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Abstract—Cryptographic protocols play a crucial role in
safeguarding network communications. However, it has been
shown that many design flaws and implementation bugs
in cryptographic protocols lie in plain sight, only to be
discovered many years after their deployment. At the de-
sign level, symbolic protocol provers, such as Tamarin and
ProVerif, assume a symbolic or Dolev-Yao attacker model
and are shown to be effective in ruling out logical errors in
protocol specifications. However, little work has been done
on automatically analyzing such security guarantees (secure
under Dolev-Yao) for an existing protocol implementation.

We present an automated and systematic framework,
ProInspector, to uncover logic errors in protocol implemen-
tations. Central to our approach is a tailored conformance
testing algorithm which generates test cases, taking into
consideration, a Dolev-Yao attacker. Our approach enables
us to generate test cases that contain inputs from the
attacker. ProInspector then uses generic symbolic provers
to check if inconsistencies between the specification and
implementation lead to exploits. We test ProInspector on
popular TLS implementations and rediscover several CVEs.

1. Introduction

Cryptographic protocols use cryptographic primitives,
such as encryption and signatures, to secure communica-
tion on an insecure network. The high-level security goals
of these protocols include confidentiality, authentication,
and forward secrecy. Protocols such as TLS [18, 38]
are crucial for securing software systems and services
and are widely deployed across various domains, includ-
ing e-commerce, online banking, and mobile communi-
cation. However, it is extremely difficult to ensure the
correctness of both the design and the implementation of
these protocols, as evidenced by numerous high-profile
attacks [8, 17, 36]. Consequently, there is a pressing
need for formal verification and rigorous testing of these
protocols to enhance their reliability and security.

Over the years, the research community has devel-
oped several approaches to analyzing the design and the
implementation of cryptographic protocols (see [7] for
a survey). These methodologies and tools cover a wide
range of the problem space; they differ in the target of the
analysis: protocol design vs. implementation; the attacker
model considered: symbolic Dolev-Yao network attacker
vs. computational attackers; and analysis method used:
formal verification vs. testing.

At the design level, symbolic protocol analysis aims
at ruling out logical bugs in protocol designs where the
messages in the protocol are represented symbolically as
terms (rather than bitstrings). The protocol is assumed to
be executed in the presence of an active attacker who
has complete control over the network but is constrained
to perfect black-box assumptions about the cryptographic
primitives (e.g., the adversary cannot decrypt a message
without the corresponding key). This symbolic attacker
model is commonly referred-to as the Dolev-Yao at-
tacker [19]. Symbolic approximations allow us to reason
about sophisticated protocol designs automatically using
tools like ProVerif [13] or Tamarin [31]. Notably, these
symbolic verification tools have been employed during the
standardization of TLS 1.3 [10, 16] to verify its resilience
against logical attacks such as downgrade [3] and authen-
tication attacks [11] that had impacted previous versions
of TLS. However, it is important to note that symbolic
analysis operates on abstract specifications of the protocol.
The security guarantees achieved at the design level are
decoupled from the deployed protocol implementations.
Even if the protocol specification is verified to satisfy all
desired security properties, the implementation bugs may
undermine the security guarantees.

Ensuring that the implementation faithfully aligns with
the specification is a challenging task. Protocol specifica-
tions often span hundreds of pages and encompass vari-
ous modes and interoperability considerations for legacy
versions. It is the responsibility of developers to compre-
hend the specification and faithfully translate it into code.
Additionally, implementations are typically written in di-
verse programming languages and have to accommodate
specific hardware requirements and efficiency concerns.
Furthermore, specific applications may need to tweak the
specification to suit their particular usage scenarios. Thus,
while symbolic analysis can effectively verify that a given
protocol specification is free from logical flaws, software
developers may reintroduce such errors while implement-
ing the protocols. Indeed, numerous implementation-level
logical attacks [8, 17, 36] have been found in real-world
protocol implementations such as TLS, which could have
resulted in devastating consequences. For example, the
SKIP attack [8] found in an early version of Java Secure
Socket Extension (JSSE) allows a network attacker to
impersonate any server to a client running JSSE TLS and
read confidential application data.

Checking these implementation-level logical errors
that violate security guarantees (as opposed to crashes due
to unsafe memory operations) is particularly difficult with
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off-the-shelf program analysis tools such as model check-
ing, symbolic verification, and fuzzing. This difficulty
arises primarily due to the lack of a reference protocol
state-machine model and a dedicated attacker model (the
Dolev-Yao attacker) tailored to protocol implementations.

Prior work has applied model learning to identifying
protocol implementation flaws by extracting and analyzing
high-level models from low-level implementations [17, 20,
37, 36, 22, 4]. However, these works are hard to scale
since they involve manual analysis to determine whether
the implementation flaws that deviate from the protocol
specification violate any high-level security goals. On the
other hand, few automated tools for analyzing security
properties can be directly applied to analyzing existing
protocol implementations. They either require protocols
to be developed in a new language [9]; or work only at
the specification level with symbolic terms [13, 31]. In
this paper, we aim to bridge this gap and investigate how
to identify logical errors in protocol implementations that
lead to security property violations.

More specifically, we propose PROINSPECTOR, a
novel automated and systematic testing framework that
combines conformance testing of protocol implementa-
tions against a given reference specification and automated
symbolic protocol analysis tools such as ProVerif [13]
and Tamarin [31]. At the heart of our framework, there is
component that models a Dolev-Yao attacker and connects
the two analyses. Traditional conformance testing such
as the Wp-method [23] does not take into consideration
Dolev-Yao attackers and thus cannot be directly used to
generate test cases that involve inputs from an attacker. On
the other hand, symbolic protocol analysis tools operates
at a higher-level of abstraction and do not understand the
concrete format of the network packets that the implemen-
tation inputs and outputs.

On one side of PROINSPECTOR’s pipeline, a confor-
mance testing tool tests a protocol implementation against
a protocol specification represented as a finite state ma-
chine. We augment the conformance testing algorithm to
perform fine-grained mutations at the protocol message
level based on the Dolev-Yao assumptions. We generate a
suite of test cases, with each test case consisting of a list of
inputs/stimuli and a list of expected outputs/observations.
We then evaluate the conformance of the Implementation
Under Test (IUT) with these test cases. On the other
side of the pipeline, any non-conforming test cases are
automatically translated into the domain-specific language
of an automated symbolic protocol analysis tool such as
ProVerif [13]. This allows us to effectively search for
potential vulnerabilities and exploits caused by noncon-
forming execution traces. Further, we implement a mapper
module to translate between abstract messages that the
symbolic protocol analysis tool understands and network
packets that the implementation inputs and outputs.

To demonstrate the effectiveness of our approach, we
instantiate PROINSPECTOR with ProVerif as the symbolic
analysis tool and analyze several versions of wolfSSL
and OpenSSL, implementing TLS 1.3. PROINSPECTOR
successfully rediscovers several logic bugs.

This paper makes the following contributions:

• We introduce PROINSPECTOR, a systematic and
automated framework for uncovering logical bugs

in protocol implementations by connecting exist-
ing automated symbolic protocol analysis tools
with conformance testing and

• We extend the orginal Wp-method with a new
module that can generate concrete test traces for
cryptographic protocols with a built-in Dolev-Yao
attacker model.

• We apply our methodology on popular TLS 1.3
implementations and confirm existing security vul-
nerabilities.

• PROINSPECTOR is open-sourced and available at
https://github.com/proj-proinspector/proinspector

The rest of this paper proceeds as follows. We first
provide necessary background in Section 2. Section 3
presents an overview of our testing framework. Using a
simple protocol as an example, we explain PROINSPEC-
TOR’s novel conformance testing module in Section 4
and PROINSPECTOR’s pipeline for identifying logic errors
using the symbolic protocol verifier in Section 5. We then
demonstrate the effectiveness of our framework by analyz-
ing real-world implementations of TLS 1.3 in Section 6.
Section 7 discusses related work. We discuss future work
and conclude in Section 8.

2. Background

We review the definitions of Mealy machines, con-
formance testing, and Dolev-Yao attacker, and set up the
Needham-Schroeder-Lowe protocol example.

2.1. Mealy Machine

Mealy machines are finite-state machines that dis-
tinguish between input and output actions and are a
popular modeling formalism for reactive systems. We
use Mealy machines to describe the reference behavior
model of protocols. Formally a Mealy machine M is
a 6-tuple ⟨Q, q0, I, O, δ, λ⟩ where Q is a finite set of
states, q0 ∈ Q is the start state, I = {i1, i2, ..., in} and
O = {o1, o2, ..., om} are finite sets of input and output
symbols respectively, δ : Q×I → Q is the state transition
function, and λ : Q× I → O is the output function.

Definition 2.1 (Trace). A trace t in a Mealy machine
M = ⟨Q, q0, I, O, δ, λ⟩, is a sequence of input-output
pairs t = (in0, out0)...(inn, outn) ∈ (I,O)∗ such that,
starting at the initial state, the observed outputs out0...outn
are the result of simulating M with the sequence of in-
puts in0...inn, i.e., λ(q0, in0) = out0, λ(δ(q0, in0), in1) =
out1, .. and so on. We write t ∈ M if t is a trace in
M and otherwise t /∈ M. We use t · t′ to denote the
concatenation of two traces t, t′ ∈ (I,O)∗; |t| for the
length of t, which is the number of input-output pairs in t,
and t[n] to represent the nth input-output pair (inn, outn)
on the trace t starting at index 0. We write .in and .out to
denote the projections on inputs and outputs, respectively;
for example, t.in refers to an ordered list of inputs on the
trace and t[n].out refers to the nth output on the trace.

2.2. Conformance Testing

Conformance testing is a well-known technique for
checking if an implementation conforms to a specification.
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Figure 1: PROINSPECTOR architecture overview.

In this testing approach, the implementation is considered
a black-box and the specification is typically modeled us-
ing a finite-state automaton such as a Mealy machine. An
implementation I is said to conform to its specification S
if it implements the behavior defined in the specification.
Following Tretmans [41], we define the implementation
relation I imp S to mean I conforms to S and conversely
I imp S. Testing is used to check the imp relation where
a test suite TS consists of test cases generated from the
specification. If the implementation I conforms to the
behavior of a test case t ∈ TS where given t.in the
outputs of the implementation are t.out, we say I passes t
and otherwise I fails t. The imp relation is satisfied if
passes relation is true for every test case in the test suite.
Formally,

I imp S ⇔ ∀t ∈ TS : I passes t

We formalize the specification S as a Mealy machineMS
and we aim to check I impMS , defined as follows:

I impMS ⇔ ∀t ∈ TMS : I passes t

where TMS is a test suite generated from the Mealy
machine MS .

Several test suite generation algorithms have been
developed that operate on a Mealy machine specification,
such as W-method [14], Wp-method [23] and Random
Walks [27] to approximate an ideal complete test suite
(which is infeasible in practice). We choose the Wp-
method which has a parameterized bound n. We write
I impn MS to mean that I implements the behavior
defined inMS under the assumption that I’s behavior can
be represented in a Mealy machine of at most n states,
defined below:

I impnMS ⇔∀t ∈ TMS ,n : I passes t

where TMS ,n is the test suite that the Wp-method with
bound n generates, consisting of a set of traces (Defini-
tion 2.1) of the Mealy machineMS . We estimate n to be
the same as the number of states in the reference Mealy
machine. We show with our case study that this estimation
is enough to uncover logical flaws in the implementations.

2.3. Dolev-Yao Attacker

In the Symbolic or Dolev-Yao model, messages are
modeled symbolically as terms T using a term algebra.
Let A, N , K and V be fixed countable sets of agents,
nonces, keys and variables respectively and B = A ∪ N ∪
K denotes the set of basic terms. Cryptographic primitives
are treated as black-box functions. We distinguish between

two types of functions: constructors and destructors. A
constructor f ∈ F , where F is a bounded fixed set, is
used to build new terms such as encryption and appears
in the terms. Formally a term term ∈ T can be defined
with the following grammar:

term := m | f(term)

where m ∈ B ∪ V and f ∈ F . Ground terms Tg are
terms without variables. A destructor g ∈ G computes on
terms, such as decryption and does not appear explicitly in
terms. For instance, symmetric encryption and decryption
are modeled using constructor enc ∈ F and destructor
dec ∈ G with the equation:

dec(enc(m, k), k) = m

This means that, for a symbolic attacker, it is simply
impossible to get back the plaintext m from ciphertext
enc(m, k) without the corresponding key k. In this paper,
we use the shorthand {m}k to represent enc(m, k).

A protocol is assumed to be executed in the presence
of a symbolic attacker who has complete control over
the network, that is, it can eavesdrop on communications,
replay, block, and inject messages, but can only compute
using these functions.

2.4. Needham-Schroeder-Lowe Protocol Example

We will use the Needham-Schroeder-Lowe protocol
(NSL) [29] as an example to explain how PROINSPECTOR
works. NSL is intended to provide mutual authentication
of two agents, Alice (A) and Bob (B). We present a short
version of the protocol as follows, where we assume Alice
is a server that is willing to accept connections from any
client whose identity is received in message 1 and agents
are assumed to know each other’s public keys:

(1) B −→ A : B

(2) A −→ B : {NA, A}pkB
(3) B −→ A : {NA, NB , B}pkA
(4) A −→ B : {NB}pkB

NA and NB are two fresh nonces generated by A with
public key pkA and B with public key pkB respectively.
{m}pkx is the public key encryption of message m using
public key pkx. Intuitively, when Alice receives message
3, she knows Bob has tried to contact her and when
Bob receives message 4, he knows that Alice accepts
his connection. NSL fixes the flaws in Needham-Schroder
protocol [33] and has been formally verified using sym-
bolic provers. We use NSL to demonstrate how we can
potentially find logic flaws that exist in implementations
of the protocol.
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3. Architecture Overview

A high-level overview of PROINSPECTOR is illustrated
in Figure 1. It includes two main components: a custom
conformance testing module and a symbolic protocol anal-
ysis tool such as ProVerif [13] or Tamarin [31]. The con-
formance testing module takes as inputs: the specification
of a protocol under test and the implementation under
test. The specification is a Mealy machine model Mspec
(detailed in Section 4.1) that depicts the correct behavior
model of the specification. We assume the specification is
manually extracted, following a similar process of mod-
elling a protocol in a symbolic prover such as Tamarin
or ProVerif. It involves a meticulous examination of the
protocol’s RFC (Request for Comments) document to
extract the control flow and message interactions defined
within the protocol. The conformance testing will either
output “OK”, indicating all tested execution traces from
the implementation are allowed by the specification; or
counterexample traces that deviate from the specification.

In the latter case, these counterexample traces are
given to an automated symbolic protocol analysis tool to
check for security property violations. In this paper, we
use ProVerif, but tools like Tamarin can be incorporated
as well. The symbolic analysis tool typically takes as
inputs, protocol specifications and encoding of the desired
security property. In the case of ProVerif, the protocol
specification is encoded using a process calculus and the
properties we focused on are authentication and secrecy.
In PROINSPECTOR, we additionally encode the deviant
behavior as a separate process, so it can be analyzed to-
gether with the protocol specification for security property
violations. The symbolic analysis tool will either return
OK or a counterexample attack trace.

The main novelty of PROINSPECTOR lies in the con-
formance testing module; it incorporates a Dolev-Yao
attacker model so that conformance testing can induce
potentially dangerous behavior from the protocol imple-
mentation. To connect to symbolic analysis tools, the con-
formance testing module is also responsible for translating
between messages in the form of symbolic terms that
the symbolic analysis tools understand and the network
packets that the implementation receives or sends. We will
detail the conformance testing module in Section 4 and the
components for identifying logic errors using a symbolic
protocol verifier in Section 5.

4. Conformance Testing Under Dolev-Yao

In this section, we present our custom conformance
testing module that takes into consideration, the Dolev-
Yao attacker model. We also explain the two phases of
generating testing cases that are needed both for incorpo-
rating the Dolev-Yao attacker model and for connecting
concrete messages from the implementation to abstract
messages used in specifications.

4.1. Protocol Specification as a Mealy Machine

Recall that PROINSPECTOR needs a manually ex-
tracted Mealy machine specification representing the be-
havior model of the protocol. We illustrate the process
by constructing the Mealy machine representing Alice

0start

1

2E

x/{NA,A}pkx

mA/ ALERT

{NA,Nx, x}pkA
/{Nx}pkx

mA/ ALERT

mA/ ALERT

mA/ ALERT

Figure 2: The reference Mealy Machine depicts Al-
ice’s behavior in NSL. The input of this mealy
machine is INSL = {x, {NA, Nx, x}pkA ,mA} and
the output of this mealy machine is ONSL =
{{NA, A}pkx , {Nx}pkx , ALERT}. x,Nx, pkx ∈ V are vari-
ables.

in the NSL protocol (Section 2.4). We interpret from
the specification that Alice first receives a variable x
representing any agent she is willing to communicate with
and reply with her nonce NA and identity A encrypted
using the public key of the other party pkX . Alice then
expects to receive a message consisting of her nonce
challenge NA and the nonce challenge Nx and identity
x of the other party all encrypted with Alice’s public
key. Alice can decrypt this message using her private
key. Alice will check if the identity received is the same
as the first message. Only if the identities match she
will reply the nonce challenge Nx encrypted using the
other party’s public key. The control flow of the protocol
described above is what we call a happy flow of the
protocol where an honest agent connects to Alice without
an active attacker blocking or modifying messages. This
happy flow of the protocol is represented as green arrows
in Figure 2.

Since we intend to analyze the protocol symbolically
using a Dolev-Yao model, the Mealy machine is also
augmented with transitions caused by an attacker’s in-
teractions with Alice. Thus, an abstract attacker message
mA is added to every state where we expect a correct
implementation to output some kind of alert or error
message (generalized as ALERT) and transition to an error
state E. We call these transitions unhappy transitions,
which are shown as red arrows in Figure 2. Having the
unhappy transition on every state is key to modeling the
capability of a Dolev-Yao attacker (Section 2.3), who
has complete control over the network and can choose
to block, inject, or modify messages at any point during
the protocol execution. Note that this is a conservative
representation of Alice’s behavior, as not every attacker
message should transition to an error state. For example,
the attacker may choose to act as an honest agent in
the protocol by sending valid and well-formed messages
which a correct implementation would accept. We discuss
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Figure 3: Conformance testing module of PROINSPECTOR.

how we handle this case in Section 4.4.
Figure 2 depicts one way to construct the reference

Mealy machine. In this construction, any unexpected mes-
sage causes the automaton to transition to an error state
meaning that we only consider one run of the protocol.
Another way to construct the reference Mealy machine,
which we do not consider in this paper, would be to stay
in the same state with mA input and add transitions to
loop back to the initial state such that the protocol can
run multiple times back to back. This would increase the
number of traces in the test suite and potentially detect
bugs only manifest in multiple runs. Yet another way
to construct the reference model is to include multiple
sessions; whereas the reference model here only runs a
single session (i.e., Alice can only communicate with one
agent at a time). Introducing multiple session will increase
the number of the states in the reference model, but this is
unnecessary because symbolic protocol analysis tools such
as ProVerif can handle infinite number of sessions. As we
shall see in Section 6, our simple construction is enough
to confirm the known vulnerabilities using our framework

An assumption we made about the IUTs is that the
IUTs implement at least the happy flow of the refer-
ence Mealy machine. In other words, we are interested
in finding logical errors in an implementation that can
correctly communicate with an honest agent running the
same protocol. While most protocols are more complex
than our NSL example, the process of building the Mealy
machine is identical where we start by examining the
specification to identify the control flow, message formats,
and interactions.

4.2. Conformance Testing Architecture

At a high level, conformance testing generates test
cases from the specification. These test cases are then
given to the implementation under test. We use Wp-
Method, which is bounded by a parameter n, typically set
to be the maximum number of states of the system under
test. Figure 3 illustrates our novel conformance testing
procedure, which involves two phases of test case genera-

tion. The first phase generates concrete test cases that only
assess the normal (happy) traces of the protocol are also
emitted by the IUT. The second phase uses our Dolev-
Yao attacker model to concretize attacker messages left
abstract (uninterpreted) during the first phase to generate
a larger set of concrete test cases (detailed in Section 4.4).

Additionally, a mapper component translates the sym-
bolic representation of the concrete test cases into the
actual bitstring representation of network packages and
vice versa. We defer the explanation of this component
to Section 5, where we explain how to find logic errors
using the symbolic analysis tool.

4.3. TG Phase I: Generating Concrete Test with
Abstract Attacker Message

In this phase of the test case generation, inputs and
outputs of our reference Mealy machine are abstract,
meaning they contain uninstantiated variables. Abstraction
is a well-studied technique in model-based testing aimed
to reduce the size of inputs and outputs of the model [1].
Our abstraction is based on the term algebra used in the
Dolev-Yao model which contains variables that can be
instantiated into concrete terms. For example, if Bob (B)
initiates a conversation with Alice when Alice’s internal
state is at state 0 (Alice receives B at state 0), the expected
behavior of the specification (represented by the Mealy
machine) says that Alice should send a fresh nonce NA

along with its identity A encrypted using Bob’s public key
pkB ({NA, A}pkB ).

We use the Wp-Method on the Mealy machine MS
to generate a set of abstract test cases (denoted Tabs), as
shown on the left of Figure 3. The set of abstract test cases
for our NSL example is shown in Figure 4. We define the
abstract test cases as follows:

Definition 4.1 (Abstract Test Trace (or Test Case) tabs).
Given a Mealy machine MS = ⟨Q, q0, I, O, δ, λ⟩ where
the inputs and outputs are defined using the Term al-
gebra introduced in Section 2.3 (I,O ⊆ T ), an ab-
stract test case tabs is a sequence of input-output pairs
(in0, out0)...(inn, outn) ∈ (I,O)∗ s.t.
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• tabs is a trace (Definition 2.1) inMS (tabs ∈MS )
and

• if there is a variable x ∈ V in outi, then there
exists a previous input inj in tabs that contains the
same variable x and j ≤ i.

Example 4.1. The first column of Figure 4 lists the set
of abstract test cases (traces).

We cannot execute directly an abstract test case on the
IUT because it contains variables like x, a placeholder
for the identity of other protocol participant, and attacker
messages mA. Thus, we need to concretize each abstract
test case by substituting the variables with concrete val-
ues (e.g., B for x) and concrete attacker messages for
mA. This will result in one or more concrete test cases.
Concretization is a two-step process which involves (1)
concretize the variables and (2) concretize the attacker
message mA. Phase I here only considers (1) and returns
two sets of traces TC and TA. TC is the concrete trace
set which we can already test on the implementation. TA

is what we call the concrete symbolic attack trace set
which contains abstract attacker messages mA. Here we
use symbolic to indicate the attacker message is abstract.

Next we formally define concrete test traces and con-
crete symbolic attacker traces.

Definition 4.2 (Concrete Test Trace tconc and Concrete
Symbolic Attacker Trace ta). t is a concrete test trace if
all inputs and outputs on the trace are ground terms, i.e.,
∀m ∈ t.in ∪ t.out : m ∈ Tg. t is a concrete symbolic
attacker trace if all inputs and outputs on the trace are (1)
either ground terms or abstract attacker message mA and
(2) the trace contains at least one attacker message mA.
Formally defined as follows:

(∀m ∈ t.in ∪ t.out : m ∈ Tg ∨m = mA)∧
(∃n : t[n].in = mA).

Example 4.2. In the second column of Figure 4 concrete
symbolic attacker traces are colored in red and concrete
test traces are colored in green.

Concretization algorithm (no attack message) We de-
scribe the process of concretizing a single abstract test
trace here. Let G be a finite set of ground terms and tabs
be an abstract test trace. For every variable in tabs, replace
it with a ground term term ∈ G of the same type. Repeat
the above process for all possible combinations of the
variable substitution induced by G.

For example, given an abstract test trace tabs =
(x, {NA, A}pkx) · ({NA, Nx, x}pkA , {Nx}pkx) and a set of
terms G = {B,M,NB , NM , pkB , pkM}. This process
will generate the following two traces:

(B, {NA, A}pkx) · ({NA, NB , B}pkA , {NB}pkB )

(M, {NA, A}pkM ) · ({NA, NM ,M}pkA , {NM}pkM )

Note there is an internal linking between agents and their
nonces and keys visa the shared variable: {NB , pkB} 7→
B and {NM , pkM} 7→M .

We repeat this process for all traces in Tabs which
generates the set of concrete symbolic attacker traces TA

and concrete test traces TC . For our NSL example, TC

includes the traces colored green and TA includes traces
colored red in Figure 4. Essentially TC includes test cases

that only test the happy flow of the protocol. Because
every test trace in TC contains only ground terms, we
can already test this set. If all the tests in TC pass, i.e.,
∀t ∈ TC : I passes t, we are confident that the IUT
at least implements the happy flow of the protocol. If
this is not the case, we will manually check (and revise
if necessary) whether our reference Mealy machine is a
faithful representation of the specification or if the IUT
is a custom protocol not suitable for being tested using
this specification. One such example is when we want to
test the 0-RTT mode of TLS (a faster mode to resume a
previous connection), but certain implementations disable
this mode to prevent replay attacks. In order to test TA

on the IUT, we need to further concretize the attacker
message mA which we explain next.

4.4. TG Phase II: Concretizing Attacker Mes-
sages under Dolev-Yao

In this phase, all occurrences of the abstract attacker
message mA are replaced with concrete messages the
attacker knows. We first explain how we model attacker’s
knowledge before presenting the concretization algorithm.

Attacker’s knowledge We define the predicate
knows(K,m) to mean that the attacker can produce
m after seeing all messages in the attacker’s knowledge
set K. We define selected rules below.

m ∈ K

knows(K,m)
INIT

∀i ∈ {1, . . . , n}. knows(K,mi)

knows(K, f(m1, . . . ,mn))
COMP

knows(K, (m1, . . . ,mn))

knows(K,mi)
PROJ

knows(K, k) knows(K, {m}k)
knows(K,m)

SDEC

The INIT rule states that an attacker can construct m if it is
in its knowledge set K. Using the COMP rule, an attacker
can construct messages using messages it already knows.
Here f ranges over operations of the symbolic model.
The next two rules show how an attacker can use the
destructors for tuples (PROJ) and symmetric decryption
(SDEC) respectively.

The attacker’s knowledge set K is updated at the
protocol runs. We can divide a concrete symbolic at-
tacker trace ta into a concrete test trace tconc concate-
nated with another concrete symbolic attacker trace t′a;
specifically, ta = tconc · t′a where tconc = ta[0..n − 1]
and contains only ground terms; t′a = ta[n..|ta|] with
ta[n].in = mA. Essentially, tconc represents a snapshot
of protocol execution in which the attacker simply ob-
serves messages exchanged and updates its knowledge.
The attacker’s current knowledge Kcurr includes its initial
knowledge KI and all the messages appear in the network
(KI ∪ tconc[0..n− 1].in ∪ tconc[0..n− 1].out).

The attacker message for a Dolev-Yao attacker as rep-
resented by the predicate knows(Kcurr,m) is unbounded,
because the attacker can apply a constructor for infinite
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Abstract Test Cases Test Cases after First Phase of Concretization
(x, {NA, A}pkx) (B, {NA, A}pkB )

(M, {NA, A}pkM )
(x, {NA, A}pkx) · ({NA, Nx, x}pkA , {Nx}pkx) (B, {NA, A}pkB ) · ({NA, NB , B}pkA , {NB}pkB )

(M, {NA, A}pkM ) · ({NA, NM ,M}pkA , {NM}pkM )

(mA, ALERT) (mA, ALERT)
(x, {NA, A}pkx) · (mA, ALERT) (B, {NA, A}pkB ) · (mA, ALERT)

(M, {NA, A}pkM ) · (mA, ALERT)
(mA, ALERT) · (mA, ALERT) (mA, ALERT) · (mA, ALERT)

(x, {NA, A}pkx) · ({NA, Nx, x}pkA , {Nx}pkx) (B, {NA, A}pkB ) · ({NA, NB , B}pkA , {NB}pkB ) · (mA, ALERT)
·(mA, ALERT) (M, {NA, A}pkM ) · ({NA, NM ,M}pkA , {NM}pkM ) · (mA, ALERT)

Figure 4: Abstract test cases and test cases after first phase of concretization for NSL example mealy machine in
Figure 2. We bound the Wp-Method with the depth of 4 and set the use the finite set v = {B,M,NB , NM , pkB , pkM}
for variables.

number of times. This leads to an infinite number of
concrete test cases. To perform efficient testing, we limit
the messages an attacker can send to a set called allowed
set Sallowed. The allowed set is a user controlled parameter
which lists the messages the attacker can send; any other
message is discarded. This set is selected using heuristics,
and the larger the size of the allowed set, the more
complete the testing would be. In general, one would
pick the allowed set to contain messages that respect the
message format described in the protocol specification but
with some message content mutated. For example, for the
NSL protocol we define the allowed set as follows:

Sallowed ={B,M, {n1, n2, p}pkx}
where n1 ← {NA, NB , NM},

n2 ← {NA, NB , NM},
p← {A,B,M},
pkx ← {pkA, pkB , pkM}

Concretization algorithm for attacker messages Next,
we describe the algorithm for concretizing mA.

Given a finite set of ground terms KI representing
attacker’s initial knowledge, an allowed set Sallowed, and
a finite set of a concrete symbolic attacker trace set TA

produced by Phase I Section 4.3. The set of concrete traces
(initially empty) Tconc returned by Phase II is computed
as follows:
Step 1: If TA is not empty: pop a trace ta ∈ TA and
proceed to Step 2, otherwise, return Tconc.
Step 2: Scan the trace ta starting from the first element
until we find the first attacker message mA at some index
n, or we reach the end of the trace and no attacker message
is found in the trace.

• If no attacker message is found, add ta to Tconc
and return to step 1.

• We find the attacker message at index n
(ta[n].in = mA).
We first need to update attacker’s current knowl-
edge set which is the union of attacker’s initial
knowledge and all the messages on the trace be-
fore the current attacker message. Furthermore, we
add the concrete message an honest agent can send
at this stage (termed ta[n].agent). This essentially

model the attacker’s ability to block messages
in the network. That is, the attacker blocks the
message from honest agent and uses it to compute
any other messages the attacker knows. KA =
KI ∪ ta[0..n−1].in∪ ta[0..n−1].out∪ ta[n].agent.
We can then compute the bounded attacker mes-
sage set MA = {m|knows(KA,m) ∧ m ∈
Sallowed}.
Instantiate mA with the set MA and add all the
traces back to TA (TA = TA ∪ {ta[0..n − 1] ·
(m, ALERT) · ta[n+ 1..|ta|]|m ∈MA}) and return
to step 1.

For example, given a concrete symbolic attacker trace
ta = (M, {NA, A}pkM ) · (mA, ALERT), attacker initial
knowledge KI = {A,B,M, pkA, pkB , pkM , skM , NM},
and the allowed set Sallowed above, ta is transformed to
the following concrete traces:

(M, {NA, A}pkM ) · (B, ALERT)

(M, {NA, A}pkM ) · (M, ALERT)

(M, {NA, A}pkM ) · ({n1, n2, p}pkx , ALERT)

where n1 ← {NA, NM},
n2 ← {NA, NM},
p← {A,B,M},
pkx ← {pkA, pkB , pkM}

(M, {NA, A}pkM ) · ({NA, NM ,M}pkA , ALERT) is one
of the concrete trace generated after concretizing
attacker messages. However, there is another con-
crete trace with the same inputs but different out-
puts generated earlier by Phase I: (M, {NA, A}pkM ) ·
({NA, NM ,M}pkA , {NM}pkM ) ∈ TC . As we mentioned,
not all attacker messages should lead to an error (attacker
could act as an honest agent in the protocol). Thus, we
eliminate those traces generated by Phase II if there is
already another trace in TC with the same inputs sequence.

5. Leveraging Symbolic Analysis Tools

Once test cases are generated, PROINSPECTOR will
test various protocol implementations with the help of the
Mapper component to connect to a symbolic analysis tool.
We first describe the Mapper component and then explain
how to analyze failed traces automatically.

623

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2024 at 13:01:35 UTC from IEEE Xplore.  Restrictions apply. 



5.1. Mapper

The mapper is a component that sits in between the
test cases generated and the IUT as shown in Figure 3. For
the outward direction, the Mapper translates the concrete
test cases written in term algebra into actual bitstrings
and sends them to the IUT. For the inward direction,
the Mapper parses and translates the responses/outputs
from the IUT back into term algebra representation and
compares the actual outputs with the expected outputs. If
the outputs are different, the trace of the inputs with the
actual outputs are stored for further analysis.

This component can leverage existing implementations
of the protocol. The major implementation effort lies in
crafting Dolev-Yao attacker messages that contain mal-
formed or mutated content prescribed by our reference
model together with the allowed attacker message set.
This includes scenarios such as encrypting or signing with
incorrect keys and mutating message fields to arbitrary
content within attacker’s knowledge including null or
zero-padded values. Parsing the responses from a diverse
set of implementations also requires significant implemen-
tation effort.

The mapper component used for our case study in Sec-
tion 6 is implemented using Scapy [39], a Python-based
library for encoding and decoding TLS packets. While the
Mapper component needs to be implemented for different
protocols (e.g., TLS [18, 38] vs. DTLS [30]), it can be
reused for different implementations of the same protocol
with minimal to no change required. We used the same
Mapper for wolfSSL and OpenSSL where we first im-
plemented the mapper that works with wolfSSL and then
needed to slightly alter it because OpenSSL returns an
error code on certain inputs before closing the connection,
while wolfSSL silently close the connection.

5.2. Analyze Failed Traces

Recall that, IUT receives the input sequence of the test
case t.in and the Mapper checks if the output sequence
from the IUTs is the same as in the test case t.out. If the
outputs agree that means the execution passes the test,
i.e., I passes t. Otherwise, a counterexample trace tf is
obtained, which behaves differently in the implementation.
However, not all counterexamples lead to vulnerabilities.
We could be overly conservative in our reference model,
restricting honest actions that should be accepted. Further-
more, it is not obvious how to reconstruct an attack with
a failed trace tf , because the attack scenario might need
multiple sessions of the protocol running concurrently,
while the trace may record only one session of the protocol
execution.

To check whether the erroneous transitions lead to at-
tacks, we use automated tools such as ProVerif [13]. These
automated symbolic protocol provers can automatically
verify protocol or find attacks with unbounded sessions
and an unbounded Dolev-Yao attacker. Next, we use our
NSL example to demonstrate this process when we use
ProVerif to perform the analysis.

One of the test cases we generated in Section 4.4
is (M, {NA, A}pkM ) ·({NA, NM , B}pkA ALERT). Suppose
instead of emitting ALERT message on the second in-
put the actual output sequence observed on the IUT is

event endBparam(pk(skB)).

let proctf(pkB:pkey, pkM:pkey, skA:skey) =
in(c, x: host);
if x = B || x = M then
let pkX = if x = B then pkB else pkM in

new Na: bitstring;
event beginBparam(pkX);
out(c, aenc((Na, A), pkX));
in(c, m: bitstring);

Figure 5: ProVerif encoding of Proctf

tf = (M, {NA, A}pkM ) · ({NA, NM , B}pkA , {NM}pkM ).
According to our assumptions, the IUT implements all the
happy flows in the reference Mealy machine but includes
extra erroneous transitions where a malformed message
should result in an ALERT message but doesn’t. Thus, the
first step is to model a correct Alice’s process ProcA in
the domain specific language (applied pi calculus [2]) of
ProVerif. To analyze the protocol we also model an honest
agent Bob ProcBob running the protocol with Alice. In
addition, we formulate the mutual authentication property
Propauth to be verified for the protocol. The modeling of
Alice and Bob follows the standard process for using
ProVerif to check if a specification of the protocol is
secure under a Dolev-Yao attacker. For our example, we
add another process Proctf , corresponding to the failed
trace tf . Proctf is automatically obtained from tf by
mapping the message to Alice’s process and modifying
message checking such that the failed trace is accepted.
Specifically, the process Proctf performs the following
steps, where x, y and z are variables:

receives : x
sends : {NA, A}pkx

receives : {NA, y, z}pkA

sends : {y}pkx

We use ProVerif to check the following:

!ProcA||!ProcB ||!Proctf |= Propauth

The above aims to check if the mutual authentication
property Propauth holds under an unbounded number of
sessions of Alice, Bob and the failed trace processes
running in parallel. We show the ProVerif encoding of
Proctf in Figure 5 and the full modeling of the protocol
can be found in Appendix A. ProVerif finds a violation of
the property Propauth with the following attack trace:

(1∗) M → A : M
(2∗) A → M : {NA, A}pkM
(3) B → A : B (blocks by M )
(4) M → B : {NA, A}pkB
(5∗) B → A : {NA, NB , B}pkA
(6∗) A → M : {NB}pkM
(7) M → B : {NB}pkB

Messages marked with (*) point to the potentially erro-
neous transitions we found in the implementation. The
built-in Dolev-Yao attacker in ProVerif is able to leverage
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the trace from the implementation and finds the attack
trace above. This attack trace shows a MITM attack
where Bob thinks he is running the protocol with Alice
but in reality he is running the protocol with Mallory
acting as Alice. This attack trace mirrors the original
flaw found in the Needham-Schroeder protocol [28, 29].
The NSL protocol fixes this flaw by adding the identity
in {NA, NB , B}pkB where Alice is supposed to check if
the identity matches with previous messages. This revised
version (NSL protocol) has been proven to be secure
under Dolev-Yao [29]. However, developers might fail to
implement the identity check (checking that the identity
B received in message (5*) is the same as the identity
received in message (1*)) correctly and reintroduce the
bug in the implementations as shown in the example.
This error cannot be found without the Dolev-Yao attacker
in ProVerif, as the honest agents would not send the
malformed message to trigger the erroneous transition.

6. Case Study

In this section, we demonstrate the effectiveness of
PROINSPECTOR by using it to analyze popular TLS im-
plementations including wolfSSL and OpenSSL. PROIN-
SPECTOR rediscovered several known vulnerabilities.

6.1. Overview of TLS

The Internet standard TLS is a protocol to establish
a secure channel between two agents, a client and a
server, communicating over an untrusted network. TLS
is most notably employed in the context of HTTPS,
enabling secure interactions between web browsers and
web servers. Specifically, the TLS protocol provides the
following security assurances.

• Authentication: The server is always authenticated,
while the client is optionally authenticated (re-
quested by the server).

• Secrecy: Data transmitted over the secure channel,
once established, is only visible to the endpoints.

• Forward Secrecy: Secrecy (above) holds even if
long-term keys are leaked to the attacker after the
session ends.

The TLS protocol comprises two fundamental sub-
protocols: firstly, the handshake protocol, which handles
the negotiation of cipher suites, authenticates the parties,
and establishes a shared session key. Subsequently, the
record layer protocol utilizes the session key to estab-
lish the secure channel. We focus on the latest version
TLS 1.3 [38], which enhances previous versions by re-
moving legacy cryptography that was deemed insecure
and by improving efficiency. A typical TLS 1.3 connection
is shown in Figure 6 where both the client and the
server are authenticated, and they do not resume a prior
connection (no pre-shared key).

In the Handshake protocol, the client sends the
ClientHello message which contains a random nonce
and various negotiation parameters (supported version,
cipher suites etc.) with a Diffie-Hellman key share in
the key_share extension. The server processes the
ClientHello message and responds with its own

Client Server

ClientHello

+key share

ServerHello

+key share

[EncryptedExtension]

[CertificateRequest]∗
[Certificate]

[CertificateVerify]

[Finished]

(S.A.)

[Certificate]∗
[CertificateVerify]∗

[Finished]

(C.A.)

(Handshake Protocol)

(Record Protocol)

[Application Data]

Figure 6: A typical TLS 1.3 connection where the Client
is authenticated and there is no PSK. Messages enclosed
with [ ] are encrypted. Messages marked with * are
optional. S.A. and C.A. stands for Client and Server
Authenticated, respectively.

ServerHello, which indicates the negotiated parameters,
and a Diffie-Hellman key share in the key_share exten-
sion. At this point a hand_shake_secret is established
and subsequent handshake messages are encrypted using
this shared secret key. The server sends the encrypted
hand shake messages EncryptedExtension (a list of
extensions that can be protected), Certificate (con-
tains server’s public key), CertificateVerify (a sig-
nature over the handshake), CertificateRequest (re-
quest for client authentication) and Finished (MAC over
the entire handshake). Upon checking the Certificate
and CertificateVerify the client knows that the
server is authenticated and the client sends its own
Certificate and CertificateVerify for authentica-
tion together with the Finished message. Upon checking
the client’s Certificate and CertificateVerify, the
server knows the client is authenticated. At this point
the handshake protocol completes and the client and the
server both establish a session key for the record layer
protocol. In this TLS connection we explicitly require
client authentication and disable session resumption.

6.2. IUTs and Reference State Machines

We chose wolfSSL and OpenSSL implementations for
our case study; wolfSSL is an open-source implemen-
tation of SSL and TLS designed to be lightweight and
cross-platform. However, early versions of wolfSSL were
found to have multiple authentication bypass errors [36].
These authentication bypasses are a form of logic error
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in which the implementation fails to perform the required
authentication check, opening the door for impersonation
and MITM (man-in-the-middle) attacks.

We used the flawed versions of wolfSSL that contains
these authentication bypass errors to test if our framework
can rediscover the errors and evaluate the effectiveness
of our approach. To demonstrate the reusability of the
mapper component, we further test an OpenSSL imple-
mentation using the same test cases and mapper program.
The versions we used in our case study are: wolfSSL
4.4.0, 4.6.0, 5.1.0 and OpenSSL 3.0.2. We tested both
client-side and server-side code.

• Client-side: In this scenario the IUT is a TLS 1.3
client and initiates a connection with the server.
The client IUTs are configured with trusted certifi-
cation authority to check for server authentication.
The client IUTs will send application data only
if the handshake protocol finishes correctly and
the server is authenticated. Figure 7a shows the
reference client Mealy machine for our confor-
mance testing. For simplicity, we did not test client
authentication and leave CertificateRequest
out of inputs.

• Server-side: In this scenario the IUT is a TLS 1.3
server. The server is configured to require client
authentication with a given certificate authority.
This is also reflected in our reference Mealy ma-
chine where only paths with valid Certificate
and CertificateVerify are accepted. Figure 7b
shows our reference Mealy machine for the TLS
1.3 server.

The inputs and outputs shown in the reference Mealy
machines in Figure 7 are simplified for illustration pur-
pose. In particular, we do not show the variables in the
inputs and outputs. These variables are needed so that the
attacker can generate attacker messages that vary in the
variable fields. For example, the attacker can replace the
public key in the Certificate message with its own
untrusted key or include an arbitrary signature scheme
algorithm in CertificateVerify. The actual reference
Mealy machines we used in the case study have the same
states and transitions but the messages are more detailed
(similar to the one shown in Figure 2).

6.3. Experimental Setup

As discussed in Section 4.4, our framework includes
a parameterized attacker that has an initial knowledge
and can send any message in the allowed set if the
attacker possesses all the elements in that message. We
configure attacker’s initial knowledge such that it includes
a random number/nonce, attacker’s own Diffie-Hellman
key to initiate a session with the client or server, empty
and untrusted certificates, and an uncertified/bad signing
key. Notably, the attacker does not know the signing key of
a valid certificate or the Diffie-Hellman key of an honest
client/server initially. However, the attacker could learn
these values acting as a Dolev-Yao attacker, for example,
if an honest agent sends its private signing key to the
network in plaintext then the attacker can use this signing
key subsequently.

0start

2E

SH, EE, CERT, CV, FIN/FIN, AD

mA/ ALERT

mA/ ALERT

mA/ ALERT

(a) Reference Mealy Machine for TLS 1.3 client. This
reference does not consider session resumption and
client authentication

0start

1

2E

CH/SH,EE,CR,CERT,CV,FIN

mA/ ALERT

CERT,CV,FIN, AD/AD

mA/ ALERT

mA/ ALERT

mA/ ALERT

(b) Reference Mealy Machine for TLS 1.3 server.

Figure 7: Reference Mealy Machines for TLS 1.3
client and server. Shorthands used on the inputs and
outputs are CH: ClientHello SH: ServerHello, EE:
EncryptionExtension, CERT:Certificate, CV:
CertificateVerify, CR: CertificateRequest,
FIN: Finished and AD: ApplicationData.

The allowed set includes all the messages client/server
sends over the network s.t. the attacker can replay these
messages. The set also includes the messages the attacker
can send impersonating an honest client/server to initi-
ate a session. Moreover, we allow any combination of
subcomponent of a message to be sent. For example,
SH+EE+CERT+CV+FIN is a message that has 5 com-
ponents, any combination of these components is allowed
(e.g., SH+EE or FIN). This effectively allows the attacker
to skip protocol messages of their choice.

We set the bound of Wp-method to be the number
of states in the reference Mealy machines (3 and 4) and
generate test cases for the client-side and server-side IUTs
respectively.

Our ProVerif specification of the protocol is based on
RefTLS [10]. RefTLS is a verified implementation of TLS
protocol. It was developed during the standardization of
TLS 1.3 to check its security guarantees and contains an
extracted symbolic model of the protocol in ProVerif. We
simplified this model for our specific needs. Our ProVerif
properties checks server authentication in client-side IUTs
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and mutual authentication in server-side IUTs. In addition,
we check the secrecy of application data in both scenarios.

6.4. Authentication Bypasses in wolfSSL

The first authentication bypass vulnerabilities on TLS
implementations were found by two academic research
works [8, 17] around 2015. The vulnerabilities were af-
fecting early versions of OpenSSL and JSSE TLS 1.2
implementations. More authentication bypass vulnerabil-
ities were found affecting wolfSSL TLS 1.3 implemen-
tations [36]. The four known authentication bypasses on
wolfSSL are listed in the first column of Table 1 with their
CVE numbers. Our framework is able to rediscover all
four vulnerabilities. The second column of Table 1 shows
the versions of implementations in our case study that
exhibit the vulnerability in the first column. We confirmed
with CVE reports that our results are accurate, that is we
are able to find all affected versions in our test suit for
the CVEs in Table 1.

TABLE 1: Vulnerabilities in wolfSSL.

CVE # Version(s) with Vuln. Confirmed

CVE-2020-24613 wolfSSL 4.4.0

CVE-2021-3336 wolfSSL 4.4.0, 4.6.0

CVE-2022-25638 wolfSSL 4.4.0, 4.6.0, 5.1.0

CVE-2022-25640 wolfSSL 4.4.0, 4.6.0, 5.1.0

Next we explain each CVE re-discovered.

CVE-2020-24613: This vulnerability affected wolfSSL
TLS 1.3 client-side code up to version 4.4.0. It allows a
malicious server to skip the CertificateVerify mes-
sage and thus impersonate any server to a vulnerable
client. PROINSPECTOR is able to generate the following
test cases that rediscover this vulnerability. The first one
skips the server certificate message. The client is sup-
posed to output ALERT, indicating an error; instead, it
completes the handshake and starts data transmission. The
first input/output pair is the expected behavior. The second
input/output pair is the actual trace emitted by the client
implementation.

Expected:
(ServerHello+ EncryptionExtension

+ Finished,

Alert)

Actual:
(ServerHello+ EncryptionExtension

+ Finished,

Finished+ ApplicationData)

The second test case identifies the same bug. The dif-
ference compared to the test case above is that the
server sends an empty or a valid certificate. Here, we
write Certificate1 to denote an empty certificate and
Certificate2 to denote a valid certificate.

Expected:
(ServerHello+ EncryptionExtension

+ Certificate1,2 + Finished,

Alert)

Actual:
(ServerHello+ EncryptionExtension

+ Certificate1,2 + Finished,

Finished+ ApplicationData)

In both cases, the client did not check the
CertificateVerify message, violating the authenti-
cation property. PROINSPECTOR’s conformance testing
module is able to generate these attacker input sequences
by consulting the Dolev-Yao attacker model. The orig-
inal Wp-method would not have been able to generate
these test cases. CVE-2020-24613 was patched, such that
neither Certificate nor CertificateVerify messages
cannot be skipped.

CVE-2021-3336: After patching the above CVE,
the client code still accepts an empty certificate
Certificate1 followed by a CertificateVerify1

message signed by arbitrary RSA keys. The test cases
(multiple test cases map to this vulnerability as the signing
key for the signature is arbitrary) that rediscovers the
vulnerabilities in wolfSSL 4.6.0 is as follows:

Expected:
(ServerHello+ EncryptionExtension

+ Certificate1 + CertificateVerify1

+ Finished,

Alert)

Actual:
(ServerHello+ EncryptionExtension

+ Certificate1 + CertificateVerify1

+ Finished,

Finished+ ApplicationData)

CVE-2022-25638: Later, a vulnerability similar to
CVE-2021-3336 was discovered on the client code,
where the client accepts an empty certificate message
Certificate1 followed by a CertificateVerify2

message with an unknown signature algorithm. This again
enables server impersonation attack. The following test
case confirmed this vulnerability in both wolfSSL 4.6.0
and 5.1.0:

Expected:
(ServerHello+ EncryptionExtension

+ Certificate1 + CertificateVerify2

+ Finished,

Alert)
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Actual:
(ServerHello+ EncryptionExtension

+ Certificate1 + CertificateVerify2

+ Finished,

Finished+ ApplicationData)

CVE-2022-25640: Authentication bypasses also exist on
server side where a buggy server requests for client au-
thentication but is happy to establish connection even if
the client skips the CertificateVerify message and
optionally skips the Certificate message. Without the
authentication check, any user could pretend to be an
authenticated client and establish sessions with the flawed
server. This vulnerability exists in all versions in our test
suite. Similar to the first case, PROINSPECTOR generated
the following test cases to trigger the same vulnerability.
Both test cases consist of two input/output pairs, delimi-
tated by •.

Expected:
(ClientHello,

ServerHello+ EncryptionExtension

+ CertificateRequest+ Certificate

+ CertificateVerify+ Finished)

•(Finished+ ApplicationData, Alert)

Actual:
(ClientHello,

ServerHello+ EncryptionExtension

+ CertificateRequest+ Certificate

+ CertificateVerify+ Finished)

•(Finished+ ApplicationData,

ApplicationData)

Expected:
(ClientHello,

ServerHello+ EncryptionExtension

+ CertificateRequest+ Certificate

+ CertificateVerify+ Finished)

•(Certificate1,2 + Finished+ ApplicationData,

Alert)

Actual:
(ClientHello,

ServerHello+ EncryptionExtension

+ CertificateRequest+ Certificate

+ CertificateVerifyFinished)

•(Certificate1,2 + Finished+ ApplicationData,

ApplicationData)

These test cases are similar to the ones we have seen
before, except that these test the server and previous
ones test the client. As a result, the input starts with
ClientHello, instead of ServerHello and that we need
two roundtrip communications with the server instead of
one with the client. It should be noted that all versions
of wolfSSL we tested are subject to this vulnerability.
However, wolfSSL 4.6.0 and 5.1.0 reject the empty cer-

tificate Certificate1, while wolfSSL 4.4.0 accepts the
empty certificate and, optionally, a CertificateVerify1
message signed by arbitrary keys.

6.5. Evaluation results

Failed traces and vulnerability confirmation: We sum-
marize our evaluation results in Table 2. For all the failed
traces, our ProVerif models were able to demonstrate
a violation of the authentication properties and secrecy
property. The attacks show that an untrusted server or
client is able to impersonate a trusted entity and obtain
confidential data. Apart from the test traces that exhibit
these vulnerabilities, all other traces behave as expected,
and we didn’t observe any false positives.
Performance: The experiment was conducted on a desk-
top equipped with 32GB of RAM and an Intel i7-12700
processor. Generating the test cases for conformance test-
ing required less than 1 second. The execution time of test
cases on the IUTs largely depends on the size of the test
cases and the timeout value we set when the IUT is not
responding to the input. We observed that the responses
from the IUTs were all within 1 second, so we set the
timeout value to be 2 seconds. We also tested with a larger
timeout value (1 minute), and the results did not change.
Running test cases on an IUT took less than 10 minutes
for all the IUTs we tested. Using ProVerif to check non-
conformance traces took less than 1 second in all cases.
Furthermore, the experiment is highly parallelizable since
all the generated test cases are independent

6.6. Discussion

PROINSPECTOR’s ability to detect vulnerabilities re-
lies on our reference model and some framework config-
urations. In this section we discuss our design decisions
and limitations of our framework.

Reference model We model the protocol using a Mealy
machine, which is natural for security protocols and also
is compatible with the Wp-method. Our reference Mealy
machine not only has to model the correct protocol logic
and the message sequences but also has to have a meaning-
ful abstraction level. Fine-grained messages reveal more
logic states of the implementations which might be ab-
stracted away in a coarser-grained model. We believe
existing verified protocol models used in symbolic provers
offer a good guideline. However, this introduces repeated
work in the framework and possibly internal inconsisten-
cies between the reference Mealy machine model and the
model used in the symbolic prover. Automatically extract-
ing the reference model from the verified symbolic model
(e.g., of ProVerif or Tamarin) or performing conformance
testing directly on the verified symbolic model would be
interesting future work. Tamarin’s model is a good can-
didate as its multiset rewriting representation of protocols
closely aligns with our Mealy machine representation.

Wp-method bound The parameter ‘n’ of the Wp-method
represents the number of state-machine states; the test
cases generated are guaranteed to cover all paths/transi-
tions up to a bound which we set to n. Setting up the
bound to be the number of states in the reference Mealy
machine allows us to cover all the states in the reference
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TABLE 2: Experimental results. The total number of test cases we generate for client IUTs and Server IUTs are 318 and
184 respectively. The first column lists the version of the IUT; the second column shows the number non-conforming
traces; the fourth column shows the number of non-conforming traces ProVerif is able to find an attack; the last column
corresponds to the CVE number of the found attack.

Version# # of Non-conforming # of ProVerif’s Comfirmed CVE#
Attack Traces Traces

4.4.0 Client 7 7 2020-24613,2021-3336,2022-25638

4.6.0 Client 4 4 2021-3336,2022-25638

5.1.0 Client 1 1 2022-25638

OpenSSL Client 0 - -

4.4.0 Server 7 7 2022-25640

4.6.0 Server 2 2 2022-25640

5.1.0 Server 2 2 2022-25640

OpenSSL Server 0 - -

Mealy machine which is also employed in other works that
utilize conformance testing [17]. Moreover, our frame-
work, can be easily adapted to support other conformance
testing algorithms such as Random Walks [27]. We plan
to add support for the selection of conformance testing
algorithms in the future.

Attacker bound We also need to configure our attacker
model, which involves defining the allowed set of attacker
messages. We have found it helpful to include invalid
values, such as untrusted keys, unsupported encryption
algorithms and empty or zero-padded message fields. The
ability to arbitrarily drop a compound message that con-
tains multiple subfields enables us to rediscover authenti-
cation bypasses in wolfSSL. Developing a principled ap-
proach to automatically generate attacker’s configurations
and enhance coverage would be interesting future work.

TLS protocol features and properties analyzed Our
case study only considers a simple TLS connection which
does not includes session resumption or early data trans-
mission. Additionally, we only consider basic secrecy
and authentication properties overlooking advance secu-
rity features such as forward secrecy. Testing the full TLS
protocol and forward secrecy necessitate a different and
more complex modelling scheme.

Scalability and false positives Potential true/false posi-
tives and scalability issues may arise as the complexity of
our reference model increases. To alleviate scalability is-
sues, we must employ a principled approach to generating
attacker’s configurations as mentioned earlier.

We only test a single session of TLS protocol without
pre-shared key or early data. As we expand our testing
to include more TLS modes and refine our symbolic
message representation, both the number of true positives
and false positives may increase. False positives may
manifest in two areas within our framework: firstly, in
non-conforming traces between the IUT and the refer-
ence model. We utilize ProVerif to verify if these non-
conforming traces indeed result in security vulnerabilities;
and therefore, secondly, false positives may occur in attack
traces returned by ProVerif. In our case study, these attack
traces match the traces executed on the IUTs. However, it
is possible that attack trace differs from the trace executed
on the IUTs (as shown in Section 5.2). In such cases, we

need to verify if the attack trace also exists in the IUT.
This check can be performed using the mapper compo-
nent, which translates textual representations of protocol
messages into the actual bitstrings executed on the IUT.

7. Related Work

Much work has been done on the verification [6,
12, 10, 9, 24, 26] and testing of protocol implementa-
tions [22, 32, 8, 36, 4, 35, 20, 37, 40, 34]. Our work
complements recent efforts on verified TLS implementa-
tions [10, 12, 9]. Verification efforts focus on developing
new verified protocol implementations which are yet to
be used in practice [6, 12, 10, 9, 24, 26]. In contrast,
PROINSPECTOR employs light-weight testing to identify
vulnerabilities in already deployed implementations.

While our framework bears similarities to property-
based testing methods such as QuickCheck [15, 25],
one important distinction is the use of a bounded
Dolev-Yao attacker model to explore protocol states.
Our bounded Dolev-Yao attacker is similar to that used
in Taglierino [43, 42], which performs bounded model
checking of the protocol specifications.

For the rest of this section, we discuss closely related
work on testing protocol implementations.

Protocol state machine bugs Two seminal works [8, 17]
discovered a form of logic errors in TLS 1.2 imple-
mentations which are termed as protocol state machine
bugs. De Ruiter et al. adopted a model learning-based ap-
proach [17], which we discuss in the next paragraph. Sim-
ilar to our method, Beurdouche et al.’s approach involved
using a reference protocol state machine to generate de-
viant traces for testing implementations [8]. The deviant
traces in the implementations were manually inspected
for potential exploits. Three heuristics were proposed to
generate those deviant traces: Skip, Hop and Repeat. Our
method offers a more principled way to generate the
deviant traces with less manual effort. Furthermore, the
abstraction in Beurdouche et al.’s approach is at the level
of protocol states, which allows testing with different
message sequences [8]. We offer more fine-grained testing
where we not only test for different message sequences but
also allow mutations in the messages themselves. Further,
we also use automated provers to find exploits.
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Model-learning-based approaches Model learning can
be used to automatically extract the (potentially buggy)
protocol state machine from implementations. For in-
stance, De Ruiter et al. apply model learning techniques
to analyze the TLS 1.2 protocol [17]. The same method-
ology was later extended to the DTLS protocol [20] and
QUIC [37]. However, the resulting state machines still re-
quire manual inspection to identify potential bugs. Fiterau-
Brostean et al. offer more automation by model check-
ing the learned models of SSH implementations [22].
However, these learned models all focus on protocol
states [17, 20, 37, 22], limiting their scope to protocol
state machine bugs. Therefore, the method could fail on
our case study where we have found a bug triggered by a
message signed with a bad key.

Following works [36, 4] also leverage model learning
techniques but introduce mutation to protocol messages.
Aichernig et al. [4] proposes learning-based fuzzing of IoT
message brokers. Their approach involves first learning
the state machine of the IoT message broker followed
by fuzzing to mutate protocol messages. Different from
our approach, they do not target logic errors and instead
look for unexpected behavior caused by accepting ille-
gal characters in the mutated messages. Rasoamanana et
al. [36] learn a protocol state machine with more fine-
grained messages. However, they also manually inspect
the learned models for potential attacks.

Our method is similar to the above works in that we
also analyze the implementation based on a state-machine
model. However, instead of doing multiple rounds of
learning (which is expensive in practice) to learn a (po-
tentially buggy) model and compare it with a reference
specification or across different learned models, we di-
rectly use conformance testing between the specification
and implementation and do not assess differences across
different implementations. In addition, we provide a prin-
cipled method for mutating messages by leveraging the
Dolev-Yao attacker, enabling detailed analysis not only
of protocol states but also of protocol messages. We also
use automated symbolic protocol analysis tools to increase
automation.

Fuzzing-based approaches There are many fuzzing tech-
niques for protocols implementations [40, 35, 21, 34].
However, these existing techniques do not target logic
errors but rather focus on memory safety errors instead.
LTL-Fuzzer [32] uses linear temporal logic to guide grey-
box fuzzing of protocol implementations. However, it
narrowly focuses on finding violations of basic corre-
spondence of messages and does not include a Dolev-
Yao attacker. Most recently, Ammann et al. introduced
DY Fuzzing [5], which mutates fuzzing inputs based on
Dolev-Yao attacker. This is very similar to our method-
ology, except that our attacker model can automatically
update its knowledge (e.g. the available en/decryption
keys) based on the messages it has seen. In addition, our
connection to the reference symbolic model enables us
to detect security properties violations using the symbolic
prover.

8. Conclusion and Future Work
We presented an automated and systematic framework

to uncover logic errors in protocol implementations. Cen-

tral to our approach is a tailored conformance testing
algorithm that can generate inputs based on a bounded
Dolev-Yao attacker. The bounded attacker model serves
as a valuable bridge between symbolic protocol verifica-
tion and protocol implementation testing. Our approach
enables us to generate test cases that contain fine-grained,
structured term-level mutations at the protocol message
level, such as using different encryption keys or swap-
ping nonces, rather than unstructured random bit-flipping
mutations or coarse-grained reordered message sequences.
We used a generic symbolic prover to check if inconsis-
tencies between the specification and implementation lead
to exploits. We implemented the proposed methodology
in the PROINSPECTOR tool and applied it on popular
TLS implementations leading to the rediscovery of several
logical bugs.

Future work includes making our tool more robust
s.t. it can generate attacker configurations automatically.
We also want to investigate possible avenues to either
extract a reference Mealy machine model from a verified
symbolic model or perform conformance testing on the
verified symbolic model directly. Finally, we plan to apply
PROINSPECTOR to additional protocols such as MQTT.

Data Availability

ProInspector and the experiment data are open-sourced
at https://github.com/proj-proinspector/proinspector
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rina S. Păsăreanu. Automating compositional analysis of authen-
tication protocols. In 2020 Formal Methods in Computer Aided
Design (FMCAD), 2020.

631

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2024 at 13:01:35 UTC from IEEE Xplore.  Restrictions apply. 



A. ProVerif Encoding of the Example from
Section 5

free c: channel.

(* Public key encryption *)
type pkey.
type skey.

fun pk(skey): pkey.
fun aenc(bitstring, pkey): bitstring.
reduc forall x: bitstring, y: skey;

adec(aenc(x, pk(y)),y) = x.

type host.
free A, B, M: host.

(* Authentication queries *)
event beginBparam(pkey).
event endBparam(pkey).
event beginAparam(pkey).
event endAparam(pkey).

query x: pkey; inj-event(endBparam(x)) ==>
inj-event(beginBparam(x)).

query x: pkey; inj-event(endAparam(x)) ==>
inj-event(beginAparam(x)).

let procA(pkB:pkey, pkM:pkey, skA:skey) =
in(c, x: host);
if x = B || x = M then
let pkX = if x = B then pkB else pkM in

new Na: bitstring;
event beginBparam(pkX);
out(c, aenc((Na, A), pkX));
in(c, m: bitstring);
let (=Na, NX: bitstring, =x) =

adec(m, skA) in
out(c, aenc(NX, pkX));
if pkX = pkB then
event endAparam(pk(skA)).

let procB(pkA: pkey, skB: skey) =
in(c, m: bitstring);
let (NY: bitstring, y: host) = adec

(m, skB) in
if y = A then

event beginAparam(pkA);
new Nb: bitstring;
out(c, aenc((NY, Nb, B), pkA));
in(c, m3: bitstring);
if Nb = adec(m3, skB) then
event endBparam(pk(skB)).

let proctf(pkB:pkey, pkM:pkey, skA:skey) =
in(c, x: host);
if x = B || x = M then
let pkX = if x = B then pkB else pkM in

new Na: bitstring;
event beginBparam(pkX);
out(c, aenc((Na, A), pkX));
in(c, m: bitstring);
let (=Na, y: bitstring, z:host) =

adec(m, skA) in
out(c, aenc(y, pkX));
if pkX = pkB then
event endAparam(pk(skA)).

(* Main *)
process

new skA: skey; let pkA = pk(skA) in
out(c, pkA);

new skB: skey; let pkB = pk(skB) in
out(c, pkB);

new skM: skey; let pkM = pk(skM) in
out(c, pkM); out(c,skM);

( (!procA(pkB, pkM, skA)) | (!procB
(pkA, skB)) | (!proctf(pkB, pkM
, skA)) )
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