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Abstract

Trajectory anomaly detection is critical across a wide
range of applications, from traffic control, and wildlife
conservation, to public transportation optimization.
However, detecting anomalies in trajectory data is chal-
lenging due to the diverse nature of anomalies. In this
paper, we propose CETrajAD, an ensemble method for
trajectory anomaly detection that integrates complemen-
tary detectors, each targeting different aspects of trajec-
tory anomalies. Our approach leverages three types of
trajectory embeddings—Route, Speed, and Shape—that
vary in their sensitivity to length, direction, shape, and
speed, enabling the detection of diverse anomaly types.
We combine detectors from both the embedding and
input spaces and show how their complementary nature
improves anomaly detection performance. Through the-
oretical analysis, we demonstrate the conditions when
the proposed ensemble design outperforms traditional
ensemble methods. Experiments on multiple real-world
datasets, containing both simulated and ground-truth
anomalies, show that the proposed model consistently
outperforms existing baselines.

Keywords: Trajectory Anomaly Detection, Outlier
Ensemble, Trajectory Mining

1 Introduction

Given a large collection of trajectories, how can we find
deviations and anomalies? Trajectory data, depicting
latitude and longitude coordinates over time, captures
how entities move. Those entities could vary from
individuals and animals to trucks and airplanes, with
a wide range of anomaly detection applications. For
example, anomalies in airplane trajectories could be
early signals of mechanical failure or other atypical
scenarios onboard [13]. Delivery and logistics companies
may monitor their trucks and drivers to spot deviations
with potential implications for delays [25]. Pedestrian
trajectories can signal inefficiencies in urban design [17].

Trajectory anomaly detection is nontrivial as what
constitutes an anomaly is often under-specified. Our
motivation stems from the many possible definitions and
different types of anomalies that may exist in real-world
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Figure 1: (best in color) Example anomalous trajectories
with anomalies (highlighted in red) of various types
involving route (R), shape (Sh), and/or speed (Sp).

data. Specifically, trajectory anomalies may arise from
the route, the speed, and the interaction between the
two. Figure 1 illustrates various examples, including (i)
route anomaly, an individual taking a detour or a longer-
than-usual trip; (ii) speed anomaly, making stop(s) along
the typical route, e.g., due to traffic or to pick-up things;
(iii) route-speed interaction anomaly, driving faster than
would be safe on part of the route with hairpin turns,
among others.

Though trajectory anomaly mining has been widely
studied [14, 4], most existing methods focus on specific
domains (e.g., autonomous driving [21, 10]) or specific
entity trajectories (e.g., taxi trajectories [20, 8]), which
limits their generalizability and the ability to accom-
modate the diversity of anomaly types present across
different mobility datasets.

In this paper, we present a deep ensemble model
named CETrajAD for trajectory anomaly detection,
which is composed of complementary detectors based
on three different trajectory embeddings, specifically
designed to capture varying (in)variances in terms of
length, direction, and speed. The ensemble includes
detectors that operate in both the embedding space
(e.g., using the density of the learned embeddings) as
well as the input space (e.g., using reconstruction loss
to measure the deviation of original data). To the
best of our knowledge, we are the first to underscore
the variety in trajectory anomalies, and propose a
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model that can detect different types of anomalies
through complementary detectors by design. The main
contributions are summarized as follows.

• Trajectory embedding with varying
(in)variances: We learn three different em-
beddings for trajectory data; namely, Route, Speed,
and Shape, that exhibit varying (in)variances
with respect to length, direction, and speed. This
variation in representation serves as the foundation
for detecting different types of trajectory anomalies.

• Ensemble of complementary anomaly detec-
tors: We employ anomaly detectors both in the
embedding and the input space, and demonstrate
how they complement each other (i.e., detect dif-
ferent anomalies). As our detectors exhibit low
correlation, as opposed to consensus, we design a
new ensemble method to reach a composed ranking
that is better than its parts.

• Evaluation: We evaluate CETrajAD on multiple
real-world datasets based on both simulated and
ground truth anomalies and show that it outper-
forms existing baselines, especially when the data
contains a mixture of different types of trajectory
anomalies.
Access and Reproducibility: All our codebase for

trajectory embedding and ensemble anomaly detection
with complementary detectors is open-sourced at https:
//github.com/ShuruiCao/comp-ensemble-ad.

2 Problem and Preliminaries

We introduce related concepts and formulate the
anomaly detection problem on trajectories.

Trajectory. A trajectory is a chronological sequence
of GPS coordinates with timestamps, denoted as T =
[p1, p2, p3, . . . , pn], where pi = (lati, loni, ti), and lat, lon
and t represent the latitude, longitude, and timestep.

Normalized Trajectory. To improve flexibility and
generalizability, we normalize each trajectory by sub-
tracting the latitude and longitude of the source lo-
cation from all subsequent locations. For a raw tra-
jectory T , its normalized trajectory is Tnormalized =
[∆p1,∆p2,∆p3, . . . ,∆pn], where ∆pi = (∆lati,∆loni, ti)
represents the change in location from the source loca-
tion: ∆lati = lati − lat1 and ∆loni = loni − lon1.

Anomalous Trajectory. A trajectory is considered
anomalous if its pattern significantly deviates from other
trajectories. Previous works [12, 7, 24] often define an
anomalous trajectory in the context of a specific source-
destination (SD) pair: a trajectory is considered an
outlier if it occurs infrequently and differs from other
trajectories associated with that particular SD pair.
In contrast, our approach takes a broader perspective,

considering a trajectory to be an outlier if it deviates
from typical patterns at the city level, without restricting
the analysis to specific SD pairs.

Unsupervised Trajectory Anomaly Detection.
Given a trajectory T , we aim to learn an anomaly
score function to identify whether T is anomalous, i.e.
deviating significantly from common patterns observed
in other trajectories, without relying on labeled data.

3 Complementary Detectors by Design
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Figure 2: Proposed pipeline for CETrajAD.

In this section, we introduce the proposed CETra-
jAD. As illustrated in Figure 2, CETrajAD comprises
two main components:

• Trajectory Embedding Learning We design
three different preprocessing methods to capture
varying characteristics of trajectories in length,
direction, speed, and shape, and then learn three
types of embeddings that are complementary by
design, as they capture varying (in)variances.

• Anomaly Detection with Ensembling We
employ various detectors based on embeddings and
design a complementary ensemble method to detect
anomalous trajectories.

3.1 Complementarity by Semantic Embeddings
Complementarity means different embeddings capture
semantically distinct aspects of the data. That is,
properties captured by one embedding are not always
captured by others, which as a result, induces low
correlation between downstream detectors.
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Table 1: Comparison of embedding types (S, R, Sh) and
their invariances to different aspects of trajectories.

(S)peed (R)oute (Sh)ape

Length Sensitive Sensitive Invariant

Direction Invariant Sensitive Invariant

Speed Sensitive Invariant Sensitive

Start location Invariant Invariant Invariant

In the real world, trajectory anomalies can arise
in various forms, such as speed, route taken, direction,
length, etc. To capture the diverse characteristics of
trajectories, we design three distinct processing methods
to obtain complementary embedding types: Speed,
Route, and Shape embedding. Their characteristics
are summarized in Table 1.

In the following, we describe the data transforma-
tions/preprocessing for each embedding. Each trans-
formed trajectory data is fed into a Long Short-Term
Memory (LSTM)[9] autoencoder for obtaining the re-
spective embedding.

3.1.1 Speed embedding Speed embedding focuses
on capturing dynamic changes in the trajectory by
quantifying how the speed changes. The input is the
normalized trajectory, and the speed is computed as
the distance traveled between consecutive timesteps:

vi =
d(∆pi,∆pi−1)

ti−ti−1
where d(∆pi,∆pi−1) is the Haversine

distance between consecutive locations ∆pi and ∆pi−1,
and ti and ti−1 are the consecutive timesteps. The
output of the preprocessing is the sequence of speed
values, [vi, ..., vn−1].

3.1.2 Route embedding Route embedding aims to
obtain a speed-invariant representation and focuses on
the spatial path taken by the trajectory. This is achieved
by interpolating the normalized trajectory based on
unit cumulative distance. The cumulative distance is
computed as: Si =

∑i
j=1 d(∆pj ,∆pj−1) where Si is

the cumulative distance up to the i-th point. We then
interpolate the trajectory by resampling the trajectory
at fixed intervals of cumulative distance ∆S which is a
parameter: ∆p′i = interpolate(∆pi, Si mod ∆S = 0).
The output is the sequence of interpolated points,
[∆p′1, ...,∆p′n]. This ensures that the points in the
trajectory are uniformly distributed in terms of the
distance traveled, making the embedding invariant to
the rate of movement. It still captures the directionality
and length information of the trajectory.

3.1.3 Shape embedding Shape embedding captures
the geometric shape of the trajectory and deempha-

A

B

Figure 3: Complementarity between embedding space
and input space. Blue points denote normal data and the
blue line represents the embedding space. Red squares
and triangles denote different types of anomalies.

sizes the length and directional information. We firstly
normalize the coordinates and timesteps of the nor-
malized trajectory by the total cumulative distance so
all trajectories have the same cumulative distance Sn:

∆p′i =
(

∆lati
Sn

, ∆loni

Sn
, ti
Sn

)
We resample trajectory points

at the frequency of 24 seconds by interpolating or down-
sampling the raw trajectory. By taking the resampled
points as input, we apply PCA to standardize the geo-
graphic orientation, so that the intrinsic geometric shape
is captured: ∆p′′i = PCA(∆p′i). The output is the se-
quence of standardized points, [∆p′′1 , ...,∆p′′n]. Therefore,
shape embedding becomes insensitive to length and direc-
tion, making it valuable for recognizing patterns regard-
less of the total distance traveled along the trajectory.
Still, it remains sensitive to speed, thereby depicting the
relationship between speed and the geographical shape
of a trajectory.

3.2 Complementarity by Detectors: Embedding
Space vs. Input Space To leverage the complementar-
ity of the embedding and input spaces, we perform out-
lier detection in the embedding space to obtain anomaly
scores (Demb)

1, as well as use the reconstruction loss of
our autoencoder (Dloss) which measures how well the
model can reconstruct the original input. Demb and
Dloss are complementary, as anomalies can be divided
into the following two scenarios:

(i) Low score in Dloss but high score in
Demb. When the embedding retains sufficient details,
reconstruction loss is low but the anomaly is distinct in
the embedding space. This case corresponds to Type B
anomalies in Figure 3.

(ii) High score in Dloss but low score in Demb.
When the embedding fails to adequately represent the
input, the reconstruction loss becomes an indicator of

1We employ LOF [5], although other effective tabular outlier
detection algorithms can be used.
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Algorithm 1 Complementary Detector Elimination for
Trajectory Anomaly Detection

1: Input: S = {s1, s2, ..., sn} (set of anomaly score
lists)

2: Output: E (final set of selected score lists)
3: Initialize: E ← S
4: while |S| > 1 do
5: S ← S′

6: Compute MAX(S) := max{s1(x), ..., sn(x)} for
all x (samples)

7: for all si ∈ S do
8: MAX(S \ {si}) := max{sj(x) | j ̸= i} for all x
9: Measure the ranking similarity between S and

S \ {si}:
10: JACi := Jaccard(MAX(S),MAX(S \ {si}))
11: end for
12: Identify the list si := argmini JACi

13: S ← S \ {si}
14: Track JAC(t) := Jaccard(MAX(S),MAX(S \

{si})) for each iteration t
15: if JAC(t) shows a significant drop then
16: Stop the elimination process
17: E ← S
18: end if
19: end while
20: Return E

anomalies since they deviate from normal patterns and
can not be regenerated accurately. Embeddings are less
helpful because they might be too coarse to differentiate
normal and anomalous data after projection. This case
corresponds to the Type A anomalies in Figure 3.

In summary, Demb andDloss complement each other,
which together ensure that we capture anomalies that
either manifest clearly in the latent space or fail to be
reconstructed accurately.

4 Ensembling Complementary Detectors

Given a dataset containing trajectory anomalies of
certain type(s), our complementary base detectors may
identify anomalies with varying accuracy. Thus, it is
essential to effectively remove detectors that do not
detect any for performance improvement. To this
end, we propose an elimination-based method to retain
complementary competent detectors by evaluating their
influence and using changes in ranking similarity as the
stopping criterion. The steps are outlined in Algorithm 1
and described in the following sections.

4.1 Elimination Criterion Our ensemble contains
heterogeneous detectors (e.g., LOF scores on embeddings
and reconstruction loss), where each detector has differ-

ent ranges of scores and interpretation. For unification,
we first convert each detector’s scores to inverse ranks.
Unlike previous consensus-based methods [15, 16], which
iteratively add detectors to enhance agreement, we do
not assume consensus among detectors. Poorly perform-
ing detectors are uncorrelated with well-performing ones,
and even good detectors have only low correlation, as
some anomalies may occur in multiple aspects. Hence,
our approach adopts an elimination-base strategy [22].

Our elimination criterion is based on the impact
of the removed detector on the ensemble’s rankings.
At each iteration, we compute the Jaccard similarity
between from all detectors and rankings excluding the
i-th detector:

(4.1) JACi = Jaccard(MAX(S),MAX(S \ {si})) .

Jaccard similarity emphasizes top-ranked anomalies,
and MAX aggregation highlights anomalies even if
detected by a single detector. We iteratively remove
the detector with the lowest JACi as its removal
causes the most significant impact on the ensemble
rankings, indicating that it introduces noise rather than
contributing valuable insight. Detectors with minimal
impact (i.e., high Jaccard similarity) are likely redundant
but not necessarily discarded.

4.2 Stopping Criterion As the elimination pro-
gresses, poorly performing detectors are removed. Even-
tually, two scenarios arise:

(i) Low Agreement: Complementary detectors have
low agreement as they identify different anomalies.
Removing a minority detector may resemble eliminating
a ”bad” detector due to its divergence.

(ii) High Agreement: Remaining detectors capture
similar aspects, and further removals cause minimal
ranking changes due to redundancy.

We stop the elimination when a significant drop
in Jaccard(MAX(S),MAX(S \ {si}), which indicates a
complementary detector has been removed. Initially as
poor detectors are removed, Jaccard similarity remains
stable, but removing unique detectors causes a noticeable
drop, reducing ensemble diversity and robustness. To
automate this, we use the Kneedle algorithm [18] to
detect the change point in the Jaccard similarity curve.

Once the elimination process is complete, we apply
Average of Maximums (AOM) method over the remain-
ing detectors. Consider the retained ensemble E con-
sisting of detectors (s1, s2, . . . , sm), si(x) represents the
score given by the i-th detector for sample x. To obtain
the final anomaly score for trajectory T , we divide the
detectors into k subgroups, denoted as {G1, G2, . . . , Gk},
and compute the maximum score within each subgroup.
The final ensemble score for T is then obtained by aver-
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aging these maximum scores:

(4.2) OT =
1

k

k∑
j=1

max
Si∈Gj

Si(T )

where maxsi∈Gj si(T ) represents the maximum score for
T within subgroup Gj . AOM balances performance and
robustness [1], emphasizing the strongest anomaly signals
while reducing noise from residual noisy detectors.

5 Experiments

5.1 Setup

Table 2: Summary satistics of datasets

Attribute LA Porto Chengdu

Type Synthetic Real Real
# of trajectories 859,907 302,822 229,007
Avg length 69.3 53.5 165.6
Sampling rate (s) 5 15 2∼4

Datasets The experiments are conducted on three
datasets, covering both synthetic and real-world trajec-
tory data. LA consists of synthetic trajectories generated
using the Data-Driven Trajectory Generator (DDTG)
[3], a model-free and parameter-less method that uses
aggregate origin-destination and traffic data to create
realistic synthetic vehicle trajectories in Los Angeles.
The second dataset Porto is a taxi trajectory dataset2,
containing real-world taxi trajectories recorded from
Porto, Portugal from 2013 to 2014. The third dataset
is Chengdu which is a taxi trajectory dataset3 provided
by DiDi Chuxing, containing real taxi trajectories in
Chengdu in August 2014. We use a 4-day subset from
the one-month period. The statistics of these datasets
can be found in Table 2.

Settings We preprocess the data by filtering out
trajectories with fewer than 20 points. For LSTM train-
ing, the data is split 70/20/10 for training, validation,
and testing, with a 2-layer architecture. For Porto, four
LSTM models are trained per embedding type with sizes
[4, 64, 128, 512], while LA and Chengdu use three models
with sizes [16, 64, 128]. All models are trained on an
NVIDIA RTX A6000 GPU.

Groundtruth We evaluate our method using both
human-labeled and synthetic anomalies. For Chengdu ,
RL4OASD [24] manually labeled anomalies based on
visual inspection, providing a real-world benchmark for
naturally occurring anomalies. Additionally, we inject
two types of synthetic anomalies, detour and route-
switching, following previous works [12, 7]. Detour
anomalies involve random lateral shifts of points in

2https://www.kaggle.com/porto-taxi
3https://outreach.didichuxing.com/research

Table 3: Anomaly detection results on Chengdu with
human-labeled anomalies.

Method AUROC AUPR

IBAT 0.511 0.055

ATDRNN 0.502 0.050

GMVSAE 0.334 0.035

ATROM 0.600 0.071

RL4OASD 0.835 0.154

CETrajAD 0.675 0.124

the trajectory while route-switching anomalies shift a
continuous segment in a specific direction. Since prior
works use grids to represent trajectories, we adapt their
anomaly injection methods by applying shifts to grid
sequences and using the center coordinates of each
grid for CETrajAD. During evaluation, we randomly
sample 10,000 trajectories from test data and inject
5% anomalies. Further, we propose more diverse and
realistic GPS-based anomaly designs.

Baselines Baselines include five trajectory anomaly
detection methods: IBAT [23] detects anomalies using
how much the target trajectory can be isolated from
other trajectories. ATDRNN [19] uses RNN to obtain
trajectory embeddings and learn to classify anomalies
in a self-supervised manner. During training, it creates
synthetic anomalies by adding noise to randomly sampled
points in the trajectory. GMVSAE [12] uses a variational
sequence autoencoder and a Gaussian mixture model to
model the probability distribution of trajectories. After
the VAE is trained, it detects anomalous trajectories by
computing the likelihood of the target trajectory being
generated from Gaussian components. ATROM [7] uses
variational Bayesian methods to force the trajectories
with distinct behaviors to follow different Gaussian
priors. RL4OASD [24] matches trajectories to road
networks and uses reinforcement learning to model
the transition probability between road segments from
historical trajectories. As the model outputs a binary
label for each road segment, the anomaly score for the
trajectory is computed as the mean of labels of all road
segments in the trajectory. IBAT[23], ATDRNN[19],
GMVSAE[12], and ATROM[7] convert raw trajectories
into sequences of grid IDs, while RL4OASD[24] maps
raw trajectories to road networks and use the sequences
of edge IDs. We use a 100m by 100m grid for all datasets.

Metrics We employ two widely used metrics, Area
Under the Receiver Operating Characteristic Curve
(AUROC) and Area Under the Precision-Recall Curve
(AUPR). AUROC measures the model’s ability to
distinguish between normal and anomalous trajectories
across different decision thresholds. AUPR is particularly
suitable for imbalanced datasets, which is often the case
in anomaly detection.
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Table 4: Anomaly detection results for injected anomalies across Porto, LA, and Chengdu datasets.

Injection Type Detour Switch

Method
Porto LA Chengdu Porto LA Chengdu

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

IBAT 0.823 0.182 0.666 0.075 0.823 0.182 0.709 0.131 0.649 0.072 0.770 0.158

ATDRNN 0.510 0.048 0.505 0.050 0.490 0.049 0.500 0.047 0.495 0.048 0.495 0.048
GMVSAE 0.589 0.063 0.584 0.069 0.599 0.065 0.604 0.068 0.547 0.060 0.560 0.057

RL4OASD 0.511 0.051 0.513 0.051 0.662 0.066 0.505 0.051 0.508 0.051 0.507 0.055
ATROM 0.938 0.430 0.620 0.068 0.905 0.385 0.869 0.331 0.550 0.053 0.789 0.229

CETrajAD 0.988 0.766 0.993 0.841 0.990 0.930 0.748 0.113 0.930 0.313 0.865 0.211

Figure 4: Visualization of synthetic anomalies. Blue lines show the trajectory. Markers are shown for every 5
timesteps. Red markers denote the injected anomalous points. S and D denote source and destination. If the
destination is not the same as the original trajectory, we also show it in red.

5.2 Results Table 3 demonstrates that on the human-
labeled real anomalies, CETrajAD performs the second
best compared to baselines. On Chengdu , RL4OASD
[24] labels a trajectory as anomalous if it deviates signifi-
cantly from the popular route between a given source and
destination. As RL4OASD uses reinforcement learning
to model the transition probabilities between locations
within a trajectory, it is well-suited for detecting such
deviations, which explains its best performance. In con-
trast, other baselines that rely on grid sequences, like
GMVSAE and ATROM perform poorly, likely because
the choice of grid size can lead to anomalous segments
falling into the same grid, obscuring the anomalies.

Table 4 presents the results on synthetic anomalies.
Results demonstrate that CETrajAD performs well
in most situations. It achieves the best performance
(AUROC close to 1) for detour anomalies. Particularly
for Chengdu, it achieves AUPR of 0.93, outperforming
baselines significantly. One observation is that on LA,
baseline methods do not perform well. This could be
attributed to the larger geographical coverage of LA

compared to Porto and Chengdu, which results in a
significantly larger number of grids. When using a
grid size of 100m by 100m, the grid dimensions are
(51, 118) for Porto, (83, 98) for Chengdu, but (693,
541) for LA. As many baseline methods rely on learning
patterns from grid sequences, the increased sparsity of
data in LA may lead to reduced performance. This again
demonstrates that CETrajAD performs well even when
the geographic region is large.

5.3 Ablation Study

5.3.1 Ensemble Methods Previous studies primar-
ily evaluate performance using a single type of anomaly
(e.g., detour or route-switching). This limits the un-
derstanding of ensemble performance across a broader
range of anomaly types. Hence we evaluate CETra-
jAD with a more diverse set of anomalies in this section.
Figure 4 shows our different designs of realistic trajec-
tory anomalies. Since our injection methods use raw
GPS coordinates while the trajectory anomaly detection
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baselines use grids or road networks, a direct compari-
son would be unfair, as the choice of the grid size can
significantly affect the perceived anomalousness of our
injections. Therefore, in this section, we compare CE-
TrajAD only with simple ensemble methods (Mean
and Max) and another selective consensus-based method
(Mean-Ensemble). Mean-Ensemble sequentially removes
the detector that agrees the least with the consensus at
each iteration.

The results are shown in Table 5. With one injection
type, we always inject SpeedIncrease anomalies, as they
are primarily detected by Speed embeddings. Additional
types are added in this order: Detour, BackForth,
Traffic, RouteSwitch, Repeat, and Loop (visualization
in Figure 4). We observe that as the number of
anomaly types increases, all methods show declining
performance due to the increased detection complexity.
When only SpeedIncrease is injected, Mean-Ensemble
outperforms CETrajAD because Speed embeddings
are effective in detecting the anomalies. Hence there is
high consensus among detectors of Speed embeddings,
which rank similar trajectories highly. However, as
the number of types increases, CETrajAD begins
to outperform all three baselines. This indicates that
CETrajAD effectively leverages the complementarity
among different detectors, which becomes crucial when
the anomalies are more diverse.

5.3.2 Complementary Components We next ex-
amine the influence of the complementary components
of CETrajAD for Porto with 1, 3, 5, and 7 types of
injected anomalies. We first evaluate the performance
when using only Demb or Dloss. Figure 5 presents the
results. We observe that Demb generally yields lower
AUROC and AUPR compared to Dloss, particularly
when the number of types is small. As the number of
types increases, the performance of Demb and Dloss be-
comes more similar. In all scenarios, using only Demb

or only Dloss does not outperform the combination of
both. This indicates that while using only Dloss may be
sufficient for detecting a single type of anomaly, employ-
ing both Dloss and Demb provides better performance
when dealing with a diverse set of anomalies.

The second study investigates the impact of Speed,
Route, or Shape component. From Figure 6 when there
is only one type of anomaly (SpeedIncrease), removing
the Speed component (blue) results in a significantly
lower AUPR compared to removing Route (orange)
or Shape (green). As the number of types increases,
removing any of the three components leads to similar
performances. In all cases, using all three embeddings
consistently performs better than using only two. The
results demonstrate that Speed, Route, and Shape
capture diverse information about trajectories by design.
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Figure 5: Performance of CETrajAD when only Demb

or only Dloss is used.
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Figure 6: Performance of CETrajAD when one of
Speed, Route, and Shape is removed.

5.3.3 Case Studies In this section, we present case
studies to demonstrate the effectiveness of the learned
embeddings from detectors of different types.

In Figure 7, for the target trajectory, we display
its nearest neighbors (NNs) based on different types of
embeddings. From the Route visualization, we observe
that the target trajectory and its NNs have similar
lengths and directions as they all head to the northeast
direction. In the Shape visualization, although the
lengths and directions of the target trajectory and its
NNs vary, their geometric shapes are similar: they
all exhibit an inverted U-shape with a V-shaped tail
at the end. The Speed visualization reveals that the
target trajectory and its NNs have a similar number of
timesteps (i.e., similar lengths) and share similar speed
trends: slower at the beginning, faster in the middle,
and slowing down towards the end. These visualizations
demonstrate the effectiveness of the learned embeddings,
as they successfully capture the characteristics they were
designed for, as described in Table 1.

6 Related Work

6.1 Trajectory Anomaly Detection Existing stud-
ies on trajectory anomaly detection can be broadly cate-
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Table 5: Anomaly detection results on Porto (left) and Chengdu (right) with injected anomalies under different
ensemble methods.

Injection Type Porto Chengdu

Method
1 Type 3 Types 5 Types 7 Types 1 Type 3 Types 5 Types 7 Types

AUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPRAUROCAUPR

Mean 0.888 0.222 0.889 0.291 0.806 0.208 0.814 0.203 0.877 0.223 0.893 0.289 0.764 0.175 0.772 0.178
Max 0.868 0.191 0.854 0.230 0.774 0.172 0.784 0.168 0.823 0.179 0.846 0.226 0.733 0.141 0.747 0.153

Mean-Ensemble 0.980 0.742 0.829 0.274 0.783 0.199 0.822 0.212 0.926 0.348 0.830 0.218 0.779 0.186 0.777 0.183

CETrajAD 0.976 0.667 0.913 0.443 0.807 0.268 0.846 0.249 0.928 0.291 0.852 0.291 0.759 0.221 0.773 0.193

Route Shape Speed

Figure 7: Visualization of nearest neighbors (NNs) of the target trajectory from different types of embeddings.
Route and Shape embeddings display the trajectories (in normalized coordinates), while Speed visualization shows
the speed over time (x-axis: timesteps, y-axis: speed per timestep). The target trajectory is always shown in red
while its NNs are shown in different colors.

gorized into distance-based and learning-based methods.
Distance-based methods measure the deviation of a tra-
jectory from predefined ”normal” trajectories, often the
most frequent routes, relying on the distance, pairwise
comparisons or trajectory isolation [11, 23, 6]. These
methods, while effective, are computationally expensive.
Learning-based methods use machine learning, particu-
larly sequence modeling, to model trajectory patterns.
Early works [19] applied supervised RNNs, while more re-
cent approaches [12, 7] leverage variational autoencoders
to identify anomalies as deviations from Gaussian priors.
Reinforcement learning has also been employed for sub
trajectory detection [24]. Most methods convert raw
GPS coordinates into grid cells or road networks, which
can limit performance in areas without well-defined roads
(e.g., animal migration). Additionally, grid size affects
learning, with smaller grids causing sparsity and larger
grids losing detail.

6.2 Outlier Score Ensemble Outlier detection
methods often suffer from biases in individual detectors,
leading to over- or underestimation of anomalies. Ensem-
ble approaches aggregate detector outputs to improve
robustness. Simple aggregation methods (e.g., averag-
ing, maximization, and Average-of-Maximum) enhance

robustness but fail to address weak detectors effectively
[2, 1]. Selective models like SELECT [15] and CARE [16]
construct pseudo ground truth or use weighted correla-
tions for detector selection. LSCP [26] further enhances
selection using data locality. However, these methods
often rely on consensus-based selection, overlooking the
complementarity between detectors. Our approach ad-
dresses this gap by focusing on complementarity to im-
prove robustness and accuracy in anomaly detection.

7 Conclusion

We introduce CETrajAD, which detects trajectory
anomalies across multiple aspects and offers a novel per-
spective on ensemble methods by emphasizing comple-
mentarity. Experimental results demonstrate that CE-
TrajAD performs effectively on both labeled real-world
anomalies and injected synthetic anomalies. Addition-
ally, our GPS-based anomaly injection method provides
a versatile solution for evaluating anomaly detection
models, addressing challenges posed by existing grid-
or road network-based approaches. By relying solely
on raw GPS coordinates, CETrajAD is flexible and
generalizable to other trajectory types, including animal
migration, airplanes, and marine vessels.
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