_decay: 2.5, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.8 {num_layer: 4, input_decay: 1.0, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0.2, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑠 :

𝛽 HP

0.01 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1 𝛼 : 0.01, 𝛽 :

0.8}

0.05 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.5}

0.1 {num_layer: 4, input_decay: 2.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1 𝛼 : 0.5, 𝛽 : 0.8}

0.2 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.5}

0.4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.8}

0.6 {num_layer: 2, input_decay: 2.5, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 : 0.5}

0.8 {num_layer: 4, input_decay: 1.0, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0.2, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.8}

A.1.2 Target under-representation bias.

Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑢 ∈ [0.01, 0.05, 0.10, 0.2, 0.4, 0.6, 0.8]
Outlier counts in groups (𝑎, 𝑏) respectively for varying 𝛽𝑢 :

[(100, 99), (100, 95), (100, 90), (100, 80), (100, 60), (100, 40), (100, 20)]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑢 :

[239, 235, 230, 220, 200, 180, 160]
DeepAE selected hyperparameters respectively for varying 𝛽𝑢 :

𝛽 HP

0.01 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.05 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.1 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 0, dropout: 0, threshold: 1}

0.2 {num_layer: 4, input_decay: 2, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.6 {num_layer: 4, input_decay: 1.0, epochs: 100, lr: 0.001,

weight_decay: 1e-05, dropout: 0.2, threshold: 1}

0.8 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑢 :

𝛽 HP

0.01 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1 𝛼 : 0.01, 𝛽 :

0.01}

0.05 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.2}

0.1 {num_layer: 4, input_decay: 2.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1 𝛼 : 0.2, 𝛽 : 0.01}

0.2 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.8, 𝛽 :

0.8}

0.4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 :

0.01}

0.6 {num_layer: 2, input_decay: 2.5, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 : 0.01}

0.8 {num_layer: 4, input_decay: 1.0, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0.2, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.01}
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A.1.3 Feature measurement bias.

A.1.4 Mean-shift. Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑚 ∈ [0, 2, 4, 6, 8]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑚 :

[240, 240, 240, 240, 240]

A.1.5 Variance-shift. Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑣 ∈ [0, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, 6]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑣 :

[120, 120, 120, 120, 120, 130, 130, 150, 200]
DeepAE selected hyperparameters respectively for varying 𝛽𝑣 :

𝛽 HP

0 {num_layer: 4, input_decay: 2.5, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.05 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.1 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.5 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

1 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

2 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

6 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑣 :

𝛽 HP

0 {num_layer: 4, input_decay: 2.5, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 : 0.01}

0.05 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.1 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

𝛽 HP

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.5 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

1 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

2 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.8}

6 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.8, 𝛽 :

0.2}

A.1.6 Membership obfuscation bias.

Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑜 ∈ [0.05, 0.1, 0.15, 0.2, 0.3, 0.4]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑜 :

[240, 240, 240, 240, 240, 240]
DeepAE selected hyperparameters respectively for varying 𝛽𝑜 :

𝛽 HP

0 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.05 {num_layer: 4, input_decay: 2.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.1 {num_layer: 4, input_decay: 1.5, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.2 {num_layer: 4, input_decay: 1.5, epochs: 250, lr: 0.0001,

weight_decay: 0, dropout: 0, threshold: 1}

0.3 {num_layer: 2, input_decay: 2, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑜 :

𝛽 HP

0 {num_layer: 4, input_decay: 2, epochs: 100, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.01}

0.05 {num_layer: 4, input_decay: 2.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 : 0.01}
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𝛽 HP

0.1 {num_layer: 4, input_decay: 1.5, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.2, 𝛽 :

0.01}

0.2 {num_layer: 4, input_decay: 1.5, epochs: 250, lr: 0.0001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 : 0.01}

0.3 {num_layer: 2, input_decay: 2, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.2, 𝛽 :

0.01}

0.4 {num_layer: 4, input_decay: 1.0, epochs: 250, lr: 0.0001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.2}

A.2 Datasets with Scattered Outliers
A.2.1 Group sample size bias.

Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑠 ∈ [0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8]
Outlier counts in groups (𝑎, 𝑏) respectively for varying 𝛽𝑠 :

[(100, 100), (100, 97), (100, 87), (100, 80), (100, 56), (100, 33), (100, 24)]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑠 :

[240, 237, 227, 220, 196, 173, 154].
DeepAE selected hyperparameters respectively for varying 𝛽𝑠 :

𝛽 HP

0.01 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.05 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.4 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.6 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.8 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑠 :

𝛽 HP

0.01 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 :

0.01}

0.05 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 : 0.01}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

𝛽 HP

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.4 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.2, 𝛽 : 0.01}

0.6 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.2, 𝛽 :

0.01}

0.8 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.01}

A.2.2 Target under-representation bias.

Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑢 ∈ [0.01, 0.05, 0.10, 0.2, 0.4, 0.6, 0.8]
Outlier counts in groups (𝑎, 𝑏) respectively for varying 𝛽𝑢 :

[(100, 99), (100, 95), (100, 90), (100, 80), (100, 60), (100, 40), (100, 20)]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑢 :

[149, 145, 140, 130, 110, 90, 70]
DeepAE selected hyperparameters respectively for varying 𝛽𝑢 :

𝛽 HP

0.01 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.05 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.4 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.6 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.8 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑢 :

𝛽 HP

0.01 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 :

0.01}

0.05 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 : 0.01}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.5}
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𝛽 HP

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.01}

0.4 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 : 0.5}

0.6 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.8 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1 𝛼 : 0.8, 𝛽 :

0.8}

A.2.3 Feature measurement bias.

A.2.4 Mean-shift. Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑚 ∈ [0, 2, 4, 6, 8]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑚 :

[20, 10, 40, 30, 10]

A.2.5 Variance-shift. Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑣 ∈ [0, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2, 3]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑣 :

[10, 10, 30, 30, 70, 30, 90, 70, 140]
DeepAE selected hyperparameters respectively for varying 𝛽𝑣 :

𝛽 HP

0 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.05 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.2 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

0.5 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

1.5 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

2 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

3 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1}

FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑣 :

𝛽 HP

0 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.8, 𝛽 : 0.01}

0.05 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 : 0.01}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.2 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 : 0.5}

0.5 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.05, 𝛽 :

0.01}

1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 : 0.01}

1.5 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 : 0.01}

2 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

3 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 0, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 : 0.01}

A.2.6 Membership obfuscation bias.

Number of samples in group 𝑎: 1000

Number of samples in group 𝑏: 1000

𝑏𝑟𝑎 = 𝑏𝑟𝑏 = 0.1

𝛽𝑜 ∈ [0.05, 0.1, 0.15, 0.2, 0.3, 0.4]
Each algorithm selected hyperparameters that yielded the best

performance metrics.

LOF selected hyperparameter 𝑘 respectively for varying 𝛽𝑜 :

[10, 20, 10, 10, 20, 10]
DeepAE selected hyperparameters respectively for varying 𝛽𝑜 :

𝛽 HP

0.05 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.15 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.3 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}

0.4 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1}
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FairOD selected hyperparameters 𝛼 and 𝛾 respectively for vary-

ing 𝛽𝑜 :

𝛽 HP

0.05 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.1 {num_layer: 2, input_decay: 1.5, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.01, 𝛽 :

0.01}

0.15 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.5, 𝛽 :

0.01}

0.2 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.8, 𝛽 :

0.01}

0.3 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.8, 𝛽 :

0.01}

0.4 {num_layer: 2, input_decay: 1.0, epochs: 250, lr: 0.001,

weight_decay: 1e-05, dropout: 0, threshold: 1, 𝛼 : 0.8, 𝛽 :

0.01}

B HYPERPARAMETER CONFIGURATIONS

LOF: We tune the number of nearest neighbors, 𝑘 , over the candi-

date set 𝑘 ∈ {10, 20, ..., 250} and pick the best w.r.t. overall AUROC

detection performance.

Isolation Forest: As an ensemble model of extremely randomized

trees, iForest has two hyperparameters (HPs); number of trees and

number of samples to construct each tree. As with most ensemble

models, it has been found to be robust under a wide range of choices

for these HPs. Therefore, we use the default values of 100 trees and

256 samples per tree.

DeepAE: We tune the 6 hyperparameters, picking the best among

128 candidate configurations as shown in Table 3 w.r.t. overall

AUROC detection performance.

Table 3: Hyperparameter search space for DeepAE

Name Count Values

num_layers 2 [2, 4]

weight_decay 2 [0, 1e-5]

learning_rate 2 [1e-3, 1e-4]

num_epochs 2 [100, 250]

input_decay 4 [1.0, 1.5, 2, 2.5]

droupout_rate 2 [0, 0.2]

FairOD: Utilizing a deep autoencoder as its base model, FairOD

additionally optimizes a fairness-enhanced loss; specifically with

two additional terms besides the reconstruction term. Each addi-

tional term has a scalar hyperparameter associated with it, 𝛼 and 𝛾

respectively, to trade-off performance/fit vs. two fairness notions

(statistical parity and a heuristic approximation of equality of op-

portunity). On any given dataset, we use the same best DeepAE

configuration for FairOD and only tune these two trade-off HPs

in the loss. Specifically, we tune over 𝛼 ∈ {0.01, 0.05, 0.2, 0.5, 0.8}
and 𝛾 ∈ {0.01, 0.2, 0.5, 0.8}, and pick the configuration that yields

the best (AUROC, statistical parity, equality of opportunity) out-

come/triplet, with shortest distance to the ideal values of (1, 1, 1)

for these three quantities.

C ADDITIONAL EMPIRICAL RESULTS
C.1 Datasets with Clustered Outliers
C.1.1 Group sample size bias. The results are presented in the

main text in Fig. 2.

C.1.2 Target under-representation bias. See Fig 6.

C.1.3 Feature measurement bias. See Fig. 7 for variance shift and
Fig. 8 for mean shift results (LOF and iForest only for brevity).

C.1.4 Membership obfuscation bias. See Fig. 9.

C.1.5 Unequal base rates. See Fig. 10.

C.2 Datasets with Scattered Outliers
C.2.1 Group sample size bias. See Fig. 11.

C.2.2 Target under-representation bias. See Fig. 12.

C.2.3 Feature measurement bias. See Fig. 13 for variance shift and
Fig. 14 for mean shift results (LOF and iForest only for brevity).

C.2.4 Membership obfuscation bias. See Fig. 15.

C.2.5 Unequal base rates. See Fig. 16.
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Figure 6: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
target under-representation on clustered outliers.

Figure 7: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
feature measurement bias (variance shift) on clustered outliers.
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Figure 8: (best in color) Group-wise fairness metrics and AUROC for (top) LOF and (bottom) iForest under
feature measurement bias (mean shift) on clustered outliers.

Figure 9: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
membership obfuscation bias on clustered outliers.
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Figure 10: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
unequal base rates on clustered outliers.

Figure 11: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
sample size bias on scattered outliers.
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Figure 12: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
target under-representation on scattered outliers.

Figure 13: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
feature measurement bias (variance shift) on scattered outliers.
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Figure 14: (best in color) Group-wise fairness metrics and AUROC for (top) LOF and (bottom) iForest under
feature measurement bias (mean shift) on scattered outliers.

Figure 15: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
membership obfuscation bias on scattered outliers.
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Figure 16: (best in color) Group-wise fairness metrics and AUROC for (top to bottom) LOF, iForest, DeepAE and FairOD under
unequal base rates on scattered outliers.
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D THEORETICAL ANALYSIS
In this section, we derive theoretical justification of why LOF and

iForest can adapt well (or poorly) to different injected biases. We

first introduce themathematical notations in Apdx. D.1, theworking

mechanism and the underlying quantities for these two OD models

in Apdx. D.2, and then provide theoretical results in Apdx. D.3.

D.1 Notations

Name Variable

Size of population 𝑛

Intra-group distance 𝑐

Intra-group dist. of Group 𝑎 𝑑

Intra-group dist. of Group 𝑏 𝐷

Avg. dist. between inliers and outliers Δ
Avg. dist. between inliers and outliers of Group 𝑎 Δ𝑎
Avg. dist. between inliers and outliers of Group 𝑏 Δ𝑏

Avg. dist. between subpopulations in X𝑔 Δ𝑔
LOF number of nearest neighbors 𝑘

Sensitive attribute of two protected groups 𝐺

Input features X
Target variable 𝑌

Outlier score 𝑆

Outlier label of OD model 𝑂

Base rate of a group 𝐺 𝑏𝑟𝐺
Flag rate of a group 𝐺 𝑓 𝑟𝐺

(Proxy) Variables correlated w/ group membership X𝑔

(Incriminating) Variables correlated w/ target X𝑐

Non-incriminating occlusion variables X𝑜

Set of 𝑘-nearest neighbors around a point 𝑝 𝑁𝑘 (𝑝)
Set of outliers O
Set of inliers I

Set of local neighborhoods in scattered outliers M
An iTree’s split point 𝑠𝑝

D.2 Preliminaries
D.2.1 Probability and Outlier Score. In the main text, we com-

pare flag rates 𝑃 (𝑂 = 1|𝐺) to measure the fairness of an OD al-

gorithm. However, our outlier detection algorithms rarely give a

direct estimation of the true probability scores. For example, LOF

algorithm uses local outlier factor(LOF) as the outlier score, iForest

measures the outlierness by average path lengths of iTrees, and

DeepAE outputs the reconstruction score of decoder.

Given any outlier detection algorithm, the probability of flagging

a point as outlier 𝑃 (𝑂 = 1) can be written as

𝑃 (𝑂 = 1) =
[
𝑃 (𝑂 = 1|𝐺 = 𝑎,𝑌 = 1)𝑃 (𝑌 = 1|𝑎)

+ 𝑃 (𝑂 = 1|𝐺 = 𝑎,𝑌 = 0)𝑃 (𝑌 = 0|𝑎)
]
𝑃 (𝐺 = 𝑎)

+
[
𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 1)𝑃 (𝑌 = 1|𝑏)

+ 𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 0)𝑃 (𝑌 = 0|𝑏)
]
𝑃 (𝐺 = 𝑏) (2)

During our analysis, we assume that protected groups 𝑎 and 𝑏

have equal size 𝑛𝑎 , 𝑛𝑏 and equal base rate 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 = 1|𝑏).

We also assume that the outlier detection algorithm flags a constant

number of outliers (equal to the true count of outliers in the data),

making 𝑃 (𝑂 = 1) remain constant throughout our analysis.

Then, we can relate outlier scores to probability. If we assign

higher outlier scores 𝑆 to the points (either inlier or outlier points)

from either protected group 𝑎 or 𝑏, it implies that the probability

of flagging the points 𝑃 (𝑂 = 1|𝐺,𝑌 ) increases for that group, with
possible decrease in probabilities of flagging the data points (either

inlier or outlier points) from the other group.

D.2.2 Mechanism of LOF. LOF computes the local density devi-

ation of a given data point with respect to its neighborhood points,

and using the ratio of density deviation as the outlier score 𝑆 . A

score 𝑆 larger than 1 indicates that a point 𝑝 is more likely an outlier

with higher 𝑃 (𝑂 = 1|𝑝).
To compute the local density deviation, one needs to compute

the reachability distance. The detailed calculations are outlined by

the definitions below.

Definition 2 (k-distance). Assume the distance between two
data points is 𝑑 (𝑝, 𝑜). Then, given a dataset D, a data 𝑝 ∈ D and a
positive integer 𝑘 , where 𝑜𝑘 is the 𝑘-th nearest neighbor point of 𝑝 ,
the 𝑘-distance of 𝑝 is defined as

k-distance(p) = 𝑑𝑖𝑠𝑡 (𝑝, 𝑜𝑘 ) .
Definition 3 (Reachability Distance). Reachability distance

(RD) is the distance to travel from a point to its neighbor. For any two
data points 𝑝, 𝑜 ∈ D, the reachability distance is given as

RD𝑘 (𝑝, 𝑜) = max(k-distance(𝑜), 𝑑𝑖𝑠𝑡 (𝑝, 𝑜)) .
Definition 4 (Local Reachability Density). For any point 𝑝 ,

denote the set of 𝑘-nearest neighbor points by 𝑁𝑘 (𝑝) ⊆ D. then, the
local reachability density (LRD) of 𝑝 is:

LRD𝑘 (𝑝) =
1∑

𝑜∈𝑁𝑘 (𝑝 ) 𝑅𝐷𝑘 (𝑝, 𝑜)/𝑘
.

Definition 5 (LOF Score). The core of the LOF algorithm is
the calculation of local outlier factor (LOF), which measures density
deviation between a point and its neighbors. Formally, LOF of 𝑝 is
calculated as

𝑆 (𝑝) = LOF𝑘 (𝑝) =
∑
𝑜∈𝑁𝑘 (𝑝 ) LRD𝑘 (𝑜)
𝑘 · LRD𝑘 (𝑝)

.

An LOF score that is notably larger than 1 associates with rela-

tively smaller local density and hence larger outlierness, while the

factor being close to 1means that the local density is similar to that

of the neighbors’, suggesting an inlier.

D.2.3 Mechanism of iForest. iForest considers the average num-

ber of steps (i.e. randomized splits) required to isolate a point from

the others. It starts with building iTrees, which makes random

threshold splits sequentially on randomly chosen features. A iTree

is complete when all points are the same in a leaf node, or a leaf

node contains only a single point.

The outlier score of a point 𝑝 is the average path length across

an ensemble of iTrees to reach 𝑝’s leaf from the root.

Definition 6 (Path Length). Path length denoted as ℎ(𝑝) of a
point 𝑝 ∈ D is measured by the number of edges 𝑝 traverses an iTree
from the root node until the traversal is terminated at a leaf node.
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Definition 7 (iForest Score). For a point 𝑝 ∈ D where |D| = 𝑛,
the score is calculated as

𝑆 (𝑝, 𝑛) = 2
− E[ℎ (𝑝 ) ]

𝑐 (𝑛) ,

where 𝑐 (𝑛) = 2𝐻 (𝑛 − 1) − (2(𝑛 − 1)/𝑛) and 𝐻 (𝑖) is the harmonic

number.

Note that as 𝑐 (𝑛) is fixed by the size of dataset, 𝑝 stands out

as outlier the smaller is the E[ℎ(𝑝)] (average path length across

different iTrees), which indicates that 𝑝 is easily separated (i.e.

isolated) from rest of the points via random threshold-splits.

It is difficult to directly estimate the average path length over an

ensemble of iTrees, given that each iTree is built using a subsample

of data based on consecutively splitting on random features and

random threshold. Therefore, we analyze how likely it is for an

iTree to split on a feature (or multiple features) and isolate a point

as outlier, where we associate a higher likelihood with a shorter

expected path length (hence higher outlier score 𝑆).

D.3 Theoretical Analysis
Propositions for LOF stand on the following two lemmas we first

prove, which relate to the value of the LOF hyperparameter 𝑘 .

D.3.1 Lemma 1. For the clustered outliers setting, let I and O
denote the set of inliers and outliers, where |O| < |I |. Within I and
O, the average intra-group distances are denoted by 𝑐 . Between I and
O, the average distance is denoted by Δ s.t. Δ > 𝑐 . Then, for LOF to
be able to bypass masking and flag all clustered true outliers, number
of neighbors 𝑘 needs to be chosen s.t. 𝑘 > |O|.

Proof: We first prove that outliers would mask when 𝑘 ≤ |O|.
Consider an outlier point 𝑝 ∈ O. Since Δ > 𝑐 , 𝑝’s 𝑘 nearest

neighbors consist only of outliers, i.e. are points within the set

O, 𝑁𝑘 (𝑝) ⊆ O.

Then, the expected LOF (outlier score 𝑆) of 𝑝 is calculated as

follows.

E[LOF𝑘 (𝑝)] = E
[∑

𝑜∈𝑁𝑘 (𝑝 ) LRD𝑘 (𝑜)
|𝑁𝑘 (𝑝) | · LRD𝑘 (𝑝)

]
(3)

=

∑
𝑜∈𝑁𝑘 (𝑝 ) E

[
LRD𝑘 (𝑜)

]
𝑘 · E

[
LRD𝑘 (𝑝)

] (4)

=

∑
𝑜∈𝑁𝑘 (𝑝 ) E

[
1∑

𝑗 ∈𝑁𝑘 (𝑜 ) RD𝑘 (𝑜,𝑗 )/|𝑁𝑘 (𝑜 ) |
]

𝑘E
[

1∑
𝑚∈𝑁𝑘 (𝑝 ) RD𝑘 (𝑚,𝑝 )/|𝑁𝑘 (𝑝 ) |

] (5)

=

∑
𝑜∈𝑁𝑘 (𝑝 )

1∑
𝑗 ∈𝑁𝑘 (𝑜 ) E[RD𝑘 (𝑜,𝑗 ) ]/𝑘

𝑘 1∑
𝑚∈𝑁𝑘 (𝑝 ) E[RD𝑘 (𝑚,𝑝 ) ]/𝑘

(6)

≈
𝑘 · 1

𝑘 ·𝑐/𝑘

𝑘 1

𝑘 ·𝑐/𝑘
= 1 (7)

Similarly, for an inlier point 𝑧 ∈ I, 𝑧’s𝑘 nearest neighbors consist
only of inliers, when 𝑘 ≤ |O| < |I |. When 𝑁𝑘 (𝑧) ⊂ I, the average
reachability distances of 𝑧 and 𝑧’s neighbors are all 𝑐 . Therefore,

expected LOF of 𝑧 is 1.

As a result, LOF algorithm fails to detect any outliers due to both

outliers and inliers having the same expected outlier score 𝑆 .

In contrast, when |I | > 𝑘 > |O|, we instead have |O| ⊆ 𝑁𝑘 (𝑝).
The numerator of Eq. (6), that is the local reachability density of

neighborhood points becomes∑︁
𝑜∈O

1∑
𝑗∈𝑁𝑘 (𝑜 ) E[RD𝑘 (𝑜, 𝑗)]/𝑘

+
∑︁

𝑚∈𝑁𝑘 (𝑝 )\O

1∑
𝑛∈𝑁𝑘 (𝑚) E[RD𝑘 (𝑚,𝑛)]/𝑘

=
∑︁
𝑜∈O

1

Δ
+

∑︁
𝑚∈𝑁𝑘 (𝑝 )\O

1

𝑐
(8)

=
|O|
Δ

+ 𝑘 − |O|
𝑐

(9)

The denominator of Eq. (6), that is the local reachability density

of 𝑝 becomes

𝑘
1∑

𝑚∈𝑁𝑘 (𝑝 ) E[RD𝑘 (𝑚, 𝑝)]/𝑘 (10)

=
𝑘∑

𝑚∈O E[RD𝑘 (𝑚, 𝑝)]/𝑘 +∑
𝑛∈𝑁𝑘 (𝑝 )\O E[RD𝑘 (𝑛, 𝑝)]/𝑘

(11)

=
𝑘

|O| · Δ/𝑘 + (𝑘 − |O|) · Δ/𝑘 =
𝑘

Δ
(12)

Note that in Eq. (11), for both outlier or inlier neighbors of 𝑝 , the

reachability distance is Δ, since 𝑘-distance is the furthest reachable
point for the 𝑘-neighbors (recall Definition 2). Combining both, the

expected LOF becomes

E[LOF𝑘 (𝑝)] =
| O |
Δ + 𝑘−|O |

𝑐

𝑘
Δ

> 1 (13)

Since 𝑘 < |I |, the expected LOF remains 1 for any inlier. As such,

𝑝 ∈ O is assigned a higher 𝑆 than 𝑧 ∈ I only when |I | > 𝑘 > |O|,
which concludes the proof. □

D.3.2 Lemma 2. In clustered outlier setting, consider multiple out-
lier sets O𝑖 , 𝑖 ∈ {1, ..., 𝑗} and one inlier set I, with the average intra-
group distance for each O𝑖 and I is denoted by 𝑐 , and the average
distance between outliers and inliers for eachO𝑖 is denotedΔ s.t.Δ > 𝑐 .
Then, for LOF algorithm to detect all true outliers in the micro-clusters,
the number of neighbors 𝑘 > max( |O1 |, ..., |O𝑗 |).

Proof: Based on Lemma 1, to detect all outliers from O𝑖 , 𝑖 ∈
{1, ..., 𝑗}, we need𝑘 > |O𝑖 | for all 𝑖 . Therefore,𝑘 > max( |O1 |, ..., |O𝑗 |).

□

D.3.3 Proposition 1. In the clustered outliers setting, let groups
𝑎 and 𝑏 have equal size 𝑛𝑎 = 𝑛𝑏 and equal base rate 𝑃 (𝑌 = 1|𝑎) =
𝑃 (𝑌 = 1|𝑏). Let 𝑑 and 𝐷 denote intra-group distance between inlier
pairs (same for outlier pairs) for group 𝑎 and 𝑏, respectively, where
𝐷 > 𝑑 as group 𝑏 is sparser. Also denote by Δ𝑎 and Δ𝑏 the average
distance between outliers and inliers in each group (See Fig. 17). Then,
assuming LOF hyperparameter 𝑘 is set s.t. 𝑘 > 𝑛𝑎 · 𝑃 (𝑌 = 1|𝑎)
and Δ𝑎 = Δ𝑏 , LOF tends to assign higher scores to group 𝑎-outliers,
increasing flag rate 𝑃 (𝑂 = 1|𝑎). Further, when Δ𝑏 ≈ 𝐷 , LOF score
of 𝑏-outliers is ≈ 1, i.e. close to inlier scores, leading to low TPR for
group 𝑏 due to masking.

Proof: Let us denote by I𝑎 , I𝑏 for the sets of inliers and by O𝑎 ,

O𝑏 the sets of outliers in groups 𝑎 and 𝑏, respectively. Based on
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Figure 17: For clustered outliers, illustration of density vari-
ation between group 𝑎 and 𝑏 (Proposition 1).

Lemma 1, 𝑘 > |O𝑎 | = 𝑛𝑎 · 𝑃 (𝑌 = 1|𝑎) = |O𝑏 | = 𝑛𝑏 · 𝑃 (𝑌 = 1|𝑏).
Then, for an outlier point 𝑝𝑎 ∈ O𝑎 , the expected LOF is given as

E[LOF𝑘 (𝑝𝑎)] = E
[ ∑

𝑜∈𝑁𝑘 (𝑝𝑎 ) LRD𝑘 (𝑜)
|𝑁𝑘 (𝑝𝑎) | · LRD𝑘 (𝑝𝑎)

]
(14)

=

∑
𝑜∈𝑁𝑘 (𝑝𝑎 ) E

[
LRD𝑘 (𝑜)

]
𝑘 · E

[
LRD𝑘 (𝑝𝑎)

] (15)

=

∑
𝑜∈O𝑎

1∑
𝑗 ∈𝑁𝑘 (𝑜 ) E[RD𝑘 (𝑜,𝑗 ) ]/𝑘

𝑘 · E
[
LRD𝑘 (𝑝𝑎)

] (16)

+

∑
𝑚∈𝑁𝑘 (𝑝𝑎 )\O𝑎

1∑
𝑛∈𝑁𝑘 (𝑚) E[RD𝑘 (𝑚,𝑛) ]/𝑘

𝑘 · E
[
LRD𝑘 (𝑝𝑎)

]
=

| O𝑎 |
Δ𝑎

+ 𝑘−|O𝑎 |
𝑑

𝑘
Δ𝑎

. (17)

Using the same calculation, the expected LOF for 𝑝𝑏 ∈ O𝑏 is:

E[LOF𝑘 (𝑝𝑏 )] =
| O𝑏 |
Δ𝑏

+ 𝑘−|O𝑏 |
𝐷

𝑘
Δ𝑏

. (18)

Since 𝐷 > 𝑑 (group 𝑏 is sparser) and Δ𝑎 = Δ𝑏 ,

| O𝑎 |
Δ𝑎

+ 𝑘−|O𝑎 |
𝑑

𝑘
Δ𝑎

>

| O𝑏 |
Δ𝑏

+ 𝑘−|O𝑏 |
𝐷

𝑘
Δ𝑏

(19)

=⇒ E[LOF𝑘 (𝑝𝑎)] > E[LOF𝑘 (𝑝𝑏 )] . (20)

Therefore, for the outlier scores 𝑆𝑎 and 𝑆𝑏 associated with 𝑝𝑎
and 𝑝𝑏 , we have 𝑆𝑎 > 𝑆𝑏 . Flag rate 𝑃 (𝑂 = 1|𝐺 = 𝑎) = 𝑃 (𝑂 = 1|𝐺 =

𝑏,𝑌 = 1)𝑃 (𝑌 = 1|𝐺 = 𝑏) + 𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 0)𝑃 (𝑌 = 0|𝐺 = 𝑏)
increases with higher outlier scores assigned to group 𝑎-outliers as

𝑃 (𝑂 = 1|𝐺 = 𝑎,𝑌 = 1) increases.
When 𝐷 ≈ Δ𝑏 , group 𝑏 outliers O𝑏 become indistinguishable

from the inliers I𝑏 , where the expected LOF for 𝑝𝑏 in Eq. (18)

becomes

E[LOF𝑘 (𝑝𝑏 )] =
| O𝑏 |
Δ𝑏

+ 𝑘−|O𝑏 |
Δ𝑏

𝑘
Δ𝑏

= 1 . (21)

Then, group 𝑏-outliers mask as they blend with the inlier points

with similar LOF score (≈ 1), leading to low TPR for group 𝑏. □

D.3.4 Proposition 2. In the clustered outliers setting, let 𝑠𝑝 denote
an iTree’s split, and 𝑃 (𝑥𝑎 < 𝑠𝑝 < 𝑥𝑏 ) denote the probability for a split
to occur between points 𝑥𝑎 and 𝑥𝑏 . Let groups 𝑎 and 𝑏 have equal base
rate 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 = 1|𝑏) and equal average distance between
outliers and inliers Δ𝑎 = Δ𝑏 . As group 𝑏 is sparser, 𝑑 < 𝐷 denotes
the intra-group distances between inlier and outlier pairs for groups
𝑎 and 𝑏, respectively (See Fig. 18). Let {O𝑎 , I𝑎}, {O𝑏 , I𝑏 } represent
the outliers, inliers sets for groups 𝑎 and 𝑏. Then, for 𝑜𝑏 , 𝑝𝑏 ∈ O𝑏 ,
and 𝑜𝑎, 𝑝𝑎 ∈ O𝑎 , we have 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) > 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎),
indicating an iTree is more likely to split among group-𝑏 outliers.
The difference between 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) and 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎)
becomes larger when iTree is built in higher dimensions. In addition,
for 𝑞𝑏 ∈ I𝑏 , 𝑞𝑎 ∈ I𝑎 , 𝑃 (𝑜𝑏 < 𝑠𝑝 < 𝑞𝑏 ) = 𝑃 (𝑜𝑎 < 𝑠𝑝 < 𝑞𝑎), i.e. an
iTree is equally likely to split between the inliers and outliers clusters.

∆𝑎

∆𝑏

d d

D D

G𝑟𝑜𝑢𝑝	𝑎

G𝑟𝑜𝑢𝑝	𝑏

Figure 18: For clustered outliers, illustration of density varia-
tion between group 𝑎 and 𝑏 in 1-d for iForest (Proposition 2).

Proof: For simplicity, we first consider the one-dimensional set-

ting. Since iTree is built based on uniformly random splits between

points and 𝐷 > 𝑑 , for 𝑜𝑏 , 𝑝𝑏 ∈ O𝑏 , and 𝑜𝑎, 𝑝𝑎 ∈ O𝑎 , we have

𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) =
𝐷

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) (22)

𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎) =
𝑑

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) (23)

=⇒ 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) > 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎) . (24)

In words, iTree is more likely to split among 𝑏-outliers than

𝑎-outliers. iForest assigns higher outlier scores to points that are

isolated via fewer splits, yielding shorter root-to-leaf paths. Then,

based on Eq. (24), an iTree is more likely to isolate 𝑏-outliers and

thus associate them with shorter paths, which explains why 𝑃 (𝑂 =

1|𝐺 = 𝑏) > 𝑃 (𝑂 = 1|𝐺 = 𝑎) for iForest.
On the other hand, for 𝑝𝑏 ∈ O𝑏 , 𝑞𝑏 ∈ I𝑏 , and 𝑝𝑎 ∈ O𝑎 , 𝑞𝑎 ∈ I𝑎 ,

we have

𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑞𝑏 ) =
Δ𝑏

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) (25)

=
Δ𝑎

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) = 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑞𝑎) (26)

That is, iTree is equally likely to split between the inliers and

outliers for both groups 𝑎 and 𝑏. This single split is crucial for

both groups for ruling out the outliers collectively as a cluster. Due

to this special split, iForest can flag certain fraction of 𝑎-outliers,

leading to smaller decrease of TPR for group 𝑎.

Extending the analysis to the multiple ℎ-dimensional setting, we

assume the intra-group distance remains 𝐷 > 𝑑 on each dimension,



Xueying Ding, Rui Xi, and Leman Akoglu

and distance Δ𝑎 = Δ𝑏 holds between outliers and inliers for both

groups 𝑎 and 𝑏. Then, for o𝑏 , p𝑏 ∈ O𝑏 , and o𝑎, p𝑎 ∈ O𝑎 , we have

𝑃 (p𝑏 < 𝑠𝑝 < o𝑏 ) − 𝑃 (p𝑎 < 𝑠𝑝 < o𝑎) (27)

=
𝐷ℎ∏ℎ

𝑗=1 (maxx,y∈I∪O 𝑑 (x𝑗 , y𝑗 ))
− 𝑑ℎ∏ℎ

𝑗=1 (maxx,y∈I∪O 𝑑 (x𝑗 , y𝑗 ))
(28)

Since 𝐷 > 𝑑 , 𝐷ℎ − 𝑑ℎ grows with increasing ℎ. While the de-

nominator is roughly the same, the discrepancy between two prob-

abilities increases with larger ℎ. □

D.3.5 Proposition 3. In the clustered outliers setting, let groups
𝑎 and 𝑏 have equal size 𝑛𝑎 = 𝑛𝑏 and equal base rate 𝑃 (𝑌 = 1|𝑎) =
𝑃 (𝑌 = 1|𝑏). Assume group 𝑏-inliers form 𝑓 smaller populations, I𝑖

𝑏
,

for 𝑖 ∈ [[1, 𝑓 ]], and group 𝑏-outliers form 𝑔 smaller populations, O 𝑗

𝑏
for 𝑗 ∈ [[1, 𝑔]]. Let 𝑑 and𝐷 denote intra-group distance between inlier
pairs (same for outlier pairs) for group 𝑎 and each sub-population in 𝑏,
respectively, where 𝐷 = 𝑑 . Denote Δ𝑎 as the average distance between
outliers and inliers in group 𝑎, and Δ𝑏 as the average distance between
each subpopulation in group𝑏 for both inliers and outliers (See Fig. 19).
Then, assuming LOF hyperparameter 𝑘 is set s.t. 𝑘 > 𝑛𝑎 · 𝑃 (𝑌 = 1|𝑎),
and Δ𝑎 = Δ𝑏 while Δ𝑎 > 𝑑 and Δ𝑏 > 𝐷 , LOF tends to assign higher
scores to group 𝑏-outliers, increasing flag rate 𝑃 (𝑂 = 1|𝑏). Further,
when |I 𝑗

𝑏
| < |O𝑖

𝑏
| < 𝑘 , LOF score of 𝑏-inliers is larger than of 𝑏-

outliers, leading to both high FPR and low TPR for group 𝑏.

D
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Figure 19: For clustered outliers, illustration of membership
obfuscation bias in group 𝑏 (Proposition 3).

Proof: For simplicity, we assume each subpopulation in group 𝑏

maintains the average intra-group distance 𝐷 , and the distances be-

tween each subpopulation remains at Δ𝑏 . However, altering certain
subpopulation’s intra-group distance or distance to other subpop-

ulations can cause one subpopulation to have lower/higher LOF

outlier scores, thus complicating the analysis on detecting group 𝑎

and 𝑏 outliers.

Let us denote by I𝑎 and O𝑎 the sets of inliers and outliers in

group 𝑎. Based on Lemma 2, LOF hyperparameter 𝑘 > 𝑛𝑎 · 𝑃 (𝑌 =

1|𝑎) > max( |O1

𝑏
|, ..., |O 𝑓

𝑏
|). For an outlier point 𝑝𝑖

𝑏
in subpopulation

O𝑖
𝑏
for any 𝑖 ∈ [1, ..., 𝑓 ], the average local reachability density is

𝑘
Δ𝑏

by the same calculation as Eq. (12). On the other hand, the local

reachability density of 𝑝𝑖
𝑏
’s 𝑘-neighborhood is calculated as

|O𝑖
𝑏
|

Δ𝑏
+
𝑘 − |O𝑖

𝑏
|

𝐷
(29)

In comparison to the expected LOF score of an outlier point

𝑝𝑎 ∈ O𝑎 , with Δ𝑎 = Δ𝑏 , 𝑑 = 𝐷 , Δ𝑎 > 𝑑 , and Δ𝑏 > 𝐷 , we derive the

following inequality.

| O𝑖
𝑏
|

Δ𝑏
+ 𝑘−|O𝑖

𝑏
|

𝐷

𝑘
Δ𝑏

>

| O𝑎 |
Δ𝑎

+ 𝑘−|O𝑎 |
𝑑

𝑘
Δ𝑎

(30)

=⇒ E[LOF𝑘 (𝑝𝑖𝑏 )] > E[LOF𝑘 (𝑝𝑎)] . (31)

Therefore, 𝑝𝑖
𝑏
from group 𝑏 receives higher outlier score than

𝑝𝑎 (𝑆𝑏 > 𝑆𝑎). Flag rate 𝑃 (𝑂 = 1|𝐺 = 𝑏) increases due to increased

𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 1).
In addition, when |I 𝑗

𝑏
| < 𝑘 , an inlier 𝑝

𝑗

𝑏
∈ I 𝑗

𝑏
has the following

expected LOF score.

E[LOF𝑘 (𝑝
𝑗

𝑏
)] =

| I 𝑗

𝑏
|

Δ𝑏
+ 𝑘−|I 𝑗

𝑏
|

𝐷

𝑘
Δ𝑏

(32)

If |I 𝑗

𝑏
| < |O𝑖

𝑏
|, then E[LOF𝑘 (𝑝

𝑗

𝑏
)] > E[LOF𝑘 (𝑝𝑖𝑏 )], where 𝑝

𝑖
𝑏
∈ O𝑖

𝑏
is a true outlier; i.e. LOF score of 𝑏-inliers is higher than for 𝑏-

outliers, in this case. As 𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 0) > (𝑂 = 1|𝐺 =

𝑏,𝑌 = 1), FPR increases and TPR drops for group 𝑏. □

D.3.6 Proposition 4. In the clustered outliers setting, let 𝑠𝑝 denote
an iTree’s split point, and 𝑃 (𝑥𝑎 < 𝑠𝑝 < 𝑥𝑏 ) the probability for a
split to occur between points 𝑥𝑎 and 𝑥𝑏 . Let groups 𝑎 and 𝑏 have
equal base rates, 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 = 1|𝑏). Let {O𝑎 , I𝑎}, {O𝑏 , I𝑏 }
represent the outlier and inlier sets for groups 𝑎 and 𝑏. Assume group
𝑏-inliers form 𝑓 smaller populations,I𝑖

𝑏
, for 𝑖 ∈ [[1, 𝑓 ]], and𝑏-outliers

form 𝑔 smaller populations, O 𝑗

𝑏
for 𝑗 ∈ [[1, 𝑔]]. Let 𝑑 and 𝐷 denote

intra-group distance between inlier pairs (same for outlier pairs) for
group 𝑎 and 𝑏 among both X𝑔 and X𝑐 dimensions where 𝐷 = 𝑑 .
Also denote by Δ𝑎 the average distance between outliers and inliers
for group 𝑎 among X𝑐 , by Δ𝑏 the average distance between outliers
and inliers for group 𝑏 among X𝑐 , and by Δ𝑔 the average distance
among outlier subpopulations and inlier subpopulations of group 𝑏
among X𝑔 , s.t. Δ𝑔 > 𝑑 (See Fig. 20). Then among X𝑔 features, we have
𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) > 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎), where 𝑜𝑏 ∈ O𝑖

𝑏
, 𝑝𝑏 ∈ O𝑙

𝑏
,

𝑙 ≠ 𝑖 , and 𝑜𝑎, 𝑝𝑎 ∈ O𝑎 . That is, an iTree split on X𝑔 between group
𝑏-subpopulations is more likely than between group 𝑎-outliers. In
addition, among X𝑐 , we have 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑞𝑏 ) = 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑞𝑎),
where 𝑝𝑏 ∈ O𝑏 , 𝑞𝑏 ∈ I𝑏 , 𝑝𝑎 ∈ O𝑎 , 𝑞𝑎 ∈ I𝑎 . That is, an iTree split on
X𝑐 between inlier and outlier clusters is equally like for both groups.

Proof: When group 𝑏 exhibits subpopulations due to group-

membership obfuscation or naturally, it fragments into inlier and

outlier micro-clusters based on varying feature values within X𝑔 .
Then among X𝑔 features, for 𝑜𝑏 ∈ O𝑖

𝑏
, 𝑝𝑏 ∈ O𝑙

𝑏
, 𝑙 ≠ 𝑖 , and 𝑜𝑎, 𝑝𝑎 ∈

O𝑎 , we have

𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) =
Δ𝑔

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) (33)

>
𝑑

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) = 𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑜𝑎) (34)
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Figure 20: For clustered outliers, illustration of group mem-
bership obfuscation bias in group 𝑏 is only in X𝑔 (x-axis) but
not in X𝑐 (y-axis), for iForest (Proposition 4).

In words, iTree is more likely to split among group 𝑏-outliers

than 𝑎-outliers, due to larger distances between group 𝑏’s subpopu-

lations. Therefore, 𝑃 (𝑂 = 1|𝐺 = 𝑏) > 𝑃 (𝑂 = 1|𝐺 = 𝑎) for iForest.
Moreoever, among X𝑔 dimensions, for 𝑟𝑏 ∈ I𝑖

𝑏
, 𝑠𝑏 ∈ I𝑙

𝑏
, 𝑙 ≠ 𝑖 ,

𝑃 (𝑟𝑏 < 𝑠𝑝 < 𝑠𝑏 ) =
Δ𝑔

max𝑥,𝑦∈I∪O 𝑑 (𝑥,𝑦) (35)

= 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑜𝑏 ) (36)

That is, iTree is equally likely to split between group 𝑏’s outlier

micro-clusters and inlier micro-clusters among X𝑔 . Therefore, iFor-
est can have 𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 1) = 𝑃 (𝑂 = 1|𝐺 = 𝑏,𝑌 = 0) and
incur an increase in group 𝑏’s FPR, if only X𝑔 dimensions alone

were considered. When combined withX𝑐 dimensions, for 𝑝𝑏 ∈ O𝑏 ,

𝑞𝑏 ∈ I𝑏 , 𝑝𝑎 ∈ O𝑎 , 𝑞𝑎 ∈ I𝑎 , we can show that 𝑃 (𝑝𝑏 < 𝑠𝑝 < 𝑞𝑏 ) =
𝑃 (𝑝𝑎 < 𝑠𝑝 < 𝑞𝑎) using the same calculation as Eq. (26). Then,

because iTree is equally likely to split between inlier and outlier

clusters for both groups 𝑎 and 𝑏 among X𝑐 , iForest successfully
assigns high outlier scores to points in both O𝑏 and O𝑎 . However,

as group 𝑏’s flag rate is increased due to increased FPR, flag rate of

𝑎 is reduced leading to lower TPR for group 𝑎. □

D.3.7 Proposition 5. For scattered outliers, let groups 𝑎 and 𝑏

have equal size 𝑛𝑎 = 𝑛𝑏 and equal base rate 𝑃 (𝑌 = 1|𝑎) = 𝑃 (𝑌 =

1|𝑏). Instead of forming a single cluster, scattered outliers form local
neighbors (See Fig. 21). We assume that group 𝑎’s outliers form 𝑔

local neighborhoods, each denoted by M𝑖
𝑎 , 𝑖 ∈ {1, ..., 𝑔}, and group

𝑏’s outliers form 𝑓 local neighborhoods, each denoted by M 𝑗

𝑏
, 𝑗 ∈

{1, ..., 𝑓 }. In other words, we have ∪
1,...,𝑓 M

𝑗

𝑏
= O𝑏 and ∪1,...,𝑔M𝑖

𝑎 =

O𝑎 . Let 𝑑𝑖𝑛 and 𝐷𝑖𝑛 denote the average intra-group distance between
inliers for group 𝑎 and 𝑏, respectively, where 𝑑𝑖𝑛 < 𝐷𝑖𝑛 (group 𝑏 is
sparser). Similarly, let 𝑑𝑜𝑢𝑡 and 𝐷𝑜𝑢𝑡 denote the average intra-group
distance between outliers of the local neighborhoods for group 𝑎 and
𝑏, respectively, where 𝑑𝑜𝑢𝑡 < 𝐷𝑜𝑢𝑡 . We also have 𝑑𝑜𝑢𝑡 > 𝑑𝑖𝑛 and
𝐷𝑜𝑢𝑡 > 𝐷𝑖𝑛 due to the scattered nature of the outliers. Let Δ𝑎 and Δ𝑏
denote the average distance between outliers and inliers in each group,
and𝑚 the maximum size of the local neighborhoods. Then, assuming

dout
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Figure 21: For scattered outliers, illustration of density varia-
tion between group 𝑎 and 𝑏 (Proposition 5).

LOF hyperparameter 𝑘 is set s.t. 𝑘 > 𝑚 and Δ𝑏 = Δ𝑎 ≥ 𝐷𝑜𝑢𝑡 , LOF
tends to assign higher scores to group 𝑎-outliers, increasing flag rate
𝑃 (𝑂 = 1|𝑎).

Proof: Let I𝑎 , I𝑏 denote the sets of inliers in group 𝑎 and group

𝑏. We have that Δ𝑎 ≥ 𝑑𝑜𝑢𝑡 and Δ𝑏 ≥ 𝐷𝑜𝑢𝑡 . Otherwise, when a

local neighborhood has intra-neighborhood distance larger than

distances between outliers and inliers (i.e. 𝑑𝑜𝑢𝑡 > Δ𝑎 , 𝐷𝑜𝑢𝑡 > Δ𝑏
), the local neighborhood can instead form several smaller neigh-

borhoods. Based on Lemma 1 and 2, LOF could flag micro-clusters

of local neighborhood outliers when 𝑘 > 𝑚, the size of the largest

local neighborhood for scattered outliers in both groups.

For an outlier point in any of group 𝑎’s local neighborhoods,

𝑝𝑖𝑎 ∈ M𝑖
𝑎 for 𝑖 ∈ {1, ..., 𝑔}, the expected LOF is

E[LOF𝑘 (𝑝𝑖𝑎)] = E
[ ∑

𝑜∈𝑁𝑘 (𝑝𝑖𝑎 ) LRD𝑘 (𝑜)
|𝑁𝑘 (𝑝𝑖𝑎) | · LRD𝑘 (𝑝𝑖𝑎)

]
(37)

=

∑
𝑜∈𝑁𝑘 (𝑝𝑖𝑎 ) E

[
LRD𝑘 (𝑜)

]
𝑘 · E

[
LRD𝑘 (𝑝𝑖𝑎)

] (38)

=

|M𝑖
𝑎 |

Δ𝑎
+ 𝑘−|M𝑖

𝑎 |
𝑑𝑖𝑛

𝑘
Δ𝑎

(39)

In Eq. (39), at least 𝑘 − |M𝑖
𝑎 | neighbors of 𝑝𝑖𝑎 contain only inliers

and therefore the average reachability distance is 𝑑𝑖𝑛 . Assume that

there exists a 𝑝
𝑗

𝑏
∈ M 𝑗

𝑏
, where |M 𝑗

𝑏
| = |M𝑖

𝑎 |, Then, we have

E[LOF𝑘 (𝑝𝑖𝑎)] > E[LOF𝑘 (𝑝𝑖𝑏 )] due to 𝑑𝑖𝑛 < 𝐷𝑖𝑛 . That is, if local

neighborhoods are of similar sizes, LOF assigns higher score to

group-𝑎 outliers, increasing flag rate 𝑃 (𝑂 = 1|𝐺 = 𝑎).
When 𝐷𝑜𝑢𝑡 ≈ Δ𝑏 , outliers are equally distanced from one an-

other and from the inliers, and thus local neighborhoods disappear.

However for 𝑝𝑏 ∈ O𝑏 , as long as 𝛼 > 0 number of group 𝑏-inliers

exist among the 𝑘-neighbors of 𝑝𝑏 , the expected LOF of 𝑝𝑏 is

E[LOF𝑘 (𝑝𝑏 )] =
𝑘−𝛼
Δ𝑎

+ 𝛼
𝐷𝑖𝑛

𝑘
Δ𝑎

(40)

which prevents LOF to assign an outlier score of 1 for 𝑝𝑏 . The

adjacency to inliers prevents LOF from incurring very low TPR on

group 𝑏, unlike the clustered outlier setting in Proposition 1. □
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D.4 Limitations of Analysis
While our theoretical analyses provide explanations for various

OD outcome discrepancies between protected groups 𝑎 and 𝑏, we

acknowledge they exhibit several limitations.

First, while some mechanistic/non-learning algorithms (LOF and

iForest in our study) can be explained by analyzing their working

mechanisms, it is hard to directly analyze the behavior of other

algorithms in reaction to different data biases. Specifically, the

learning-based algorithms DeepAE and FairOD that rely on a multi-

layer autoencoder structure are hard to analyze mathematically

due to randomness in initialization and training.

Second, while we explicitly and clearly stated, our theoretical

analyses are based on certain assumptions. Specifically, we assumed

that each group or subpopulation of outliers and inliers follow the

same average pairwise intra-group distances, which is smaller than

the distances between inliers and outliers. The uniformity of data

distributions generally does not hold true, especially for real-world

datasets. We also assumed the groups to be well separated in the

proxy feature space so that inter-group distances do not interfere

with the behavior of LOF and iForest on each group. While it may

be a weaker assumption that groups are not too alike, the extent of

inter-group similarity could affect our propositions in practice.
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