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Abstract

Deep neural network based Outlier Detection (DOD) has seen a
recent surge of attention thanks to the many advances in deep
learning. In this paper, we consider a critical-yet-understudied chal-
lenge with unsupervised DOD, that is, effective hyperparameter
(HP) tuning/model selection. While several prior work report the
sensitivity of OD models to HP settings, the issue is ever so crit-
ical for the modern DOD models that exhibit a long list of HPs.
We introduce HYPER for tuning DOD models, tackling two fun-
damental challenges: (1) validation without supervision (due to
lack of labeled outliers), and (2) efficient search of the HP/model
space (due to exponential growth in the number of HPs). A key
idea is to design and train a novel hypernetwork (HN) that maps
HPs onto optimal weights of the main DOD model. In turn, HYPER
capitalizes on a single HN that can dynamically generate weights
for many DOD models (corresponding to varying HPs), which of-
fers significant speed-up. In addition, it employs meta-learning on
historical OD tasks with labels to train a proxy validation function,
likewise trained with our proposed HN efficiently. Extensive experi-
ments on different OD tasks show that HYPER achieves competitive
performance against 8 baselines with significant efficiency gains.
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1 Introduction

Motivation. With advances in deep learning, deep neural network
(NN) based outlier detection (DOD) has seen a surge of attention in
recent years [28, 31]. These models, however, inherit many hyper-
parameters (HPs) that can be organized three ways; architectural
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Figure 1: HYPER framework illustrated. (top) Offline meta-
training of f,,; (depicted in ) on historical datasets for proxy
validation (§4.1); (bottom) Online model selection on a new
dataset (§4.2). We accelerate both meta-training and model
selection using hypernetworks (HN) (depicted in ; §3.1).

(e.g. depth, width), regularization (e.g. dropout rate, weight decay),
and optimization HPs (e.g. learning rate). As expected, their per-
formance is highly sensitive to the HP settings [6]. This makes
effective HP or model selection critical, yet computationally costly
as the model space grows exponentially large in the number of HPs.

Hyperparameter optimization (HPO) can be written as a bilevel
problem, where the optimal parameters W* (i.e. NN weights) on
the training set depend on the hyperparameters A.

A* =argminy Ly W) sk, W =argminyg Lin(W;14) (1)

where L, and L, denote the validation and training losses,
respectively. There is a body of literature on HPO for supervised
settings [2, 16, 35], as well as for OD that use labeled outliers for
validation [15, 17, 18]. While supervised model selection leverages
L1, unsupervised OD posits a unique challenge: it does not exhibit
labeled hold-out data to evaluate L. It is unreliable to employ
the same loss Lirn as Ly, as models with minimum training loss
do not necessarily associate with accurate detection [6].

Prior work. Earlier work have proposed intrinsic measures for
unsupervised model evaluation, based on input data and output (out-
lier scores) characteristics [9, 24], using internal consensus among
various models 7, 19], as well as properties of the learned weights
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[25]. As recent meta-analyses have shown, such intrinsic measures
are quite noisy; only slightly and often no better than random [20].
Moreover, they suffer from the exponential compute cost in large
HP spaces as they require training numerous candidate models for
evaluation. More recent solutions leverage meta-learning by select-
ing a model for a new dataset based on similar historical datasets
[43, 44] . They are likewise challenged computationally for large
HP spaces and cannot handle any continuous HPs. Our proposed
HYPER also leverages meta-learning, while it is more efficient with
the help of hypernetworks as well as more effective by handling
continuous HPs with a better-designed proxy validation function.

Present Work. We introduce HYPER for unsupervised and effi-
cient hyperparameter tuning for deep-NN based OD. HYPER tackles
both of two key challenges with unsupervised DOD model selec-
tion: (Ch1) lack of supervision, and (Ch2) scalability as tempered
by the cost of training numerous candidate models. For Ch1, we
employ a meta-learning approach, where we train a proxy valida-
tion function, f;,), that maps the HPs A, input data, and output
outlier scores of DOD models onto corresponding detection perfor-
mance on historical tasks, as illustrated in Fig. 1 (top, right). Since
meta-learning builds on past experience (historical datasets) with
labels, the performance of various models can be evaluated.

Having substituted L, with meta-trained f,,], one can adopt
existing supervised HPO solutions [8] toward model selection for a
given/new dataset without labels. However, most of those are sus-
ceptible to the scalability challenge (Ch2), as they train each candi-
date model (with varying A) independently from scratch. To address
scalability, and bypass the expensive process of fully training each
candidate separately, we leverage hypernetworks (HN). This idea
is inspired by the self-tuning networks (STN) [22], which estimate
the “best-response” function that maps HPs onto optimal weights
through a parameterized hypernetwork (HN), i.e. \X/q; (A) ~W* A
single auxiliary HN model can generate the weights of the main
DOD model with varying HPs. In essence, it learns how the model
weights should change or respond to the changes in the HPs (hence
the name, best-response), illustrated in Fig. 1 (top, left). As a key con-
tribution, we go beyond just the regularization HPs (e.g., dropout
rate) that STN [22] considered, but propose a novel HN model
that can also respond to the architectural HPs; including depth and
width for DOD models with fully-connected layers.

When a new test dataset (without labels) arrives, HYPER jointly
optimizes the HPs A and the HN parameters ¢ in an alternating
fashion, as shown in Fig. 1 (bottom). Over iterations, it alternates
between (1) HN training that updates ¢ to approximate the best-
response in a local neighborhood around the current hyperparame-
ters via Lirn, and then (2) HP optimization that updates A in a
gradient-free fashion by estimating detection performance through
fval of a large set of candidate A’s sampled from the same neighbor-
hood, using the corresponding HN-generated weights efficiently.

Contributions. HYPER addresses the model selection problem
for unsupervised deep-NN based outlier detection (DOD), applicable
to any DOD model, and is efficient in the face of the large continuous
HP space, tackling both Ch1 and Ch2. HYPER’s notable efficiency
is thanks to our proposed hypernetwork (HN) model that generates
DOD model parameters (i.e. NN weights) in response to changes in

Xueying Ding, Yue Zhao, and Leman Akoglu

the HPs associated with regularization as well as NN architecture—
in effect, employing a single HN that can act like many DOD models.
Further, it offers unsupervised tuning thanks to a proxy validation
function trained via meta-learning on historical tasks, which also
benefits from the efficiency of our HN.

We compare HYPER against 8 baselines ranging from simple to
state-of-the-art (SOTA) through extensive experiments on 35 bench-
mark datasets using autoencoder based DOD. HYPER offers the best
performance-runtime trade-off, leading to statistically better detec-
tion than most baselines; e.g., 2x T over default HP in PyOD [42]),
and 4x speed-up against the SOTA approach ELECT [44].

Accessibility and Reproducibility. We open-source all code
and datasets at https://github.com/xyvivian/HYPER.

2 Problem and Preliminaries

The sensitivity of outlier detectors to the choice of their hyper-
parameters (HPs) is well documented [1, 4, 20]. Deep-NN based
OD models are no exception, if not even more vulnerable to HP
configuration [6], as they exhibit a long list of HPs; architectural,
regularization and optimization HPs. In fact, it would not be an
overstatement to point to unsupervised outlier model selection as
the primary obstacle to unlocking the ground-breaking potential
of deep-NNs for OD. This is exactly the problem we consider.

PROBLEM 1 (UNSUPERVISED DEEP OUTLIER MODEL SELECTION
(UDOMS)). Given a new input dataset (i.e., detection task) D o5t =
(Xtest, 0) without any labels, and a deep-NN based OD model M;
Output model parameters corresponding to a selected hyperparame-
ter/model configuration A € A (where A is the model space) to employ
on Xest to maximize M’s detection performance.

Key Challenges: Our work addresses two key challenges that
arise when tuning deep neural network models for outlier detection:
(Ch1) Validation without supervision & (Ch2) Large HP/model space.

First, unsupervised OD does not exhibit any labels and therefore
model selection via validating detection performance on labeled
hold-out data is not possible. While model parameters can be es-
timated end-to-end through unsupervised training losses, such as
reconstruction error or one-class losses, one cannot reliably use the
same loss as the validation loss; in fact, low error could easily asso-
ciate with poor detection since most DOD models use point-wise
errors as their outlier scores.

Second, model tuning for the modern OD techniques based on
deep-NNs with many HPs is a much larger scale ball-game than
that for their shallow counterparts with only 1-2 HPs. This is both
due to their (i) large number of HPs and also (i) longer training
time they typically demand. In other words, the model space that
is exponential in the number of HPs and the costly training of
individual models necessitate efficient strategies for search.

3 Fast and Unsupervised: Key Building Blocks
of HYPER

To address the above challenges in UDOMS, we propose two pri-
mary building blocks for HYPER: (1) hypernetworks for fast model
weight prediction (§3.1) and (2) proxy validator fy,] that transfers su-
pervision to evaluate model performance on a new dataset without
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labels (§3.2). In §4, we describe how to put together these building
blocks toward fast and unsupervised deep OD model selection.

3.1 Hypernetwork: Train One, Get Many

To tackle the challenge of model-building efficiency, we propose a
version of hypernetworks (HN) that can efficiently train DOD mod-
els with different hyperparameter configurations. A hypernetwork
(HN) is a network generating weights (i.e. parameters) for another
network (in our case, the DOD model) [11]. Our input to HN is
A € A, which is one HP configuration and breaks down into two
components as A = [Areg, Agrcn], corresponding to regularization
HPs (e.g. dropout, weight decay) and architectural HPs (number of
layers and width of each layer). Parameterized by ¢, the HN maps
a specific hyperparameter configuration A; to DOD model weights
W¢ (Aj) = HN(Aj; $), which parameterize the DOD model for
hyperparameter configuration A ;.

We propose changes to the HN [11], such that (1) the output
qu can adjust to different architectural shapes, (2) HN can output
sufficiently diverse weights in response to varying A inputs, and (3)
HN training is more efficient than training individual DOD models.

Architecture Masking. To allow the HN output to adapt to
various architectures, we let the output W¢’s size be equal to size of
the largest architecture in model space A. Then for each A,,..p,, we
build a corresponding architecture masking and feed the masked-
version of W¢ to the DOD model. In other words, the output Wr/’
handles all smaller architectures by properly padding zeros.

Taking DOD models built upon MLPs as an example (see Fig. 2),
we make HN output W¢ € RIPXWXW) ‘where D and W denote
the maximum depth and maximum layer width from A. Assume
Agren contains the abstraction of a smaller architecture; e.g., L
layers with corresponding width values {W;, W ..., Wy } all less
than or equal to W. The architectural HP A, € NP is defined as:

Aarch = (Wi, Wa, ..., W25 0,..,0 \ W 2)415- > Wip—1), WL] -
(D — L) zeros

Then, we construct the architecture masking A € {0, 1}(DXWxW),

A[L0:Agren[01:] = 1 ifl=0
. (@)
A[10Agren[11.0:Aaren[1-2]] =1 » otherwise

where Ag,cp [[—2] is the last non-zero entry in A4, [0 : I]. (e.g., for
Agreh = [5,3,0,0,3] and [ = 4, the last nonzero entry is A 4,5 [1]
where z = 3.) Then, I’th layer weights are multiplied by masking
as Afy..] © VT/¢,1, where non-zero entries are of shrunk dimen-
sions. If A[;..| contains only zeros, layer weights become all zeros,
representing a "No operation" and is ignored in the DOD model.

We find that this masking works well with linear autoencoders
with a "hourglass" structure, in which case the maximum width W
is the input dimension. For convolutional networks, even though
we can tune depths and channels, we can also include kernel sizes
and dilation rate by properly padding W¢ with zeros [38]. We
make HN output W¢ € R(DXMenXMenXMiXMk) | yhere D, M,
M. represent maximum number of layers, channels, and kernel size
specified in A, respectively.

Assume A, contains the abstraction of a smaller architectures,
e.g. L layers with corresponding channel values {Mc1, M2, ..., Mo }
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Figure 2: Illustration of the proposed HN. (Top) HN generates
weights for a 4-layer AE, with layer widths equal to [4, 2,4, 5].
Weights W¢ is fed into the DOD model, while hidden layers’
dimensions are shrunk by the masking A. (Bottom) HN gen-
erates weights for a 2-layer AE, with layer widths equal to
[3,5]. Agpch is padded as [3,0,0,5], and the architecture mask-
ing at the second and third layer are set to all zeros. When
W¢ is fed into the DOD model, zero masking enables the "No
Operation" (No-op), in effect shrinking the DOD model from
4 layers to 2 layers.

all less than or equal to M_p, and {Kj, K2, ..., KL } are less than or
equal to M. Then, the A, € N?D is given as:

Aarch = [Me1, K1, Mc2, Ko, ..., Me| 12) K| 1/2)» 0.0,
2(D-L) zeros

MeiLy2)+0 K Lj2)415 - - > MeL, Kl (3)

The architecture masking A € {0, 1} (P*MenXMenXMixMic) g con-
structed as the following:

A A 2x1
[L0:Aaren 21| Mgl || Raren[H]

o Mgt o Bl gy = 1 AEE=0
[L0-Aaren[2X11.0:Aaren 2% (1-2) 1, “glt | - ZarchPTL || Mok 1) Aaren 2L )
=1, otherwise
4)
Again, Ag,cp [2X(I-2)] is the last entry corresponding to the non-
zero input channel in A .., [2 %] Similar to the linear operation, at
layer [, if A4,cp[2 X 1] is all zero, then the resulting A[; .. ..] would
contain only zeros and represent a "No-op" in the DOD model.
Otherwise, assume we want obtain a smaller kernel size, Kj < My, at
layer [, the corresponding A[; . .. .| pads zeros around the size M. X
k x k center. The masked weights A[;....] © Wﬁl are equivalent
to obtaining smaller-size kernel weights. Notice that, when kernel

sizes are different, the output of the layer’s operation will also
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differ (smaller kernels would result in larger output size); therefore,
we need to guarantee the spatial size by similarity padding zeros
around the input of that convolutional layer. The padding is similar
to how we construct the architecture masking A and similar to the
padding approach discussed in [38] .

Diverse Weight Generation. While HN is a universal function
approximator in theory, it may not generalize well to offer good
approximations for many unseen architectures, especially given
that the number of A’s during training is limited. When there is
only little variation between two inputs, the HN provides more
similar weights, since the weights are generated from the same HN
where implicit weight sharing occurs.

We employ two ideas
toward enabling the
HN to generate more
expressive weights in
response to changes
in Agp. First is to
inject more variation
within its input space O 100 20 300 40 00 60 700 800

h . d of di Num of Epochs
Where, 1ns:tea' ot dr- Figure 3: Loss of individual models
rectly feeding in A4pcp,

) h ! during scheduled training. Lighter
we llnp ut dF € Fosi colors depict loss curves of deeper
tllona enco ;Lngo cac architectures, which enter train-
e e.merit m é{reh' Po- ing early. Over epochs loss is mini-
sitional encoding [36] mized for all models collectively.
transforms each scalar

element into a vector embedding, which encodes more granular
information, especially when A, contains zeros representing a
shallower sub-architecture. Second idea is to employ a scheduled
training strategy of the HN as it produces weights for both shal-
low and deep architectures. During HN training, we train with A
associated with deeper architectures first, and later, A for shallower
architectures are trained jointly with deeper architectures. Our
scheduled training alleviates the problem of imbalanced weight
sharing, where weights associated with shallower layers are up-
dated more frequently as those are used by more number of ar-
chitectures. Fig. 3 illustrates how the training losses change for
individual architectures during the HN’s scheduled training.
Batchwise Training. Like other NNs, HN allows for several
inputs {A; ;": 1 synchronously and outputs {Wdi (A j)};.”: 1- To speed

13

up training, we batch the input at each forward step with a set of
different architectures and regularization HP configurations. As-
suming {/1]}}":1 ={[Aarch,js Areg,jl };":1 C A are the set of sampled
HP configurations from the model space, given training points X,
the HN loss for one pass is calculated as:

m
Ly, = Z Z L (W¢ ( [)'arch,js Areg,j] ), x) (5)

xeX j=1
where the training loss L, is the same loss as that of the DOD
model of interest; e.g. reconstruction loss for autoencoder-based
OD models, one-class losses [32], or regularized reconstruction loss
[45], etc. We feed the HN-generated weights (instead of learning
the actual weights) as well as the training data X to the DOD model
M, which then outputs the outlier scores 5j = M(X; \X/¢(/1j)).
The outlier scores are used to compute the training loss L, as
well as in training our proxy validation function as described next.
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(See Fig. 1) During training, the gradients can further propagate
through the generated weights to update the HN parameters ¢.

In summary, our HN mimics fast DOD model building across
different HP configurations. This offers two advantages: (i) training
many different HPs jointly in meta-training and (ii) fast DOD model
parameter generation during online model search. Notably, our HN
can tune a wider range of HPs including model architecture, and
as shown in §5.3, provides superior results to only tuning Ayeg.

3.2 Validation without Supervision via
Meta-learning

Given the lack of ground truth labels on a new dataset, model
selection via supervision is not feasible. Instead, we consider trans-
ferring supervision from historical datasets through meta-learning,
enabling model performance evaluation on the new dataset. Meta-
learning uses a collection of historical tasks Dirain = {D1,..., DN}
that contain ground-truth labels, i.e. {D; = (X;, yi)}ﬁ 1 For many
OD settings, such historical datasets are obtainable. For example, for
a new disease diagnosis, many previous medical records and medi-
cal images are available for normal vs. abnormal health conditions,
which can be utilized as historical datasets.

Given a DOD algorithm M for UDOMS, we let M; denote the
DOD model with a specific HP setting A j from the set {A1,..., A} C
A. HYPER uses Dyp,in to compute two quantities. First, we obtain
historical outlier scores of each M; with HP setting A; on each
Di = (Xi,¥i) € Diain- Let Oi’j = M; (X, W(A])) denote the
output outlier scores of M;j trained with a specific HP configura-
tion A; for the data points X; in dataset O;, where W(A;) are
M;’s estimated (i.e. HN-generated) weights for A;. Second, we
can calculate the historical performance matrix P € RN*™ where
P; j := perf(O; j,yi) denotes M;’s detection performance (e.g. AU-
ROC) on dataset D;, evaluated based on y;.

With the historical outlier scores and the performance matrix
in hand, we train a proxy validator called f;,], which provides us
with performance estimation P when we encounter a new dataset
and no label is given. As shown in Fig. 1 (right), the high-level idea
of f,1 is to learn a mapping from data and model characteristics
(e.g., distribution of outlier scores) to the corresponding OD per-
formance across N historical datasets and m models (with different
HP configurations). Since it is costly to train all these OD models
individually on all datasets from scratch, we utilize our previously
proposed HN only once per dataset across m different HP configura-
tions, which generates the weights and outlier scores for all models.
With the hypernetwork and meta-learning from historical dataset
introduced, we present the full framework of HYPER in §4 and the
training details of fi,) in §4.1.

4 HyPER Framework for UDOMS

HYPER consists of two phases (see Fig. 1): (§4.1) offline meta-training
over the historical datasets, and (§4.2) online model selection for a
given test dataset. In the offline phase, we train the proxy validator
fval, which allows us to predict model performance on the test
dataset without relying on labels. During online model selection,
we alternate between training our HN to efficiently generate model
weights for varying HPs around a local neighborhood, and refining
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the best HPs at the current iteration based on f,,1’s predictions for
many locally sampled HPs. We present the details as follows.

4.1 Offline Training on Historical Datasets

In HYPER, we train a proxy validator f;,] across historical datasets,
so that we can predict the performance of an OD model on the test
dataset. f,,; maps HP configuration (A), data embedding, and model
embedding onto the corresponding model performance across his-
torical datasets. The goal is to predict detection performance solely
based on the characteristics of the input data and the trained model,
along with the HP values. We create the data embedding and model
embedding as described below.

Data Embeddings. Existing work [43] captures the data char-
acteristics of an OD dataset via extracting meta-features, such as
the number of samples and features, to describe a dataset. Although
simple and intuitive, meta-features primarily focus on general data
characteristics with a heuristic extraction process, and are insuffi-
cient in model selection [44]. In this work, we design a principled
approach to capture dataset characteristics. First, the datasets may
have different feature and sample sizes, which makes it challenging
to learn dataset embeddings. To address this, we employ feature
hashing [39], ¥/(-), to project each dataset to a k-dimensional unified
feature space. To ensure sufficient expressiveness, the projection
dimension should not be too small (k = 256 in our experiments).
Subsequently, we train a cross-dataset feature extractor A(-), a fully
connected neural network, trained with historical datasets’ labels,
to learn the mapping from hashed samples to the corresponding
outlier labels. i.e. h : ¥(X;) + y; for the i-th dataset. Training
over datasets, the latent representations by h(-) are expected to
capture the outlying characteristics of datasets. Finally, we use max-
pooling to aggregate sample-wise representations into dataset-wise
embeddings, denoted by pool{h(y/(X;))}.

Model Embeddings. In addition to data embeddings, we need
model embeddings that change along with the varying hyperpa-
rameter settings to train an effective proxy validator. Here we use
the historical outlier scores and historical performance matrix, as
presented in §3.2, to learn a neural network g(-) that generates the
mapping from the outlier scores onto detection performance, i.e.
g : Oyj — P; j. To handle size variability of outlier scores (due to
sample size differences across datasets) as well as to remain agnos-
tic to permutations of outlier scores within a dataset, we employ
the DeepSet architecture [40] for g(-), and use the pooling layer’s
output as the model embedding, denoted by pool{g(O; ;)}.

Effective and Efficient f,, Training. By incorporating the
aforementioned components, we propose the proxy validator f 1,
which tries to learn the following mapping:

feat = Aj, pool{h(§(Xi))}. pool{g(0ij)} = Pij
Il—ﬁls data embed. model embed.
ie{l,...,N}, je{1,...,m} 6)
We train fi,) with lightGBM [13] (one may use any regressor),
across N historical datasets and m models with varying HP config-
urations. The loss function is the squared error between prediction
PandP: Ly =31, 37 [Py - Pijll%
By considering both data and model embeddings in Eq. (6), fyal
predicts performance more effectively compared to existing works
that solely rely on HP values and dataset meta-features [43].
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Notice that obtaining the model embeddings in Eq. (6) that rely
on the outlier scores O; j requires training the DOD model for each
dataset D; and each HP configuration A, which can be computa-
tionally expensive. To speed up this process for meta-training, we
use HN-generated weights rather than training these individual

DOD models from scratch, to obtain (3i,j = M; (Xi;Wg)(AJ-)),

where \X/;’l) (A;) denotes model M;’s weights for HP configuration
Aj, as generated by our HN trained on D;.

At test time, the proxy validator f;,] provides performance evalu-
ation by taking in the new dataset’s embedding and a DOD model’s
embedding with a HP configuration, without requiring the ground
truth labels. In this way, we are able to leverage the benefits of
meta-learning from historical datasets, and estimate the perfor-
mance of a specific DOD model on a new dataset, when the new
dataset contains no labels.

4.2 Online Model Selection

Model selection via proxy validator. With our meta-trained f; 4
at hand, given a test dataset Xiest, @ simple model selection strat-
egy would be to train many DOD models with different randomly
sampled HPs on Xiest to obtain outlier scores, and then select the
one with the highest predicted performance by f, 1.

However, training OD models from scratch for each HP can be
computationally expensive. To speed this up, we also train a HN on
Xtest and subsequently obtain the outlier scores 5test from the DOD
model with HN-generated weights for randomly sampled HPs. We
select the best HP configuration according to Eq. (7).

argmax fya1(Xeest A Otest.1) )
AEA

Moreover, we propose to iteratively train our HN over locally
selected HPs, since training a “global” HN to generate weights
across the entire A and over unseen A is a challenging task especially
for large model spaces [22], which can impact the quality of the
generated weights and subsequently affect the overall performance
of the selected model. Therefore, we propose two stages of alternate
updating. One stage trains the HN according to a neighborhood
of sampled HP configurations around the current best HP, while
the other stage applies the generated weights from HN to obtain
outlier scores, and subsequently find the new best HP configuration
through the performance proxy validator.

Training local HN iteratively and adaptively. We design
HYPER to jointly optimize the HPs A and the (local) HN parameters
¢ in an alternating fashion; as shown in Fig. 1 (bottom). Algorithm
1 provides the step-by-step outline of the process. Over iterations,
it alternates between two stages:

(S1) HN training that updates HN parameters ¢ to approximate
the best-response in alocal neighborhood around the current
hyperparameters Acyrr via Lpy (Lines 4-8), and

(S2) HP optimization that updates Acyrr in a gradient-free fash-
ion by estimating detection performance through f;, of a
large set of candidate A’s sampled from the same neighbor-
hood, using the corresponding approximate best-response,
i.e. the HN-generated weights, W¢ (A) (Line 9).

To dynamically control the sampling range around Acy,r, we
use a factorized Gaussian with standard deviation o to generate



KDD ’24, August 25-29, 2024, Barcelona, Spain

Algorithm 1 HYPER: Online Model Selection

Input: test dataset Diest = (Xtest, #), HN parameters ¢, HN learn-
ing rate o, HN loss L, (+), proxy validator fy,;, HN (re-)training
epochs T, validation objective G(+) in Eq. (9), patience p

Output: optimized HP configuration A* for the test dataset

1: Initialize Acyrr and ocyrr
2: while patience criterion p is not met do
3 Sampleset S =0

4 fort=1,...,Tdo

5 €t ~ p(€|ocurr) » local sampling range around Acyrr
6 o —¢- Q%Lhn(lcurr + €, We(Acurr + €))

7: S :=8SU (Acurr + €) » save locally sampled HPs
8 end for

9 Acurr < argmaxj c g Q(A’ Ucurr;¢) » Eq. (9)
10: Ocurr < argmax, G(Acurr, 0; @)

11: end while _

12: return A* ~ argmax; g fral Xtest: A Otest 1) » Eq. (10)

local HP perturbations p(e|o). We initialize o to be a scale factor
vector, each value is within R*, and dynamically change the value
of o, which becomes o¢yrr to control the radius of sampling neigh-
borhood. ocyr is used in (S1) for sampling local HPs and is then
updated in (S2) at each iteration (Line 10).

Updating Acyrr and ocurr. HYPER iteratively explores promis-
ing HPs and the corresponding sampling range. To update Acyrr
and the sampling factor ocyrr, we maximize:

Ee~p(e|o’) [fral Ktest, A + €, Wy (A+e)] (®)
L ]
update Acyrr to a better model/HPs w/ high expected performance
+ v H(p(elo))
I — |

sampling range around Acurr

The objective consists of two terms. The first term emphasizes
selecting the next model/HP configuration with high expected per-
formance, aiming to improve the overall model performance. The
second term measures the uncertainty of the sampling factor, quan-
tified with Shannon’s entropy H. A higher entropy value indicates
a less localized sampling, allowing for more exploration. The objec-
tive is to find an HP configuration that can achieve high expected
performance, within a reasonably large local region to contain a
good model, that is also local enough for the HN to be able to effec-
tively learn the best-response. If the sampling factor o is too small,
it limits the exploration of the next HP configuration and training
of the HN, potentially missing out on better-performing options.
Conversely, if o is too large, it may lead to inaccuracies in the HN’s
generated weights, compromising the accuracy of the first term.
The balance factor 7 controls the trade-off between the two terms.
We approximate the expectation term in Eq. (8) by the empirical
mean of predicted performances through V number of sampled
perturbations around A. We define our validation objective G as:

G, 0:9) = § T, fral(Xtest: A+ €1, W (A + €)) + tH(p(ela)) (9)

In each iteration of the HP update, we first fix ocyrr and find
the configuration in S with the highest value of Eq. (9), where we
sample V local configurations around each A € S, i.e., A + €i|Ocurr
fori € 1,...,V. After Acyrr is updated, we fix it and update the
sampling factor ocyrr also by Eq. (9), using V samples based on each
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Table 1: HYPER and baselines for time (in mins) and perfor-
mance comparison with categorization by whether it selects
models (2nd column), uses meta-learning (3rd column), and
requires model building at the test time (4th column). Over-
all, HYPER (with patience p = 3) achieves the best detection
performances (also see Fig. 4 and 5). Compared to the SOTA
ELECT, HYPER has markedly shorter offline and online time.

Model Meta Zero | Offline  Avg.On Med.On | Avg. ROC

Method Selection Learning shot | Time -line Time -line Time Rank(|)
Default X X 4 N/A 0 0 0.5954
Random X X v N/A 0 0 0.5603
MC v X X N/A 215 277 0.5642
GB v v v 7,461 0 0 0.4668
ISAC v v v 7,466 1 1 0.4181
AS v v v 7,465 1 1 0.5222
MetaOD v v v 7,525 1 1 0.3918
ELECT v v X 7,611 59 71 0.3621
Ours v v X 1,320 14 17 0.2954

o from a pre-specified range for each HP. To ensure encountering
a good HP configuration, we set V to be a large number, e.g. 500.
We provide details and pre-specified range in Appx. §A.1.
Selecting the Best Model/HP A*. We employ f; . to choose
the best HP A* among all the locally sampled HPs S during the
last iteration of HN training. Note that HYPER directly uses the
HN-generated weights for fast computation, without the need to
train any model from scratch for evaluation by f,,;. With the gener-
ated weights \X’(]g (A) , the DOD model produces the corresponding

outlier scores, denoted as 5test, 2 = My (Ktest; qu (A)), that allows
us to select the best HP configuration within the candidate set by

A%~ argmax fia (Xest, A, 5test,)L) . (10)
AeS

Initialization and Convergence. We initialize Acyrr and ocyrr
with the globally best values across historical datasets. We consider
HYPER as converged if the highest predicted performance by f;,)
does not improve in p consecutive iterations. A larger p, referred
as “patience”, requires more iterations to converge yet likely yields
better results. Note that p can be decided by cross-validation on
historical datasets during meta-training. We present an empirical
analysis of initialization and patience in the experiments.

5 Experiments

5.1 Experiment Settings

Benchmark Data. We show HYPER’s effectiveness and efficiency
with fully connected AutoEncoder (AE) for DOD on tabular data,
using a testbed consisting of 34 benchmark datasets from two differ-
ent public OD repositories; ODDS [30] and DAMI [5] (Pima dataset
is removed). In addition, we run HYPER with convolutional AE on
MNIST and FashinMNIST datasets. We treat one class as the normal
class, while downweighting the ratio of another class at 10% as the
outlier class. We train and validate HYPER with inliers and outliers
from classes [0,5] (30 tasks/datasets in total) and evaluate 8 tasks
on [6,9], to avoid data leakage in (meta)training/testing data.
Baselines. For tabular dataset, we include 8 baselines for com-
parison ranging from simple to state-of-the-art (SOTA); Table 1
provides a conceptual comparison of the baselines. They are orga-
nized as (i) no model selection: (1) Default uses the default HPs
used in a popular OD library PyOD [42], (2) Random picks an
HP/model randomly (we report expected performance); (ii): model



Fast Unsupervised Deep Outlier Model Selection with Hypernetworks

g 0.3 - 4x faster Ours
& 77 |Pareto frontier # T = ELECT
© ,, i MC
% Ve % o P MetaOD
= 0.4 1 /‘ [ GB

O ISAC
£ 7/
8 Rd o AS
é ’I () Default
e 0.5 - 2 ob Random
8 (]

X
Tk ~
o do {
z 0619

1 10 100

Avg. runtime at test (mins) in log-scale
Figure 4: Avg. running time (log-scale) vs. avg. model ROC
Rank. Meta-learning methods are depicted with solid mark-
ers. Pareto frontier (red dashed line) shows the best methods
under different time budgets. HYPER outperforms all with

reasonable computational demand.
selection without meta-learning: (3) MC [20] leverages consen-

sus; and (iii) model selection by meta-learning: (4) Global Best
(GB) selects the best performing model on the historical datasets on
average, and SOTA baselines include (5) ISAC [12], (6) ARGOS-
MART (AS) [27], (7) MetaOD [43], (8) ELECT [44]. Baselines
(1), (2), and (4)-(7) are zero-shot that do not require model building
during model selection. For image dataset, we proivde HYPER’s
performance in comparison to Random (avg. performance across
HPs) and Default (configuration used by DeepSVDD ([33]).
Evaluation. For tabular data, we use 5-fold cross-validation to
split the train/test datasets; that is, each time we use 28 datasets as
the historical datasets to select models on the remaining 7 datasets.
For image data, we use 5-fold cross-validation: 24 (out of 30) datasets
as the historical datasets to select models on the remaining 6 (meta-
train) datasets. We use AUROC to measure detection performance,
while it can be substituted with any other measure. We report the
raw ROC as well as the normalized ROC Rank of an HP/model, rang-
ing from 0 (the best) to 1 (the worst)—i.e., the lower the betterWe
use the paired Wilcoxon signed rank test [10] across all datasets in
the testbed to compare two methods. Full results in Appx. §A.2.

5.2 Experiment Results

Tabular. Fig. 4 shows that HYPER outperforms all baselines
with regard to average ROC Rank on the 35 testbed.In addi-
tion, Fig. 5 provides the full performance distribution across all
datasets and shows that HYPER is statistically better than all base-
lines, including SOTA meta-learning based ELECT and MetaOD.
Among the zero-shot baselines, Default and Random perform sig-
nificantly poorly while the meta-learning based GB leads to compa-
rably higher performance. Same as previous study [20], the internal
consensus-based MC can be no better than Random.

HN-powered efficiency enables HYPER to search more broadly.

Fig. 4 and Appx. Table 1 show that HYPER offers significant speed
up over the SOTA method ELECT, with an average offline training
speed-up of 5.77x and a model selection speed-up of 4.21x. Unlike
ELECT, which requires building OD models from scratch during
both offline and online phases, HYPER leverages the HN-generated
weights to avoid costly model training for each candidate HP.
Meanwhile, HYPER can also afford a broader range of HP con-
figurations thanks to the lower model building cost by HN. This
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Figure 5: Distribution of ROC Rank across datasets. HYPER
achieves the best performance. Bottom three bars depict
HYPER’s variants that do not fully tune architecture HPs (for
ablation). Paired test results are depicted as significant w/ *
at 0.1, ** at 0.01, *** at 0.001. See p-values in Appx. Table A1.

capability contributes to the effectiveness of HYPER, which brings
7% avg. ROC Rank T over ELECT.

Meta-learning methods achieve the best performance at
different budgets. Fig. 4 and Appx. Table 1 show that the best
performers at different time budgets are global best (GB), MetaOD,
and HYPER, which are all on the Pareto frontier. In contrast, simple
no-model-selection approaches, i.e., Default and Random, are typi-
cally the lowest performing methods. Specifically, HYPER achieves
a significant 2x avg. ROC Rank improvement over the default HP
in PyOD [42]), a widely used open-source OD library. Although
meta-learning entails additional (offline) training time, it can be
amortized across multiple future tasks in the long run.

Image. Table 2 shows that HYPER is outperforming both Ran-
dom selection and Default LeNet AutoEncoder model, as it is able
to effectively learn from historical data to tune HPs. In addition, we
evaluate HYPER ’s performance across datasets by online training
with 5 FashionMNIST tasks, with the same search space of HPs
and same offline-training solely on MNIST anomaly detection tasks.
Table 3 shows that HYPER outperforms Random on average,but not
necessarily on all datasets. It may be due to the fact that MNIST
(used for meta-learning) and FashionMNIST (test tasks) are from dif-
ferent distributions and share less similarities for effective transfer
through meta-learning.

Table 2: Test AUROC of HYPER in comparison to Random
and Default HP configurations. Overall, HYPER shows higher
AUROC than Random and Default.

Inlier/Outlier Class Random  Default HyPEer
Inlier: 6 Outlier: 9 0.8343 0.8015 0.9463
Inlier: 9 Outlier: 7 0.6358 0.6409 0.7761
Inlier: 8 Outlier: 6 0.7152 0.6358 0.8490
Inlier: 6 Outlier: 8 0.7827 0.8276 0.8365
Inlier: 6 Outlier: 7 0.7787 0.7968 0.9179
Inlier: 7 Outlier: 6 0.8720 0.8330 0.8909
Inlier: 9 Outlier: 6 0.7642 0.7371 0.9098
Inlier: 7 Outlier: 9 0.4073 0.5769 0.4613
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Table 3: Test AUROC of HyPEr and Random, evaluated on
FashionMNIST Datasets.HYPER, solely trained on MNIST, does
not provide competitive performances in all cases.

Inlier/Outlier Class Random  HYPER
Inlier: T-shirt Outlier: Trouser 0.6004 0.6132
Inlier: Trouser Outlier: Pullover 0.8902 0.9878
Inlier: Dress Outlier: Coat 0.8715 0.8456
Inlier: Sandal Outlier: Shirt 0.9024 0.8752
Inlier: Sneaker Outlier: Bag 0.9457 0.9033
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Figure 6: Trace of HP changes over iterations on spamspace:
(top) tuning regularization HPs only; (bottom) tuning both
regularization and architectural HPs (ours). When arch. is
fixed, reg. HPs incur more magnitude changes and reach
larger values to adjust model complexity. HYPER tunes com-
plexity more flexibly by also accommodating arch. HPs.

5.3 Ablation Studies

Benefit of Tuning Architectural HPs via HN. HYPER tackles
the challenging task of accommodating architectural HPs besides
regularization HPs. Through ablations, we study the benefit of
our novel HN design, as presented in §3.1, which can generate
DOD model weights in response to changes in architecture. Bottom
three bars of Fig. 5 show the performances of three HYPER variants
across datasets. The proposed HYPER (with median ROC Rank =
0.1349) outperforms all these variants significantly (with p<0.001),
namely, only tuning regularization and width (median ROC Rank
= 0.2857), only tuning regularization and depth (median ROC Rank
= 0.3095), and only tuning regularization (median ROC Rank =
0.3650). By extending its search for both neural network depth
and width, HYPER explores a larger model space that helps find
better-performing model configurations.

HP Schedules over Iterations. In Fig. 6, we more closely an-
alyze how HPs change over iterations on spamspace, comparing
between (top) only tuning reg. HPs while fixing model depth and
width (i.e., shrinkage rate) and (bottom) using HYPER to tune all
HPs including both reg. and architectural HPs. Bottom figures show
that depth remains fixed at 4, shrinkage rate increases from 1 to
2.25 (i.e., width gets reduced), dropout to 0.2, and weight decay
to 0.05—overall model capacity is reduced relative to initialization.
In contrast, top figures show that, when model depth and width
are fixed, regularization HPs compensate more to adjust the model
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capacity, with a larger dropout rate at 0.4 and larger weight decay at
0.08, achieving ROC rank 0.3227 in contrast to HYPER’s 0.0555. This
comparison showcases the merit of HYPER which adjusts model
complexity more flexibly by accommodating a larger model space.
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Figure 7: Comparison of ROC Rank (lower is better) of HYPER
with meta-initialization (in blue) with increasing numbers of
randomly initialized HNs, on ODDS_wine (upper left), WDBC (up-
per right), HeartDisease (lower left) and Ionosphere (lower
right). It needs 9 randomly initialized HNs to achieve the
same performance as HYPER on ODDS_wine . In general, HYPER
finds a good model with much less running time.

Effect of Meta-initialization. In Fig. 7, we demonstrate the
effectiveness of meta-initialization by comparing it with random ini-
tialization on four datasets. In addition to utilizing meta-initialization,
one could run HYPER multiple times with randomly initialized HPs
and select the best model based on f;,]. To simulate this scenario,
we vary the number of random initializations (x-axis) and record all
the f;, values along with the corresponding ROC Rank. For each
dataset, we select the best model based on f,,] across all trials. We
increase the number of random trials from 1 to 15, where the high-
est fy, value among the 15 random initialized trials is chosen as
the best model. Meta-initialization is indeed a strong starting point
for HYPER’s HP tuning. For example, on the ODDS_wine dataset, it
requires 9 randomly initialized HNs to attain the same performance
as our approach with meta-initialization, showing a 9-fold increase
in the time required for online selection. In other cases, training 15
randomly initialized HNs fails to achieve the same performance as
meta-initialization, further validating its advantages.

Effect of Patience. The convergence criterion for HYPER is
based on the highest predicted performance by f;, remaining un-
changed for p consecutive iterations (“patience”). As illustrated in
Fig. 8, increasing the value of p allows for more exploration and
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Figure 8: Analysis of the effect of patience p: (left) avg. f a1
value change when increasing p from 1 to 4; (right) avg. ROC
Rank (lower is better) with increasing p. Larger p leads to
more exploration and tends to offer better performance.

potentially better performance. However, this also prolongs the
convergence time. In our experiments, we set p = 3 to balance per-
formance and runtime. The specific value of p can be determined
through cross-validation over the historical datasets.

5.4 Limitation

To analyze HYPER ’s performance with respect to train/test datasets,
we compare HYPER ’s predictions to the test dataset’s similarity to
the training datasets. We first adapt the code from MetaOD’s feature
extractor! and extract features that represent the underlying data
distribution, including mean, standard deviation, kurtosis, sparsity,
skewness, and etc. Since each dataset is now represented as a vec-
tor of meta-features, we are able to measure the pairwise cosine
similarity between datasets. For each dataset, we then calculate the
average cosine similarity to the training datasets.

Table 4 shows the Top-5 datasets where HYPER has the most
AUROC performance differences to the Top-1 baseline (listed in
Table A3), and the dataset’s average cosine similarity to the training
datasets. We observe that HYPER ’s performance can be subpar
when the test dataset has a small cosine similarity to the training
datasets, since all the 5 datasets have smaller cosine similarity than
the average pairwise dataset similarity. We can further conclude
that one working assumption of HYPER is that test dataset has a
similar data distribution to at least a few of the training datasets.
Table 4: Average Cosine Similarity to Training Dataset vs.
HyPer’s AUROC Difference. HYPER performs worse when test
dataset has small consine similarity to training data.

Dataset Avg. Cos Sim. AUROC Diff. (Rank)
DAMI_Wilt 0.4570 0.1371 (9)
ODDS_vertebral 0.2610 0.1262 (7)
DAMI_Annthyroid 0.1955 0.1236 (8)
DAMI_Glass 0.2451 0.0525 (7)
ODDS_annthyroid 0.2446 0.0339 (5)

Avg. Pairwise Sim. 0.5194 -

6 Related Work

Supervised Model Selection. Supervised model selection lever-
ages hold-out data with labels. Randomized [2], bandit-based [16],
and Bayesian optimization (BO) techniques [35] are various leading
approaches. Self-tuning networks (STN) [22] utilizes validation data

!https://github.com/yzhao062/MetaOD/blob/master/metaod/models/gen_meta_
features.py
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to alternatively update the HPs in the HP space along with the cor-
responding model weights. Under the context of OD, recent work
include AutoOD [17] that focuses on neural architecture search,
as well as PyODDS [18] and TODS [15] for model selection, all
of which rely on hold-out labeled data. Clearly, these supervised
approaches do not apply to UDOMS.

Unsupervised Model Selection. To choose OD models in an
unsupervised fashion, one approach is to design unsupervised in-
ternal evaluation metrics [9, 23, 26] that solely depend on input
features, outlier scores, and/or the learned model parameters. How-
ever, a recent large-scale study showed that most internal metrics
have limited performance in unsupervised OD model selection [20].
More recent solutions leverage meta-learning that selects the model
for a new dataset by using the information on similar historical
datasets—SOTA methods include MetaOD [43] and ELECT [44].
Their key bottleneck is efficiently training the candidate models
with different HPs, which is addressed in our work.

Hypernetworks. Hypernetworks (HN) have been primarily
used for parameter-efficient training of large models with diverse
architectures [3, 14, 22, 41] as well as generating weights for diverse
learning tasks [29, 37]. HN generates weights (i.e. parameters) for
another larger network (called the main network) [11]. As such,
one can think of the HN as a model compression tool for training,
one that requires fewer learnable parameters. Going back in history,
hypernetworks can be seen as the birth-child of the “fast-weights”
concept by Schmidhuber [34], where one network produces context-
dependent weight changes for another network. The context, in
our as well as several other work [3, 22], is the hyperparameters
(HPs). That is, we train a HN model that takes (encoding of) the HPs
of the (main) DOD model as input, and produces HP-dependent
weight changes for the DOD model that we aim to tune. Training a
single HN that can generate weights for the (main) DOD model for
varying HPs can effectively bypass the cost of fully-training those
candidate models from scratch.

7 Conclusion

We introduced HYPER, a new framework for unsupervised deep
outlier model selection. HYPER tackles two fundamental challenges
that arise in this setting: validation in the absence of supervision and
efficient search of the large model space. To that end, it employs
meta-learning to train a proxy validation function on historical
datasets to effectively predict model performance on a new task
without labels. To speed up search, it utilizes a novel hypernetwork
design that generates weights for the detection model with varying
HPs including model architecture, achieving significant efficiency
gains over individually training the candidate models. Extensive
experiments on a large testbed with 35 benchmark datasets showed
that HYPER significantly outperforms 8 simple to SOTA baselines.
We expect that our work will help practitioners use existing deep
OD models more effectively as well as foster further work on unsu-
pervised model selection in the era of deep learning.


https://github.com/yzhao062/MetaOD/blob/master/metaod/models/gen_meta_features.py
https://github.com/yzhao062/MetaOD/blob/master/metaod/models/gen_meta_features.py
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Appendix
A Additional Experiment Settings and Results

A.1 Algorithm Settings and Baselines

Setting of HN: The HN utilized in the experiments consists of two
hidden layers, each containing 200 neurons. It is configured with
a learning rate of le-4, a dropout rate of 0.2, and a batch size of
512. We find this setting give enough capacity to generate various
weights for linearAEs. Because of the meta-learning setting, the
hyperparameters of HN can be tested with validation data and test
results, on historical data.

Meta-training for f,;. Table A2 includes the HP search space
for training in fully-connected AE. In the table, compression rate
refers to how many of the widths to shrink between two adja-
cent layers. For example, if the first layer has width of 6, compres-
sion_rate equals 2 would gvie the next layer width equal to 3. We
also notice that some datasets may have smaller numbers of fea-
tures. Thus, with the corresponding compression rate, we also have
discretized the width to the nearest integer number. Thus, for some
datasets, the HP search space will be smaller than 240. In addition,
for HPs in Convolutional AE, HYPER conducts a search among the
following HPs: Number of encoders is within [2, 3, 4], kernel size is
in [3,4, 5], channels is [8, 16,32], Ir is [1e ™%, 5¢74], weight decay is
[0, le74, 16_5], and dropout is [0,0.1,0.2].

HN (Re-)Training during the Online Phase: In order to facil-
itate effective local re-training, we set a training epoch of T = 100
for each iteration, indicating the sampling of 100 local HPs for HN
retraining. In Eq. (9), we designate the number of sampled HPs and
the sampling factor as 500, i.e., V) = V5 = 500.

Specification of o: It is noted that for some values of o, the
sampled A may not be a valid HP configuration. For example, it
is not possible to have floating number as number of layers, or it
is not practical when dropout is larger than 0.5. We discard the
impossible A.

Convergence: To achieve favorable performance within a rea-
sonable timeframe, we set the patience value as p = 3.

Baselines: We have incorporated 8 baselines, encompassing a
spectrum from simple to state-of-the-art (SOTA) approaches. Table
1 offers a comprehensive conceptual comparison of these baselines.

(i) no model selection:

(1) Default employs the default HPs utilized in the widely-used
OD library PyOD [42]. This serves as the default option for
practitioners when no additional information is available.

(2) Random randomly selects an HP/model (the reported per-
formance represents the expected value obtained by averag-
ing across all DOD models).

(ii) model selection without meta-learning:

(3) MC [20] utilizes the consensus among a group of DOD
models to assess the performance of a model. A model is
considered superior if its outputs are closer to the consensus
of the group. MC necessitates the construction of a model
group during the testing phase. For more details, please refer
to a recent survey [21].

(iii) model selection by meta-learning requires first building a

corpus of historical datasets on a group of defined DOD models and
then selecting the best from the model set at the test time. Although
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these baselines utilize meta-learning, none of them take advantage
of the HN for acceleration.

(4) Global Best (GB) selects the best-performing model based
on the average performance across historical datasets.

(5) ISAC [12] groups historical datasets into clusters and pre-
dicts the cluster of the test data, subsequently outputting
the best model from the corresponding cluster.

(6) ARGOSMART (AS) [27] measures the similarity between
the test dataset and all historical datasets, and then outputs
the best model from the most similar historical dataset.

(7) MetaOD [43] employs matrix factorization to capture both
dataset similarity and model similarity, representing one of
the state-of-the-art methods for unsupervised OD model
selection.

(8) ELECT [44] iteratively identifies the best model for the test
dataset based on performance similarity to the historical
dataset. Unlike the above meta-learning approaches, ELECT
requires model building during the testing phase to compute
performance-based similarity.

Baseline Model Set. We use the same HP search spaces for
baseline models as well as the HN-trained models. Table A2 provides
the detailed HP search space for fully connected AE. For Conv AE,
the HP search space is: Number of encoders is within [2, 3, 4], kernel
size is in [3,4, 5], channels is [8, 16,32], Ir is [18_4, 56_4], weight
decay is [0, le 4, 1e_5], and dropout is [0, 0.1,0.2].

A.2 Additional Results

In addition to the distribution plot in Fig. 5, we provide the p-values
of Wilcoxon signed rank test between HYPER and baselines in Al.
See §5 for the experiment analysis. Full results are in Table A3.
Table A1: Pairwise statistical tests between HYPER and base-
lines by Wilcoxon signed rank test. HYPER are statistically
better than baselines at different significance levels.

Ours Baseline ‘ p-value
Ours Default 0.0035
Ours Random 0.0003
Ours ISAC 0.0042
Ours AS 0.0081
Ours MetaOD 0.0051
Ours Global Best 0.0021
Ours MC 0.0008
Ours ELECT 0.0803
Ours  Ours (reg&width) | 0.0001
Ours Ours (reg&depth) | 0.0001
Ours  Ours (reg only) 0.0001

Table A2: Hyperparameter search space for both free-range
and HN models. We give the list of HPs as well as the range
of the selected HPs.

List of Hyperparameters (HPs) ‘# HPs
n_layers: [2,4,6,8] 4
compression_rate: [1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0] 10
dropout: [0.0,0.2,0.4] 3
weight_decay: [0.0,1e-6,1e-5] 3
Total Number: ‘ 240




KDD ’24, August 25-29, 2024, Barcelona, Spain Xueying Ding, Yue Zhao, and Leman Akoglu

A € {O, 1}(3><16><16><6><6)

Channel ()\arch)

A= [Areg; [10,5,10,5,3,4]—. | A input
Kernel P (X)
PE()‘arch) — l
r g 16 ——>
=< E (with 13 zeros)
3| (W T PRRN h
£ [WeN) |“2 N
g 16 B\ N
HN(, ) : " i B
> W¢,(A>2 O;: E ] N CU)
it XN N =
16 N N
_ 6 §‘ :/1@ (8{
Zero Masking = I 2
‘ A7 ~: - (with 6 zeros) ISSSS‘
- L W¢(A)3 @; %;““‘&
0 2N RN
16 :§= “““ :i/m ]

Figure 9: Illustration of the proposed HN. HN generates weights for a 3-layer convolutional networks , with channels equal to
[10, 10,3], and kernels equal to [5,5,4]. The HN weights \TV¢ is of size 3 X 16 X 16 X 6 X 6, and similarily we construct the same-size
architecture masking A. At the first layer, we need to pad A for 1 zero, among the third and fourth dimension (we pad starting
from the left and from the top). This will enable us to extend \X/¢ to a convolutional operation of kernel size 5, from fixed
kernel size 6. To match the padding operation, we also pad the input X along the first and second dimension, with 1. The rest
layers follow similairly.

Table A3: ROC and rank of the evaluated methods. The best method per dataset (row) is highlighted in bold.

Dataset ‘ Default Random MC GB ISAC AS MetaOD ELECT ‘ Ours

DAMI_Annthyroid 0.7124 (1) 05972(6)  0.6123(3) 05929 (7)  0.6018(5)  0.5873(9)  0.6050 (4)  0.6148(2) | 0.5888 (8)
DAMI_Cardiotocography | 07159 (6) 07202 (5) 07024 (7) 07740 (3)  0.7571(4)  0.6940(8)  0.6458 (9)  0.7818(2) | 0.7866 (1)
DAMI_Glass 0.7442 (1)  0.7055(6)  0.6304(9)  0.7244(3)  0.6699(8)  0.7230 (4)  0.7225(5)  0.7431(2) | 0.6917 (7)
DAMI_HeartDisease 03045 (9)  0.4276 (6) 0.4214(7) 05250 (5) 0.5382(2) 0.4214(7) 05312(4) 05348 (3) | 0.5926 (1)
DAMI_PageBlocks 0.8722(8)  0.9107(5) 0.9219(2) 0.9162(4) 0.9255(1) 0.9002(6)  0.6247 (9)  0.8791(7) | 0.9215(3)
DAMI_PenDigits 03837 (9) 05248 (6) 05422 (5) 05491 (4) 05069 (8) 0.6953 (1) 0.6278 (3)  0.5084 (7) | 0.6792 (2)
DAMI_Shuttle 0.6453 (8)  0.9462(2)  0.9400(5)  0.9342(7)  0.9436(3) 0.9530(1) 05525(9)  0.9405(4) | 0.9391(6)
DAMI_SpamBase 05208 (7)  0.5232(5) 0.4907(9) 05210 (6) 05263 (4) 0.5552(1) 05307 (3)  0.5135(8) | 0.5525(2)
DAMI_Stamps 0.8687 (6)  0.8687 (6)  0.8926 (4)  0.8981(3) 0.9079 (1) 0.8618(8) 0.7112(9)  0.8897 (5) | 0.9003 (2)
DAMI_Waveform 0.6810 (7)  0.6772(8)  0.6560 (9)  0.6941(2)  0.6924 (4)  0.6890 (6)  0.6900 (5) 0.7019 (1) | 0.6929 (3)
DAMI_WBC 07493 (9)  0.9769 (6)  0.9770 (5) 0.9682(8)  0.9742(7)  0.9779(3)  0.9809 (2)  0.9779 (3) | 0.9826 (1)
DAMI_WDBC 0.8092(7)  0.8366(4) 08146 (9)  0.8597(3)  0.8683(2)  0.8092(7) 0.8361(5)  0.8213(6) | 0.9039 (1)
DAMI_Wilt 0.5080 (1) 04524 (8)  0.4832(2)  0.4653(7)  0.4700(4) 04700 (4) 04714 (3)  0.4700(4) | 0.3709 (9)
DAMI_WPBC 0.4090 (8)  0.4464 (5) 03972 (9)  0.4679 (3)  0.4548 (4)  0.4285(7)  0.4456 (6)  0.4726 (2) | 0.4824 (1)
ODDS_annthyroid 0.7353 (1)  0.6981(7)  0.6963(8)  0.6982(6) 07067 (2)  0.7067 (2)  0.6903(9)  0.7058 (4) | 0.7014 (5)
ODDS_arrhythmia 07769 (9)  0.7786 (7)  0.7810 (4)  0.7767 (9) 0.7831(1) 0.7798 (6)  0.7824 (3)  0.7807 (5) | 0.7827 (2)
ODDS_breastw 05437 (9)  0.6187(7)  0.8939(3) 0.9071(1) 0.8032(5) 0.7986 (6) 05913 (8)  0.8649 (4) | 0.9045 (2)
ODDS_glass 0.6195 (1) 05849 (3)  0.5453(8)  0.5897(2) 05962 (4) 05962 (4) 05654 (7) 05957 (5) | 0.5993 (6)
ODDS_ionosphere 0.8708 (4)  0.8497 (8) 0.8711(3) 0.8252(9)  0.8422(7)  0.8350 (8)  0.8727 (2)  0.8686 (5) | 0.8509 (6)
ODDS_letter 05555 (9) 05758 (8) 05918 (7)  0.6068 (6)  0.6244 (5) 0.6155(6) 0.6446 (1)  0.6211(4) | 0.6102(8)
ODDS_lympho 0.9096 (9)  0.9959(3)  0.9988(2)  0.9842(7)  0.9929(5)  0.9953 (4)  0.9971(4)  1.0000 (1) | 0.9925 (6)
ODDS_mammography 05287 (9) 0.7612(3) 07233 (6) 0.8362(2) 0.7189(7) 0.7116(8) 0.8640 (1) 0.7673 (4) | 0.8542(5)
ODDS_mnist 0.8518 (7)  0.8915(4)  0.8662(6) 0.8959 (3)  0.9011(2)  0.8580 (5) 0.9070 (1)  0.9032 (2) | 0.8994 (4)
ODDS_musk 0.9940 (9)  1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000(1) 1.0000(1) 1.0000 (1) | 1.0000 (1)
ODDS_optdigits 05104 (5)  0.4950 (9) 05092 (6)  0.4806 (9) 0.5115(4) 0.5171(3) 0.4973(8)  0.5338 (2) | 0.5584 (1)
ODDS_pendigits 0.9263(8)  0.9295(6)  0.9265(7)  0.9305(5)  0.9208(9)  0.9386(2)  0.9360 (3)  0.9346 (4) | 0.9435 (1)
ODDS_satellite 0.7681(1) 07284 (9)  0.7445(4)  0.7352(8)  0.7433(5)  0.7324(7)  0.7486 (3)  0.7571(2) | 0.7432 (6)
ODDS_satimage-2 0.9707 (7)  0.9826 (3) 0.9865(1) 0.9744 (6) 0.9838 (2) 0.9798 (5) 0.9871(1)  0.9786 (8) | 0.9853 (4)
ODDS_speech 04761 (4) 04756 (5) 0.4692(7) 0.4726 (6) 0.4832(1) 0.4692(7) 0.4706(8)  0.4774(3) | 0.4707 (2)
ODDS_thyroid 0.9835(1) 0.9661(2)  0.9652(3)  0.9535(5)  0.9635(4)  0.9652(3)  0.9740(2)  0.9689 (6) | 0.9667 (7)
ODDS_vertebral 0.6019 (1) 05378(2) 05629 (3) 05253 (4)  0.4602(6) 05629 (3)  0.4657 (5) 05629 (3) | 0.4757 (7)
ODDS_vowels 0.4897 (8) 05903 (7)  0.5965(6)  0.6309 (5) 0.6414 (4) 0.6686 (1) 0.6216 (3)  0.5247 (9) | 0.6686 (1)
ODDS_wbe 04146 (9)  0.8401(5) 07640 (7)  0.8808 (4)  0.8745(6)  0.8469 (8)  0.8770 (3)  0.8469 (8) | 0.9289 (1)
ODDS_wine 07864 (2) 05430 (7)  0.4084(8) 07539 (3)  0.5387 (6)  0.4084 (8)  0.6296 (4)  0.6218 (5) | 0.8287 (1)
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