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Rust type system constrains pointer operations, preventing bugs such as use-after-free. However, these
constraints may be too strict for programming tasks such as implementing cyclic data structures. For such
tasks, programmers can temporarily suspend checks using the unsafe keyword. Rust libraries wrap unsafe
code blocks and expose higher-level APIs. They need to be extensively tested to uncover memory-safety bugs
that can only be triggered by unexpected API call sequences or inputs. While prior works have attempted to
automatically test Rust library APIs, they fail to test APIs with common Rust features, such as polymorphism,
traits, and higher-order functions, or they have scalability issues and can only generate tests for a small
number of combined APIs.

We propose Crabtree, a testing tool for Rust library APIs that can automatically synthesize test cases with
native support for Rust traits and higher-order functions. Our tool improves upon the test synthesis algorithms
of prior works by combining synthesis and fuzzing through a coverage- and type-guided search algorithm that
intelligently grows test programs and input corpus towards testing more code. To the best of our knowledge,
our tool is the first to generate well-typed tests for libraries that make use of higher-order trait functions.
Evaluation of Crabtree on 30 libraries found four previously unreported memory-safety bugs, all of which
were accepted by the respective authors.
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1 Introduction
The Rust language [26] is becoming popular in systems development. Rust is now used in critical
systems such as the Linux kernel [9, 36], Google’s Project Fuchsia operating system [15], and
Firefox’s core graphics engine [28]. One main advantage of Rust, which is driving its increased
adoption, is its focus on memory safety, achieved through ownership and borrowing, two key
concepts enforced by Rust type system. Rust type system carefully tracks references and ensures
that there can be only one active mutable reference to a given piece of memory at a time and
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that only one thread can mutate a given piece of memory. By enforcing these constraints, Rust
eliminates classes of shared memory bugs such as use-after-free and data races.
Purely safe Rust is not ergonomic for some systems programming tasks (e.g., implementing

cyclic data structures like doubly linked lists). To accommodate these tasks, Rust provides the
unsafe keyword to allow programmers to perform unchecked pointer manipulation. These unsafe
code blocks, commonly written by experts, are often wrapped in safe library APIs that expose a
clean interface to others. This design pattern of mostly safe code wrapping around a small core of
expert-written unsafe code is the key to Rust’s approach to balancing performance and safety.
However, using unsafe code improperly risks resurrecting memory bugs vanquished by the

type system. Recent surveys [32, 48] show the danger of carelessly using unsafe Rust, which
can lead to potential vulnerabilities. Prior work on Rust library API testing [21, 41] uncovered
numerous bugs, including exploitable vulnerabilities [1]. To mitigate this risk and help developers
identify these bugs in their libraries, researchers have proposed automatic testing techniques
for Rust library APIs. RULF [21] is a fuzz driver synthesizer that uses graph search to combine
APIs and build drivers. While RULF has been highly successful at fuzzing parsers and APIs with
concrete, non-polymorphic input types, it cannot handle polymorphic APIs. Polymorphic APIs are
prevalent in Rust programs [45]; consequently, a large fraction of the Rust libraries cannot benefit
from RULF. Another approach, SyRust [41], uses constraint solving and synthesis techniques to
generate well-typed API call sequences over both concrete and polymorphic Rust APIs. However,
SyRust suffers from scalability limitations that prevent it from testing beyond 20 or so APIs with
a larger number of APIs leading to combinatorial explosion of mostly useless tests and frequent
timeouts in the constraint solver. In addition, SyRust only runs the synthesized tests with fixed
inputs without trying diverse sets of inputs, further limiting testing completeness. To improve the
quality and coverage of the automatically generated test sequences, we combine ideas from fuzzing
and synthesis to develop Crabtree. Crabtree builds upon SyRust to generate API call sequences
and overcomes SyRust’s scalability limitations by using both the coverage and type information
of previously generated API call sequences, choosing such sequences for prefixes that generate
longer sequences in future iterations of synthesis. Crabtree gives priority to API call sequences
that generate a return value with a previously unseen (new) type in addition to those that produce
new code coverage.
To provide better support for polymorphic APIs, Crabtree’s synthesis algorithm encodes trait

constraints such that the instantiation of polymorphic types during synthesis is more targeted. This
greatly reduces the number of ill-typed tests due to trait constraints and enables Crabtree to achieve
better scalability than SyRust. An added benefit of encoding trait constraints is that Crabtree can
generate calls to APIs that take functions as arguments. This is because Rust’s function closures
and function pointers, which can be passed as arguments to higher-order functions and be returned
as arguments, all implement a variant of the Fn trait. As a result, Crabtree is able to generate tests
that supply higher-order functions with arguments of the correct type. To handle cases where
no existing APIs in the target library can be used as arguments to higher-order APIs, Crabtree
synthesizes a closure of the correct type.
Crabtree also incorporates a fuzzer to generate diverse inputs to API call sequences. Crabtree

uses a notion of fuzzable types to guide input generation. Different values for an input of a “fuzzable”
type are likely to explore different code execution paths of the API, while all values of a “non-
fuzzable” type are likely to lead to the same behavior of the API (e.g., input with a polymorphic
type). Therefore, the fuzzer only mutates inputs of fuzzable types. However, trait constraint on
polymorphic types provides us with an opportunity to fuzz APIs with polymorphic type signatures,
which are otherwise considered nonfuzzable. More concretely, Crabtree’s fuzzing process considers
fuzzable, polymorphic inputs constrained by traits that require the input to be in the format of
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Table 1. Comparison of Crabtree, SyRust, and RULF.

Crabtree SyRust RULF

Supports for traits and
✓ × ×higher-order functions

Fuzzing inputs ✓ × ✓

Methods for generating SAT encoding of graph-based searchwell-typed Rust programs typing constraints

Size of libraries tested ∼100 APIs ∼20 APIs ∼100 APIs

a binary buffer (e.g., the Read trait). To further improve the efficiency of fuzzing, we propose
a hierarchical organization of fuzzer-generated input corpus that avoids duplicate work across
repeated runs of the fuzzer on similar API sequences. Table 1 summarizes the features supported
by Crabtree, SyRust, and RULF.

Our evaluation shows that Crabtree’s capabilities enable better Rust API testing as compared to
SyRust, in both scale and coverage. While it is not always the case that Crabtree achieves better
coverage than RULF on all benchmarks, Crabtree’s novel features enable it to handle libraries that
are beyond RULF’s reach: Crabtree achieves higher test coverage in difficult-to-test APIs such as
iterators and trait functions. Crabtree finds four previously unreported bugs confirmed by the
respective library authors.

We summarize our contributions as follows.

• We re-architect SyRust’s synthesis engine to be guided by test coverage and type discovered
to generate more effective tests.
• We extend the polymorphism support of SyRust to enable testing with traits, a major feature
of Rust, and higher-order functions.
• We connect the synthesis engine with a fuzzer optimized to generate only inputs for “fuzzable”
types and store input corpus in a hierarchical tree structure.
• We implement Crabtree, a testing tool for Rust libraries, and evaluate Crabtree on Rust
libraries to show it can find bugs involving traits and requiring input mutations while scaling
to libraries with a large number of APIs.

2 Background and Motivation
We briefly review Rust language features and existing work on automatically testing Rust library
APIs. We then highlight challenges in this domain to motivate Crabtree.

2.1 Background

Rust Types and Traits. We explain key Rust features relevant to this work via a running example
shown in Fig. 1. Lines 1-3 show the harness for fuzzing, which calls the test function and we will
explain in detail Section 3; lines 5-10 show a test function that makes a sequence of API calls to test
the integer-encoding library; lines 12-19 show snippets from the integer-encoding library.

An important feature of Rust type system is polymorphism, which allows types to be parameter-
ized using other types. For example, the polymorphic vector type Vec<T> is parameterized over its
element type T. The type variable T can be instantiated with concrete types. For instance, on line 5,
the argument to the test function is Vec<u16>.
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1 fn fuzz(fuzzer_bits : &[u16]) {
2 if fuzzer_bits.len() > 0 { test(fuzzer_bits[0], fromuzzer_bits[1..].clone()); }
3 }
4

5 fn test(integer: u16, rest: Vec<u16>) {
6 let mut vecint : Vec<u8> = rest.iter().map(|elem : &u16| elem.to_be_bytes()[0]);
7 let buf &mut [u8] = vecint.as_mut();
8 integer.encode_fixed(buf)
9 let integer64: u64 = <u64 as fixed::FixedInt>::decode_fixed(buf);
10 }
11

12 impl FixedInt for u8 { // Library-side code
13 const REQUIRED_SPACE: 8;
14 type ENCODED: [u8]; // for explanation only
15 fn encode_fixed(self, dst: &mut [u8]) {...}
16 fn decode_fixed(src: &[u8]) -> Self
17 //...
18 }
19 impl FixedInt for u64 {...}

Fig. 1. Test function exposing a bug from integer-encoding crate.

Rust allows programmers to define shared behavior among types, through traits. Traits are
implemented on types and define a shared interface to interact with all the types that implement
this trait. For example, the FixedInt trait defines an interface to encode and decode values of a type
from fixed-bitwidth bytes. Code on lines 12-18 defines this trait for the type u8. It can also be defined
for other types (e.g., u64 on line 19). Traits can also have associated constants (REQUIRED_SPACE
on line 13) and types (ENCODED on line 14) 1; encode_fixed and decode_fixed (lines 15-16) are the
interfaces that turn an integer to its u8 encoding, store it in a mutable buffer, and decode a buffer of
u8 encoding to an integer, respectively. The test case (fn test) uses these trait APIs; it first makes a
mutable buffer (line 7), then writes the encoded u8 into the buffer (line 8), and finally decodes u64
from the same buffer (line 9). Programmers can restrict the concrete types used to instantiate a
type variable by specifying a trait constraint such as T : FixedInt<REQUIRED_SPACE=1>. The compiler
will reject any use of the polymorphic type where the trait constraint is not met. Rust also allows
programmers to define their own data types and traits, providing additional flexibility.

Rust’s first-class functions such as function pointers and closures all implement a variant of the
Fn trait. As a result, the type specifications of Rust’s higher-order functions also use some variant
of the Fn traits. Other than Fn, the other variants are FnOnce, for ownership-moving functions that
are called at most once, and FnMut, which have exclusive write access to variables it captured. For
example, map is a higher-order function of type signature _ : Iter<A>→ (F : Fn(A)→ B)→ _:Iter<B>

that takes an iterator over type A, and any function of type F : Fn(A)→ B, and produces an iterator
over type B _:Iter<B>. Fn(A)→ B is a trait automatically implemented by function closures like
|elem : &u16| {. . .} whose type signature is A→ B. _ is Rust syntax for anonymous type variables;
different occurrences of it do not necessarily represent the same type. Closures may also capture
ownership of variables if they are annotated with the move keyword. These implement a more
specific trait FnOnce(A)→ B or FnMut(A)→ B depending on whether they capture mutable references
or ownership. These closures present a challenge to test synthesizers that can only generate straight-
line API call sequences as it does not generate the bodies of function closures, which live in a
different scope from the top-level API call sequences.
1The type ENCODED line 14 is added by us to demonstrate associated types in traits.
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Automatic Testing of Rust Libraries. A common way to automatically test programs is coverage-
guided fuzzing [16, 25, 37, 50]. The technique automatically discovers interesting inputs to a
program by mutating the inputs until the execution reaches a previously unseen location in the
code (coverage increase). Coverage-increasing inputs are kept and further mutated, guiding the
search for more inputs. This list of inputs is called the input corpus.
To test Rust library APIs using fuzzing, fuzzing drivers (harnesses) in the form of sequences of

API calls are also needed. Building such fuzz drivers is challenging because of the complex Rust
typing constraints that need to be satisfied. RULF [21] is a fuzz driver synthesizer that uses graph
search to combine different API calls and build drivers. RULF cannot handle polymorphic APIs.
In contrast, the constraint-based synthesis tool SyRust [41] can generate well-typed tests for

Rust library APIs and supports polymorphic types. The tests that SyRust [41] synthesizes model
straight-line sequences of API calls. The syntax is shown below, where 𝜏 is any valid type in Rust.

Program 𝑃 := L | L; P
Line 𝐿 := 𝑓 (V) | let 𝑣 : 𝜏 = 𝑓 (V) | let 𝑣 : &𝜏 = & 𝑣 | let 𝑣 : &mut 𝜏 = &mut 𝑣
Vars 𝑉 := 𝑣1, . . . , 𝑣𝑘

A program 𝑃 is a sequence of lines 𝐿1; . . . ;𝐿𝑛 . Arbitrary combinations of lines are not guaran-
teed to be well-typed. For example, the syntax allows a line that uses variables before they are
declared. SyRust encodes the problem of synthesizing well-typed API combinations into Boolean
Satisfability [7] and leverages off-the-shelf logical solvers [6] for synthesis. The logical encoding
builds a system of constraints that arise out of matching input types with variables in the context.
Given a possibly polymorphic API with signature 𝑓 : (𝜏1, . . . , 𝜏𝑛) → 𝜏 , and inputs to 𝑓 of types
𝑣1 : 𝜎1, . . . , 𝑣𝑛 : 𝜎𝑛 , SyRust defines two sets of validity constraints at the level of a single line.
• Individual types have compatible shape: unify(𝜏𝑖 , 𝜎𝑖 ) ↦→ Γ𝑖 . If successful, unify also generates
a type variable typing context Γ𝑖 that unifies 𝜏𝑖 and 𝜎𝑖 .
• Consistent type variable assignments for Γ1, . . . , Γ𝑛 . Type variables in SyRust are bound at
the function level, so if the same type variable occurs in different inputs, all inputs have to
assign the type variable to consistent types. SyRust encodes this constraint with boolean logic
variables, each representing the fact that a Rust variable was used as input to a particular
API. For example, consider calling the API push : (&mut Vec<T>, T)→ () from a type context
{v0: Vec<u16>, v1: u16, v2: u8}. SyRust will create 3 variables, one for each of the following
valid unification {(v0, &mut Vec<T>) ↦→ {T = u16}, (v1, T) ↦→ {T = u16},(v2, T)↦→ {T = u8}}.
Observe that Tmaps to incompatible types of u8 and u16 if all of the three are considered valid
unification. SyRust uses additional logical constraints to ensure type variable compatibility.
In this case, if the variable representing the unification of (v0, &mut Vec<T>) is true, then
the variable representing (v2, T) must be false.
• Finally, some APIs require additional constraints due to Rust’s ownership type system.
Consider append : (&mut Vec<T>, &mut Vec<T>) → (). To prevent racing mutations on the
same vector at the same time, Rust does not allow the same variable to be mutably borrowed
more than once, making API invocations like append(&mut v0, &mut v0) ill typed. To prevent
these patterns, SyRust enforces an at-most-one constraint over such uses. Other ownership
restrictions are handled similarly.

These constraints are extended across lines to ensure 𝐿1; . . . ;𝐿𝑛 are well-typed in Rust. Since
SyRust models borrowing as APIs, restrictions on borrowing and ownership are also encoded at
this level. The solutions to the constraints yield well-typed programs.
While SyRust does not explicitly model traits, it leverages feedback from rustc to reduce the

number of ill-typed programs synthesized. For example, SyRust might generate an API call like
encode_fixed(String::new(),&[]), ignoring the fact that String type does not implement the trait
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New sequences of length n+1

Crabtree

Fig. 2. Overview of Crabtree

FixedInt. When rustc rejects this API call with a type error, SyRust attaches a metadata to the first
input type of encode_fixed to prevent a variable of type String from being used for that position.
In the next round of the synthesis, SyRust will generate a call using a variable of a different type.
Given enough time, SyRust may eventually stumble upon a variable with required trait constraints.
However, this iterative refinement loop is very inefficient.

2.2 Motivation
Revisiting our example in Fig. 1, the sequence of API calls in test triggers a memory safety bug
in a prior version of integer-encoding-rs, a popular encoding library with 6M downloads. The
bug is triggered on line 9 when attempting to decode a buffer that does not have enough bits. This
sequence triggers an out-of-bounds access on ::decode_fixed as it tries to read beyond the limit of
the empty array to parse an integer. Note that this bug is triggered only when (1) the decoded bit
size is bigger than the encoded bit size, and (2) the original buffer is too short for u64.
To automatically construct the test that can successfully trigger the bug, we first need to be

able to deal with polymorphic types and traits. These features have been challenging for prior
tools like SyRust and RULF with both tools failing to support traits directly. Furthermore, the bug
can be triggered only by an array of length 1. Without a diverse set of inputs, which could be
generated via fuzzing, the bug is likely to be missed. In this work, we aim to combine the strengths
of constraint-based synthesis with coverage-guided fuzzing to enable the automatic testing of Rust
library APIs, including those that are polymorphic and use traits, which could not be handled by
previous techniques and tools.
However, naively synthesizing long API sequences and generating inputs for synthesized test

sequences can be prohibitively expensive, as the number of API combinations can grow exponen-
tially and each test takes a few seconds to compile and run. Fuzzers are intended to test a few
well-written harnesses, not a million harnesses that are closely related. In this work we address
the challenge of effectively combining test sequence synthesis with input fuzzing for scalable Rust
API testing. To this end, we develop methods that guide the synthesis and fuzzing using typing
and coverage information and reduce unnecessary or duplicate work by sharing the input corpus
between similar API call sequences.

3 Crabtree Overview
We give a high-level overview of Crabtree (as illustrated in Fig. 2) and discuss how we achieve
the synergy between synthesis and fuzzing to improve the effectiveness of both. Crabtree takes a
template and API data as the inputs and produces bug reports, along with synthesized test cases,
annotated with their coverage, and the test input corpus generated by the fuzzer. Crabtree has
three main components: a synthesis engine, which is based on SyRust but improves it by guiding
the test generation with both coverage and type information, a fuzzer, and a test executor, Miri [22],
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used to report crashes and memory errors (out-of-bounds behavior) when running tests along with
their inputs. We explain each component below.

1 fn test(x: Input) {
2 // synthesized test goes here
3 }
4 fn fuzz(fuzzer_bits: &[u8]) {
5 // setup
6 test(...);
7 }
8 // cargo toolchain boilerplate

Fig. 3. High-level structure of Crabtree’s template.

Template and API data. The template con-
sists of two functions and harnessing code to
interface with cargo test, the Rust testing
toolchain, as shown in Fig. 3. The first func-
tion test is where the synthesized API call se-
quences will be inserted. This function takes in
inputs that are used by the synthesized code.
The second function fuzz is the fuzzing har-
ness, which provides the test function with
inputs. The input to the fuzz function consists
of the fuzzer-generated bytes, which are con-
verted into arguments of the correct type in the body of fuzz. For example, the fuzz function in
Fig. 1 converts the bytes into two arguments of the type u8 and Vec<u16> respectively (Fig. 1, line
2), before giving them to the test function. The template is provided with the Crabtree distribution
and can be modified by the analyst to target specific libraries.

The API data includes type specifications of the APIs under test and is automatically generated
using the cargo doc tool provided by the Rust developers. The second part of the API data
documents which traits are implemented for which types; for example, FixedInt is implemented
for u8 with associated constant REQUIRED_SPACE=1 is included there.
API Test Synthesis Guided by Coverage and Type Information. The synthesis engine is
responsible for generating API call sequences. Our synthesizer extends SyRust’s synthesis technique
with the handling of traits and further implements novel techniques that prioritizes generating API
call sequences based on new information discovered with testing; specifically, the engine extends
previously generated sequences that trigger new coverage or use previously unseen types (illustrated
as the grey box). The details of this synthesis engine will be discussed in Section 4.
Fuzzing and Input Corpus Management. Crabtree’s fuzzer component generates the input
corpus to the synthesized API call sequence. One of our key observations is that mutating inputs is
only effective for certain data types when polymorphic types are involved, e.g., [u8] in our example;
we call them fuzzable types. Fuzzing for other types, such as [T], where T is totally unconstrained,
is unlikely to improve coverage because the function using this type is agnostic to the exact value
of T. One exception is Read: if we know T implements Read, then we classify it as fuzzable because
Read is a trait for abstracting bitstream-like data structure, which a fuzzer can directly generate
inputs for by sampling from the space of bitstrings and thus are fuzzable.
Crabtree will identify arguments of the APIs that are of fuzzable types and only generate an

input corpus for them. The fuzzer-generated corpus is stored to allow it to be re-used as seeds to
the next round of fuzzing or used as inputs by the test executor to identify bugs. Once fuzzing is
done, the achieved coverage is measured and recorded, to be provided as feedback to the synthesis
engine. Details of input corpus management will be given in Section 4.3.
Test Executor. The test programs generated by the synthesis engine are passed to the test executor,
along with their inputs generated by the fuzzer. The test executor runs these programs using
Miri [22], an external tool that serves as our bug definition. Any bugs detected will be recorded in
a database for analysts to review.
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Algorithm 1: High-Level Algorithm of Crabtree.
Input :API type signatures A, code template T , initial seed input corpus S
Output :priority queue of tests Q, set of crashes B, set of tests F , set of covered locations C

1 Procedure Crabtree(A, T , S):
2 (Q,B, F , C) ← (∅, ∅, ∅, ∅)
3 Q ← enqueueWithPriority(Q, (T ,S), (0, utilityLookAhead(inputs(T ),A)))
4 while Q ≠ ∅ do
5 (𝑡 , 𝑖)← popBest(Q)
6 for (𝑡new ∈ growWithSynthesis(𝑡 ) do
7 (𝑐+, 𝑖new) ← fuzz(𝑡new, 𝑖 , C)
8 B ← B ∪ runWithMiri(𝑖new, 𝑡new)
9 𝑢new ← utilityLookAhead(inputs(𝑡new),A\coveredAPIs(C))

10 Q ← enqueueWithPriority(Q, (𝑡new, 𝑖new), (|𝑐+ |, 𝑢new) )
11 (F , C) ← (F ∪ {𝑡new}, C ∪ 𝑐+)
12 end
13 end
14 return (Q,B, F , C)

4 Crabtree Algorithms
In this section, we describe the algorithms implemented by Crabtree and explain how the synthesis
engine and the fuzzer interact. We also describe our approach to leveraging coverage and type
information to guide the testing.

4.1 Top-Level Algorithm
We summarize the top-level algorithm of Crabtree in Alg. 1. Crabtree takes as inputs: API data
A, code template T , and initial inputs S, which are used for seeding the fuzzer. Crabtree returns
a set of test cases F , coverage data C, and a set of bug-inducing tests B ⊆ F (if any bugs were
found). The algorithm also keeps an internal state Q, which is a priority queue of previously
tested API sequences, together with their respective inputs generated by the fuzzer. The weight
of each element (T , S) in the queue is a pair of the coverage of executing T with inputs S and a
integer roughly indicating how far is T from reaching all APIs (more details later). We also use
the following intermediary variables: 𝑡new is a test program synthesized by extending a previously
generated program 𝑡 . 𝑖new and 𝑐+ are the set of inputs generated and the increase in coverage by
fuzzing 𝑡new with seed 𝑖 respectively.

The algorithm first initializes the data structures to empty (line 2). Then, the pair of the template
T and the initial fuzzer inputs S is placed in the priority queue to seed the generation process (line
3-4).T contains a Rust testing harness that runs the synthesized test and an empty test case. The first
part of the weight for this pair is 0, indicating that an empty program produces zero coverage. The
second part of the weight is computed using the utility function utilityLookAhead(inputs(T ),A).
We describe utilityLookAhead in detail in Section 4.2. At a high level, utilityLookAhead computes
the number of library APIs that cannot be called from the context following this test case because
they require arguments of types not easily constructed from existing variables. The first argument
to the utility function is the set of types for which T has constructed variables for and we collect
them using the function inputs(T ). For example, in Fig. 1, inputs(T ) = {integer: u16, rest:
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Vec<u16>}. The second argument is the set of APIs that the test does not call. Here it is the set of all
APIs A in the library under test, as we have not generated anything yet.

The outermost while loop (lines 5-17) iterates over previously generated tests and inputs stored
in Q to generate more tests and inputs, until Q is empty. The tests and inputs with the highest
priority (i.e., they improve upon coverage or generate new types) are used first (line 6). From Q,
we pick the highest priority test case 𝑡 that roughly translates to 𝑡 ; 𝑖 has the highest new coverage
and produces a context that enables the highest number of APIs to be called, compared to other
pairs in the queue. Leveraging synthesis, we grow this test case to produce a set of new tests. Each
new test 𝑡new adds one more line to 𝑡 while still being well-typed with respect to Rust compiler
type checking (line 7). The inner for loop iterates over the set of new tests. For each 𝑡new, reports
coverage and produces a new input corpus set 𝑖new (line 8). To detect bugs, we run Miri on the
test cases with the fuzzer-generated inputs, including crash-inducing inputs, and record any bugs
found (line 9). We then compute the utility score 𝑢new for the current test 𝑡new and the set of APIs
that have not been reached by the current set of tests. Here coveredAPIs(C) returns the set of APIs
that have been called given the current coverage so far. The test with a weight based on coverage
and potential to reach new APIs is enqueued (lines 11-13). We also update the C and F accordingly
(lines 14-15)

4.2 Synthesis Algorithm
Our synthesis algorithm (growWithSynthesis) builds on SyRust’s synthesis algorithm, which in
turn builds on prior work [13, 20, 41] that addresses synthesizing well-typed programs. We omit
the details on the constraints that produce well-typed Rust programs here and instead focus on
Crabtree’s addition to the synthesis algorithm—the algorithm that guides the synthesis engine
towards more useful test cases, i.e., synthesized tests that cover more APIs and code under test and
produce more previously-unseen types.

Systematically generating new well-typed programs of the form 𝐿1; . . . ;𝐿𝑛 , for each 𝑛 and testing
them can be prohibitively expensive. It takes our test executor Miri around 5 seconds to run one test
case. Furthermore, fuzzing the inputs for each test parameter using coverage-guided fuzzers [50]
needs to apply many mutations to each input to make progress.

To speed up test generation, we propose to synthesize extensions of selected previously generated
programs, instead of generating each new test sequence from scratch. To this end, we represent
the sequence of generated API calls in a hierarchical structure (a tree), as shown on the left of
Fig. 4. The root of the tree is an empty test case, with each layer consisting of programs of a given
length. A node’s parent is the program without the last line in the node’s program, and its children
are programs extended by exactly one API call. The synthesis algorithm will extend the tree, by
adding new lines to existing programs. The synthesis is guided by coverage and type information,
to efficiently search for diverse sequences that increase testing coverage and uncover new types.
Using Coverage to Guide Synthesis. Recall the example in Fig. 4. Suppose a program consists
of lines 1 and 2 and running that program, Crabtree achieves coverage gains in the library code.
Crabtree notices the coverage gain and prioritizes using lines 1 and 2 as a prefix for generating
longer programs, over prefixes that do not have coverage gains. Generally, for each program
𝑃 = 𝐿1; . . . ;𝐿𝑛 representing a test case that increased coverage, we generate new programs 𝑃 ′ with
the constraint 𝑃 ′ = 𝑃 ;𝐿𝑛+1. Here coverage can be line or branch coverage. This heuristic is not
guaranteed to obtain the maximum coverage (achievable for a sequence length), as it can get stuck
in local maxima where what were initially good API calls (in terms of achieving high coverage)
may force the tool down an unproductive path, preventing longer API call sequences to form. Next,
we explain how to use types to alleviate this problem.
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ℇ

1: let buf: &mut [u8] = buf.as_mut(); 

2: let buf: &mut [u8] = buf.as_mut(); 

3: integer.encode_fixed(buf)

1: let buf: &mut [u8] = buf.as_mut(); 

2: integer.encode_fixed(buf)

3: let integer64: u64 = 

<u64 as fixed::FixedInt>::decode_fixed(buf);

…

…

…

∅

not fuzzable

∅ inputs2

Tree of generated API call sequences
buf

seed     new inputs

inputs2 inputs3

Fig. 4. A tree representation of test cases and hierarchical input storage.

Using Type Information to Guide Synthesis. Coverage guidance may penalize using APIs that
do not increase coverage, but are necessary to enable subsequent coverage-increasing API calls
to be generated. For instance, APIs such as as_ref and language primitives such as &mut do not
produce coverage gains, but are required to produce variables of the right type needed to call many
other APIs. In our example from Fig. 4, line 1 produces a previously unknown type &mut [u8]

that allows more APIs to be called. Similar effects can also be observed with other APIs, not just
using the above mentioned language primitives. To overcome this limitation, we should also favor
programs that produce a previously unseen type, and guide the synthesis engine towards using this
type. In our example, the test case consisting of just line 1 should also be selected for extension.

We define a utility function, which takes as inputs, a set of types, for which the current test can
generate variables for, and a set of APIs that Crabtree has not generated any call to, and returns a
measure indicating how many APIs have input types for which Crabtree cannot generate variables
and therefore Crabtree cannot generate programs to call those APIs. This number decreases when
a new type is found, and therefore a lower number corresponds to higher priority in the queue. A
first draft of the utility function is as follows:

utilityLookAhead(𝑇,𝐴) = |{𝑎 ∈ 𝐴 | inputsTypes(𝑎) ⊈ 𝑇 }|
Here inputsTypes(𝑎) collect the set of 𝑎’s argument types.

While the number of previously uncovered APIs that can be called after this test is a reasonable
heuristic, it may not be optimal. For example, the utility of a newly found type would be low
if we only look at that type and not references to it because most Rust APIs take references for
ergonomic reasons (no ownership movement). Therefore, a more refined heuristic is to compute
a set of types reachable from the original set by using borrowing alone. We refer to this as the
borrow-aware closure over mutable and static references of the types available. We are careful to
avoid semantic-violating cases like making two mutable references from the same non-copy type.
The utility function Crabtree uses is as follows:

utilityLookAhead(𝑇,𝐴) = min
𝑏∈closure(𝑇 )

( |𝑏 \𝑇 | + |{𝑎 ∈ 𝐴 | inputsTypes(𝑎) ⊈ 𝑏}|)

Here closure takes 𝑇 , a multiset of types and produces a set of Rust semantic-aware closure over
& and & mut of 𝑇 . The closure is finite because the Rust type system converts && to & and similar
conversions hold for mutable references; mixed combinations are not permitted. The closure of the
type context with a single non-reference type String is the set of type contexts of size 3. The first
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element is {String }, the second element is {String, &mut String }, and the third is {String, & String }.
The context {&mut String, &mut String } is not permitted because that violates the Rust typing rule
that there is at most one mutable reference. |𝑏 \𝑇 | is the number of borrowing operations required to
get to this closure element 𝑏 because each new reference type in 𝑏 is made by a borrowing operation.
{𝑎 ∈ 𝐴|inputTypes(𝑎) ⊈ 𝑏} is the set of APIs not reachable from this new closure element.
While in theory this lookahead utility function can use APIs with more complex semantics

than borrowing to compute reachable types, this will increase the time required to compute the
heuristics because the number of APIs used in enumeration will grow. We posit that borrowing is a
reasonable subset since reference types occur very frequently in APIs for ergonomic reasons.

4.3 Input Corpus Generation and Management
We now describe how we fuzz Rust APIs by mutating inputs to the API sequences we generate.
Since the input types of the test program are given in the template, we fuzz the API sequence
by fuzzing the template. We focus on two key challenges encountered when fuzzing Rust APIs.
First, since our approach handles polymorphic APIs, we must figure out which APIs are worth
fuzzing even when they are polymorphic and their underlying behavior is not known. In particular,
the behavior of some polymorphic functions might be completely independent of the value of
input. For example, the behavior of pushing an element to a vector is the same for all values of
the element to be pushed (that’s also why the push function is polymorphic). Second, since many
API call sequences are similar to each other, we must determine how to effectively share the input
corpus between API sequences. To address the first challenge, we leverage the Rust type and trait
system to guide our decision of when to fuzz. Our insight is that, in Rust, even fully polymorphic
inputs might be worth fuzzing if the input polymorphic type implements traits that indicate this
type behaves like a binary buffer, so a fuzzer can directly generate input for it without knowing its
concrete type. For the second challenge, we employ a hierarchical input corpus management that
allows reuse of the input corpus across iterations for test cases that are deemed similar, i.e., share
the same prefix.
Fuzzable Types and Traits. We use an example to illustrate how to use Rust’s trait system to
identify which APIs might be worth fuzzing. Consider line 1 and 2 from our example in Fig. 4. Lines
1 and 2 have API calls with the following types respectively:
• as_mut: (S: std::convert::AsMut⟨T⟩) →(&mut T)

• encode_fixed: (T: fixed::FixedInt⟨. . .⟩, dst: &mut [u8])→()

where fixed::FixedInt⟨. . .⟩ is a sub-trait of std::io::Read
A lightweight static way of distinguishing between the two programs above is to leverage the

Rust trait system. In the first program, the input is passed to an API that takes an input implementing
the trait std::convert::AsMut⟨T⟩. Given this trait annotation, the implementation of as_mut cannot
treat the type in a more specific way than generating a mutable reference. as_mut’s behavior is not
affected by changing its input, as it simply converts a reference to a mutable reference for type
checking purposes. As such, there is no point in fuzzing as_mut function. So a program consisting
of only line 1 will not be fuzzed and existing seeds will be run.

The second API takes in a value of a type that implements fixed::FixedInt⟨. . .⟩. Since this trait
is a sub-trait of std::io::Read, we know the implementation can treat this input as a binary-buffer
and fuzzing those bytes can induce different program behavior, even though we do not know
the underlying structure of the type. We characterize such types as “fuzzable”. Thus, a program
consisting of lines 1 and 2 should be marked for fuzzing on variable rest: Vec<u16>. This fuzzable
characterization applies to non-polymorphic APIs as well; types for which fuzzer knows how to
generate inputs for are fuzzable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 293. Publication date: October 2024.



293:12 Y. Takashima, C. Cho, R. Martins, L. Jia, C. S. Păsăreanu

Our algorithm relies on an analyst-provided allow-list of fuzzable types and traits. For example,
the Read trait is fuzzable, as explained above. While we construct this list manually by reviewing
the standard library, it can be generated automatically or added by the analyst if it is amenable to
direct mutation by the fuzzer, such as providing an iterator over u8.
Hierarchical Input Corpus Management. Even with restrictions to fuzzable types and traits, the
fuzzer is still left with a huge number of programs to fuzz. In particular, as the API call sequence
grows longer by the synthesis algorithm, additional fuzzable API calls may appear. Recall the 3-line
example from Fig. 4. Our algorithm constructs this program incrementally from prefixes, so it sees
the program consisting of line 1 and a program consisting of lines 1 and 2 before it sees the final
3-line program. Since fuzzing all the prefixes does not scale, Crabtree re-uses the input corpus for
the 2-line program to run the 3-line program. The details of this process are given below. Consider
the 2-line (lines 1-2) and 3-line program (lines 1-3) from our example. Fuzzing is applied to the
2-line program, generating a corpus of inputs that tests this 2-line program. Given that the 3-line
program shares the first 2 lines with the 2-line program, it would be a waste to restart over from
the seeds. Instead, we use the fuzzer-generated corpus from the 2-line program as the seeds to the
fuzzing of the 3-line program. This is illustrated on the right side of Fig. 4. Suppose fuzzing the
2-line program generates the corpus HELLO, WORD. The first input HELLO executes successfully, and
the second input WORD crashes the program.

When fuzzing a 3-line program that extends the 2-line one, we need not start with a naive seed.
Instead, we hot start the fuzzing by carrying over the input corpus of the 2-line prefix. We filter out
crashing inputs that do not reach the new line, giving us the seed corpus of HELLO. This allows
us to prune the corpus as we move down the tree, and the number of leaves becomes numerous.
Pruning is especially effective for parsers of structured data like JSON or HTML because most
random inputs will fail the initial parse API call. These parser-like functions are worth fuzzing,
but fuzzing an extended API calls with parser calls in the first few lines will waste effort as most
inputs will not pass the parser line or cause the program after the parser line to be executed. If at
any point, the fuzzer fails to generate new inputs that reach beyond that line without crashing,
then we stop fuzzing and re-play the current corpus set.

5 Traits in Synthesis
Given the prevalence of traits in data structures and other libraries, Crabtree needs to model traits
precisely for effective testing. Prior works like SyRust [41] ignored traits and treated type variables
as unconstrained, leading SyRust to generate a large number of programs with trait errors.

We propose to explicitly model the trait semantics of Rust to avoid this expensive error-guided
loop and synthesize tests containing calls to trait functions implemented in the library under test.
Our model captures the semantics of Rust traits with concrete associated traits and constants, with
generics allowed as parameters to traits (Trait<A>) and as implementation of traits on generic types
(impl Trait<A> for B). To fully incorporate traits into our synthesis algorithm, we need to solve
two problems: first, how to make the synthesis algorithm aware of the set of types that implement
traits required by the inputs of an API such that the API can be called with well-typed arguments;
and second, how to propagate concretized types, including associated types within traits to the
return type of an API call, such that the returned results can be effectively used later as arguments
to other APIs. Next, we describe how we solve the above two problems.
Type and Trait Matching. Rust’s trait system is multi-layered and hierarchical: traits can be
parameterized by type variables and traits can have sub-traits and sup-traits. Briefly, Rust permits
implementations of one trait on another, making the latter a sub-trait. For example, the FixedInt

trait is a sub-trait of Read and any type implementing FixedInt automatically implements Read. As
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part of its input, Crabtree receives a database recording which types implement which traits along
with the API type specifications. We generate the trait implementation database by extracting trait
implementation information from the Rust compiler. This database includes traits that appear in
the library under test and any libraries chosen by the analyst, such as the Rust standard library. The
type/trait pairs in the database are organized hierarchically, based on subtype and subtrait relations.
Concretely, the database records the lattice hierarchy of traits implementing one on the other and
traits implementing on types. For example, a database representing the code from Fig. 1 would con-
tain the following data [(FixedInt<>, u8), (Read, _: FixedInt)], meaning u8 implements FixedInt
and any type implementing FixedInt implements the Read trait. We can query this database and
ask whether u8 implements trait Read; we would first match the first tuple to derive u8 implements
FixedInt, and then using this information, we can match the second tuple to conclude that this is
true: u8 implements Read. Now using this database, the synthesis algorithm first checks that the
trait is implemented on a type, before a variable of that type is used as input to a function that
requires a trait to be implemented on the input type.

Consider the encode_fixed function which has a type signature of (T : FixedInt, & mut [u8])→ ().
It writes an integer into a u8 buffer. Next, we show how Crabtree decides whether a variable of the
type u8 can be used as the first argument to call encode_fixed on line 8 of Fig. 1. The argument
type is constrained with a trait FixedInt. We need to check that FixedInt is implemented for u8.
We query the database of trait implementations, and the result shows that the check passes.

While we find the exact match in this case, our matching algorithm can handle the hierarchy
of types and traits and permits a variable whose type implements a subtrait (e.g., FixedInt) of the
trait (e.g., Read) required by the function type to be used to call the function.
The Rust type system permits negative trait implementations as well. These trait constraints

state that a given trait cannot be implemented for a given type. An example use is to negate the Sync
trait indicating a type cannot be sent across threads, preventing it from being passed to functions
that assume a thread-safe object. The database of trait implementations also contains negative trait
information and is checked by our matching algorithm.
Encoding Trait Semantics to SAT.We encode the matching algorithm sketched above as con-
straints in SAT. So far, we have only discussed how to match one input variable to one input type.
However, to generate a well-typed API call, we need to consider all the variables and argument
types in the API call. In particular, if the same variables appear as two different inputs to the same
function (e.g., f(x,x)), their types must be unified to compatible inputs. SyRust already considers
these types of compatibility constraints without traits, which Crabtree builds on to include ad-
ditional constraints resulted from trait constraints. First, our trait system models the additional
typing constraints required by trait matching. This is done by adding constraints imposed by traits
to the output of unify. Once this is done, the consistency rules of SyRust will automatically enforce
consistent assignment to type variables regardless of whether they occur in traits or types.
Consider the function write_to : (T:FixedInt, [u8;T::REQUIRED_SPACE])→ () that writes the

first input to a finite array. This requires that the second input’s size match the associated constant
of the first input’s trait implementation. We add these constraints to the output of unify, and
prevent cases like matching u8, which has REQUIRED_SPACE=1, with [u8;3]. Like with type variables,
we add compatibility constraints with an implication: if Crabtree chooses the former variable as
input, then the it cannot choose the latter in the same solution as input.
Output Type Resolution. While checking function inputs to ensure trait constraints are met is
sufficient for generating a well-typed API call, it is insufficient for generating longer API sequences
that uses the result of a API call if the API’s return type is polymorphic. SyRust’s synthesis
algorithm performs error-guided refinement of API specifications that creates concretized forks
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of polymorphic APIs so that the output of polymorphic functions can be used later. For example,
encode_fixed will turn into encode_fixed_1 : (u8, &[u8]) → () and encode_fixed_2 : (T, &[u8])

→ () with metadata that prevents T from unifying with u8. However, without considering trait
constraints, there will be too many possible types to be used to create a fork. As a result, this
method would generate too many forks, making it unscalable.

We extend this algorithm to trait-polymorphic functions so the forks are meaningful; i.e., they are
more likely to satisfy the trait constraints. Of particular interest are functions whose output types
are parameterized by trait-associated types (e.g., FixedInt::ENCODED from Fig. 1) and constants
(REQUIRED_SPACE). The associated types and constants need to become concrete as early as possible
so they can be used to call more APIs. Consider the following function:

to_array : (T : fixed :: FixedInt) → [u8; T :: REQUIRED_SPACE]

It returns a fixed-size array of the exact-required size containing the encoding of the input. Observe
that the value of T::REQUIRED_SPACE depends on what T is. If T = u8, our concrete fork will return
[u8; 1]. While it is possible to fork and set the input type to u8, this refinement is too restrictive. We
concretize inputs only when it is required to determine the output. Instead, the forked API’s input
type will be T: fixed::FixedInt ⟨REQUIRED_SPACE=1 ⟩, not u8. This allows us to represent all types
that implement fixed::FixedInt with associated constant REQUIRED_SPACE=1 rather than having
one fork for every type.
Validity of the Rules. To the best of our knowledge, the trait matching rules that we implemented,
as sketched out in this sections, are identical to those used by the Rust type checker. And thus, for
well-typed Rust API invocation in our syntax, the rules would allow the program to be synthesized.
On the other direction, all the synthesized programs will not violate trait requirements by the Rust
type checker. This excludes unsupported features, whose full list can be found in Section 8.

6 Synthesizing Calls to Higher-Order Functions
Wepresent a synthesis strategy for calling higher-order functions and synthesizing function closures
as inputs to them, leveraging the trait model presented in the previous section. There are three
challenges to synthesizing code calling higher-order functions.
Boilerplate API Chains. A call to a higher-order function often involves a boilerplate consisting
of several API calls. Taking iterator APIs as an example: first, an iterator Iter<A> is created, then
the higher-order function is applied to the iterator, and finally, the collect method is called on the
iterator and create the final result from the results of evaluating the iterator. If Crabtree tried to
synthesize this sequence, it would waste time searching through API combinations that do not
form the above mentioned call chain.
Synthesizing Programs Beyond API call sequences. Function closures break the assumption
that the synthesized program is a sequence of API calls, which SyRust and RULF rely on. Crabtree
needs to relax the syntax of the programs to be synthesized to make it possible to generate both
the closure body needed by higher-order functions and the API call sequences.
Typing Constraints. For some functions like map and filter, the closure they take as inputs needs
to return a particular type. We need to make the synthesis algorithm aware of the internal types of
iterators and outputs of maps over data structures. Next, we explain how map works, as it produces
outputs of a type different from its inputs. filter_map and from_fn can be similarly encoded.
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6.1 API and Syntax for Higher-Order Functions
To reduce the complexity of generating the call-chain boilerplate described above, we model
map and related API call-chain boilerplate as a single API. map has the type signature
Iter<A>→ (F : Fn(A)→ B)→ Iter<B>. Since directly synthesizing the boilerplate is challenging
(the space of 3-API sequences is large), we model this 3-API sequence as one polymorphic API
(map_collect) shown in Fig 5 to avoid searching through the space.

1 fn <
2 A,B,
3 F: Fn(A) -> B,
4 C: IntoIterator<Item = A>,
5 D: FromIterator<B>,
6 >
7 map_collect(c: C, f: F) -> D {
8 c.into_iter().map(f).collect()
9 }

Fig. 5. map_collect API modeling the boil-
erplate at once.

The API map_collect takes iterable data structures of
type C and a function of type F as input and returns a
value of type D. To ensure that an iterator over type A

can be generated from C, we constrain it with a trait an-
notation IntoIterator<Item = A> (line 4). Similarly, to
ensure that the output type D can be created from an it-
erator over B, D is annotated with trait FromIterator<B>
(line 5). Leveraging the Rust traits IntoIterator and
FromIterator allows Crabtree to reuse the trait models
and generate well-typed higher-order API calls by us-
ing this single API encompassing the boilerplate code
directly.

The syntax of the programs synthesized by Crabtree
is modified to allow synthesis of function closures. The
move keyword indicates that this closure will capture variables instead of just borrowing them.

Line 𝐿 := . . . | 𝑓 (V, |𝑣1 |{P}) | 𝑓 (V, move |𝑣1 |{P})

6.2 Synthesizing the Closure Body
Given the syntax around higher-order functions, we provide a modification to the synthesis
algorithm that allows it to generate bodies for function closures. Our algorithm addresses the
challenge of incrementally synthesizing a program that can grow at many points with additional
typing constraints inside the closure. Our insight is that the closure body can itself be modeled as a
API call sequence, nested within another sequence, as long as we are careful about ownership and
reference lifetimes. In particular, we can annotate each variable with a scope number so variables
used within a closure can be removed from the context when the closure ends. To encode the typing
constraint that the closure has to satisfy, we keep track of the required output (return) type of the
closure while synthesizing the body and avoid growing the program outside the closure until this
output type is reached.
Recall the higher-order function call on line 6 of Fig 1. This function call with interme-

diate type contexts seen by Crabtree is given in Fig 6. At each line, we show a pair of the
type context modeled by Crabtree and the goal type. For example, in line 3, the context is
{integer_0 : u16, rest_0 : Vec<u16>} and the goal type is () at the start. The goal type is the type
that this scope (lines 5 to 8) is required to produce, u8 in our case. Each of the variables ends with a
number indicating the scope that the variable belongs to. Variables created in the main test scope
will end with _0 while those inside the closure end with _1. Crabtree synthesizes this program
top-down. The first line is synthesized normally and the goal type is set to the unit type () since
we do not have any typing constraints for the test function. In the second program line (line 4), the
synthesizer calls map_collect, our syntactic sugar for map and collect functions. Now the following
line will be inside the function closure. Inside the closure, rest is removed from the context because
Rust typing rules prevent us from moving ownership while elem is available because that is the
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1 fn test(integer: u16, rest: Vec<u16>) {
2 // context =\{...\}, goal-type = t
3 // ({integer_0 : u16, rest_0 : Vec<u16>}, ())
4 let mut vecint Vec<u8> = rest.iter().map(|elem : &u16| {
5 // ({integer_0 : u16, rest_ref_0 : &Vec<u16>, elem_1 : &u16}, u8)
6 let bytes : [u8;2] = elem.to_be_bytes();
7 // ({integer_0 : u16, rest_ref_0 : &Vec<u16>, elem_1 : &u16, bytes_1: [u8;2]}, u8)
8 bytes[0]
9 }).collect();
10 // ({integer_0 : u16, rest_0 : Vec<u16>, vecint_0: Vec<u8>}, ())
11 }

Fig. 6. Test function exposing a bug from integer-encoding. The body of the closure is expanded for clarity.
Each comment (blue lines starting with “//”) is the context and goal type when synthesizing that line. Each
variable is annotated with a scope number _𝑖 . Goal type is set to the unit type () when outside the closure.

iterator element that the closure is running on. elem is marked with scope number 1 since it exists
only inside the closure.
At this point, Crabtree only grows the program inside the closure and avoids growing more

lines after the call to map_collect. This prunes the search space, and is sound because the program
execution will never reach beyond the call to map unless a well-typed, non-panic expression is
the body of the closure. The goal type inside the closure changes to u8, the required output type
inferred from the type signature of the higher-order function (derived from type instantiations
of map_collect). Variables created inside the closure like bytes_1 are also marked with _1 to be
deleted when the closure body’s scope ends. Synthesis continues until the goal type u8 is in the
context. Then Crabtree chooses whether to end the closure or continue inside.

6.3 Computing the Post-Call Context
Once Crabtree decides to end the closure, it needs to compute the context after the higher-order
function call. The resulting context is the last context of Fig. 6 (line 10). The return type of the
higher-order function Vec<u8> is derived from the type signature while variables created inside the
closure such as elem_1 and bytes_1 are removed. Finally, the goal type reverts back to the unit type.
For other closure variants, Crabtree removes more variables after the closure scope closes to

obey ownership typing rules of Rust closures. move |. . .| closures allow Rust programmers to move
ownership of variables into the closure. Therefore, after an ownership-moving operation is done in
the body of the closure, the variable’s scope number needs to be that of closure’s body’s scope. The
same procedure will remove this moved variable when the closure scope ends.

7 Implementation and Evaluation
We implemented Crabtree and evaluated its performance to answer the following research questions.
• RQ1: How effective is Crabtree at testing and finding bugs in realistic benchmarks?
• RQ2: How does Crabtree perform against recent prior works?
• RQ3: How do each of Crabtree’s features contribute to the effectiveness of testing?

7.1 Implementation
Crabtree’s synthesis engine is implemented with 23k lines of Rust. It uses Z3 [10] as the SAT solver
during test synthesis. The fuzzing module is 200 lines of Rust on top of AFL.RS, a Rust port for the
AFL fuzzer [50]. The test executor is based on Miri [43], the same as SyRust [41], but modified to
measure coverage using grcov [29].
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7.2 Experiment Setup

Benchmarks. Our benchmarks consist of 30 libraries selected from prior work and recent versions
of popular libraries. We randomly picked 10 libraries from SyRust’s benchmark set, 10 from RULF’s
benchmarks, and sampled 10 recently updated libraries with at least 100 stars or 100k downloads
from crates.io [3] for a total of 30 libraries. Benchmarks from prior work were sampled due to
computational constraints of running each benchmark.

We could not run SyRust and RULF on benchmarks other than their own because both tools rely
on a modified Rust compiler that lack features needed to run other benchmarks. Crabtree is run on
all 30 libraries. The benchmark configurations are given in Table 2. The first column displays the
names of the tools. The next three columns indicate which sets of libraries were tested by which
tool: ✓ means all libraries in that dataset were tested by that tool and “×” means that none of the
libraries in that dataset were tested by that tool. The next column shows the time the tool spent on
testing each library in hours. The following column indicates the number of APIs in each library
selected for testing.

Table 2. Tool-Benchmark configurations for the evaluation.

Hours per # APIs tested
crates.io Set SyRust Set RULF Set Library per Library

Crabtree ✓ ✓ ✓ 24 Full
SyRust × ✓ × 10 15
RULF × × ✓ 24 Full

Tool Inputs. We discuss how we selected the inputs for each tool for our evaluation.
• SyRust. To run SyRust on its own benchmarks, we use the configurations that ship with the
SyRust artifact. These configuration files contain 15 author-picked APIs and an author-written
template. These templates initialize variables that have types that the library APIs take as
inputs, but do not provide as output. Without these variables, SyRust cannot synthesize
well-typed API call sequences. While we considered passing a larger set of APIs to SyRust,
we ended up using the original 15 due to the difficulty of running their API collection tool
and a large number of SAT timeouts encountered when running SyRust on the full API set.
• RULF. RULF only takes Rust code as input. To run RULF, we modified its docker container
to pin the Rust registry to November, 7 2021. RULF collects a set of inputs as seeds for each
API call sequence it generates. Similar to SyRust, RULF also needs to provide the API call
sequences with input variables of the correct type. RULF only generates a very restricted set
of simple input types (i.e., [u8], & str). It implements a string literal collecting script [2],
which scrapes the library under test for strings to seed the fuzzer with.
• Crabtree. Crabtree takes API type specification and trait data as input. We pass the entire
API set of a library under test. For each library, we provide a template (Fig. 3) to be filled
by Crabtree, similar to SyRust. When running Crabtree on SyRust benchmarks, we use the
same template as SyRust. For RULF’s benchmarks, Crabtree tests each library with a template
generated by manually selecting the input types also used by RULF. We start Crabtree with
the same seeds as RULF, by using the string literal collecting script provided by RULF. This
provides a fair comparison against RULF. Finally, for the libraries picked from crates.io,
we manually wrote the template by inspecting the APIs, collecting primitive types used by
the APIs as inputs types, and providing variables of these collected types and arrays of these
types as the starting point of synthesis.
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The effort of constructing these templates is similar to that of writing a fuzz harness but
without the need to explicitly call APIs under test. While we do not share templates between
multiple libraries, sharing would be reasonable among libraries that have APIs with similar
input types like an HTML parser and a JSON parser.

Environment Setup. We ran our experiments on a cluster consisting of 100 cores with 56 cores
allocated to running Miri, 32 to fuzzing, and the remaining 12 to a database used to share state across
machines. Crabtree is run for up to 250k tests. This number is based on a preliminary run where
we observe coverage increases for libraries up to 220k tests. To answer RQ2, we use SyRust and
RULF with benchmarks from the respective papers as the baseline. We run both tools as described
in their respective papers: RULF for 24 hours and SyRust for 10 hours, both in wall-clock time. We
choose the author-specified time limits that saturate the tool’s performance instead of normalizing
between tools because SyRust and RULF already differ in their compute requirements with SyRust
supporting multi-machine setups and RULF scheduling only on a single machine. While most of the
results can be replicated using a 10-hour run, Crabtree still generates tests that increase coverage up
to the 15𝑡ℎ hour in some libraries like http where input structures are complex. The environment
is set up to collect line and branch coverage information.
Tool setup Crabtree dynamically decides when to fuzz a synthesized test case. How long this
fuzzing is done is statically set by the analyst. Our evaluation is run with a 5-minute constant fuzzer
timeout. While this is too low for many benchmarks, a higher fuzzing time was not computationally
feasible given the number of synthesized test cases. We will discuss the impact of our fuzzer time
setup later in this section. To replicate RULF’s experiment, its fuzzing is run for 24 hours. RULF’s
test generation is done before fuzzing, which takes only seconds.
Evaluation Metric. The primary metric for evaluating the tools is coverage. We use 3 different
coverage metrics: API, line, and branch. API coverage is the set of APIs called. Line and branch
coverage correspond to fragments of the source code under test. API coverage is computed from the
public functions directly called by the respective tools while line and branch coverage is computed
via grcov. When comparing SyRust and Crabtree, we also use the metric of coverage over time.

We do not directly compare real bugs found by these tools because they report different types of
bugs and it is hard to compare them directly. For instance, SyRust and Crabtree use Miri [43] to
report bugs and ignore unwrap failures due to a high false positive rate, while RULF also considers
unwrap failures as bugs as well. To compare bugs found, we use the results of mutation testing
where we use mutants.rs [42] to synthetically inject bugs into the library under test and measure
the number of synthetic bugs each tool caught. Bugs generated by mutants.rs usually replace
values with default values of the same type and may not cause incorrect memory behavior (out-of-
bound behavior) such as double freeing in unsafe code or cause crashes that all three tools target.
These bugs are best found by adding custom assertions on the outputs of APIs under test, which
none of the above tools do out of the box. Therefore, one would expect only a fraction of the bugs
to be found by these tools in the evaluation. Nonetheless, this experiment provides comparison
between these tools regarding their bug finding capabilities when the bugs are not known a priori.

7.3 RQ1: Effectiveness in Testing
We evaluate Crabtree’s effectiveness in testing libraries using the benchmark defined in the previous
section. We run Crabtree for 250K test cases on the chosen libraries. The results of running Crabtree
on the selected libraries are shown in Table 3. Benchmarks 1-10 are taken from SyRust; benchmarks
11-20 are from RULF, and the final set is benchmarks 21-30 are sampled from crates.io. We
provide a detailed comparison with SyRust and RULF in the next section. Looking at Crabtree
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Table 3. Crabtree’s API/line/branch/mutant coverages on Rust libraries. Crabtree, SyRust, and RULF are
abbreviated as CT, SR, and RU respectively. “-” denotes that tool was not tested on this benchmark. When
one tool is strictly better than others at a particular benchmark and metric combination, it is marked in red.

API Line Branch Mutant
Total CT SR RU Total CT SR RU Total CT SR RU Total CT SR RU

1 bitvec 235 112 14 - 1420 680 389 - 710 322 156 - 588 356 229 -
2 crossbeam 44 22 9 - 3450 203 162 - 5946 262 188 - 0 0 0 -
3 csv_core 202 11 9 - 1329 254 175 - 1957 112 70 - 378 27 25 -
4 encoding_rs 22 9 8 - 8244 686 233 - 7280 691 318 - 4205 814 305 -
5 url_encoding 5 2 2 - 100 23 23 - 97 23 23 - 35 32 32 -
6 bstr 72 11 4 - 3009 85 24 - 2050 100 0 - 298 60 9 -
7 bytes 99 31 14 - 1277 465 245 - 594 140 82 - 288 174 105 -
8 dashmap 149 15 4 - 693 98 83 - 482 134 134 - 210 51 48 -
9 num_rational 65 15 13 - 1430 160 115 - 3822 1462 516 - 616 187 124 -
10 smallvec 96 37 4 - 1123 287 187 - 1646 1123 995 - 359 139 80 -
11 url 76 39 - 67 2128 807 - 796 1878 265 - 265 223 134 - 134
12 http 211 113 - 26 3082 578 - 462 6616 273 - 4114 627 118 - 63
13 clap 194 32 - 66 5655 962 - 853 6271 434 - 342 733 209 - 198
14 serde_json 125 34 - 32 3027 304 - 217 2534 273 - 91 1009 103 - 48
15 bat 146 19 - 25 2134 537 - 479 1450 224 - 193 209 100 - 93
16 flate2 214 20 - 21 16603 114 - 105 8912 12 - 12 378 29 - 27
17 tui 259 70 - 70 2927 314 - 165 1614 143 - 95 340 63 - 33
18 xi_core_lib 244 41 - 58 7914 419 - 321 19235 167 - 118 707 84 - 64
19 regex 156 51 - 96 4293 1884 - 2920 2504 674 - 1416 587 293 - 289
20 regex_syntax 210 18 - 102 9510 276 - 1981 10178 109 - 1663 606 61 - 344
21 fixedbitset 58 15 - - 962 90 - - 845 29 - - 64 20 - -
22 integer_enc. . . 11 6 - - 386 37 - - 369 30 - - 24 3 - -
23 leapfrog 77 3 - - 708 104 - - 421 86 - - 180 16 - -
24 oxidebpf 35 5 - - 2030 13 - - 1956 0 - - 171 3 - -
25 roaring_rs 110 33 - - 3251 304 - - 2312 103 - - 475 94 - -
26 slab 47 15 - - 756 66 - - 928 60 - - 67 17 - -
27 sparsey 114 30 - - 1597 590 - - 911 219 - - 388 125 - -
28 triomphe 107 16 - - 362 77 - - 263 36 - - 128 19 - -
29 ubyte 45 17 - - 288 28 - - 474 26 - - 25 3 - -
30 sharded_slab 40 9 - - 615 441 - - 479 366 - - 268 90 - -

alone, in the best case, it is able to call almost half of the APIs in bitvec and cover 48% of the lines.
However, there are some cases where Crabtree only covered 5% of the APIs and 0.6% of the lines.
After manually examining selected libraries, the causes of the coverage variation that we identified
is the lack of variables in the template that Crabtree can use to call APIs. The ratio of bugs caught
over injected is similar to the ratio of covered code over the entire code base. The exception to this is
regex where the ratio of bugs caught is much higher than that of covered code. This is because the
mutations concentrated on trait functions that are covered by tests generated by Crabtree. Overall,
only a small fraction of the bugs injected are caught by any of the tools, due to lack of application
specific assertions checking output values of the APIs. The impact is most obvious for string- and
byte-related libraries like csv-core, encoding_rs, serde_json where the default value of empty
byte or string rarely crashes the test cases or leads to unsafe memory behavior on subsequent API
calls. For crossbeam, mutants.rs reported zero mutations possible using their list of possible code
mutations, because supported data types by mutants.rs are absent from crossbeam.
Crabtree identified 4 novel bugs in open-source libraries from the crates.io benchmarks. We

describe each bug and provide the test that triggered the bug below.
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• leapfrog, a nested hashmap library had an out-of-bounds read when inserting the pair
consisting of the same elements. The issue is caused by the library incorrectly computing the
buffer size for a bucket object in the HashMap. The HashMap data structure is polymorphic and
with_capacity has a trait constraint: Hashable requirement for keys types of the hashmap.
While SyRust could eventually generate this, it can only do so after trying at least 2𝑛 ill-typed
test cases where 𝑛 is the number of available input types. This is because SyRust blindly
uses input types to instantiate polymorphic type constructors like with_capacity without
understanding traits.
fn test(i_0: usize, i_1: u64) {

let mut x: HashMap<usize,usize> = HashMap::with_capacity(i_0);
let y: &mut HashMap<usize,usize> = &mut x;
y.insert(i_1,i_1);

}

• sparsey had an issue where a size-increasing operation during insertion performs a Rust
memory swapping operation copy_nonoverlapping on overlapping data, which violates
the safety invariant. The final function create requires that the input i_1 be of a type that
implements the ComponentSet trait. This bug took the longest to find, at 45 minutes.

/// A,B,C are empty structs ()
fn test( i_0: sparsey::Layout, i_1 : (A,B,C)) {

let z = &i_0;
let mut x: World = World::with_layout(z);
let y: &mut World = &mut x;
let _: Entity = y.create(i_1);

}

• integer-encoding had a pointer-size mismatch bug when decoding into smaller than ex-
pected buffers. The code to induce this is shown in Fig. 1. This bug requires both traits and
fuzzing to trigger; it needs the API to be called by an array of a particular length through
trait API calls.
• oxidebpf, an eBPF-based packet-processing library had unaligned memory access during a
conversion between a bit slice and a packet map definition. The conversion try_from is a
trait API, and also requires fuzzing to generate a diverse set of input values from the array
i_0 to include the one that triggers the bug.

fn test(i_0: &[u8]) {
let x: MapDefinition = MapDefinition::try_from(i_0);

}

7.4 RQ2: Comparisons against SyRust and RULF
We compare Crabtree against SyRust and RULF. In addition to coverage numbers in Table 3, Table 4
reports the number of test cases generated and time spent finding bugs. Fig. 7 and Fig. 8 provide
coverage-over-time comparisons against SyRust, RULF, and ablation variants of the tool with
features turned off.
Compared to SyRust. Crabtree outperforms SyRust in API, line, and branch coverage for 9 out
of the 10 benchmarks, achieving coverage gains ranging from 25% to 300% over SyRust, and has
the identical performance as SyRust in the smallest library url_encoding. This is because the
library is small enough to fit in the SyRust’s set of the 15 APIs and SyRust’s template already came
with good inputs. Giving SyRust the full API set caused it to be stuck at generating 1 to 2 lines
programs, which yielded zero or very low coverage because it spent most of the time spuriously
calling the same functions or borrowing the same types. A preliminary evaluation with bitvec and
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Fig. 7. Comparison of Crabtree and SyRust’s coverage gain over time.

crossbeam suggests giving Crabtree the SyRust’s set of 15 APIs yields the same coverage as SyRust
with roughly the same time.

In bug-finding (the first 4 rows of Table 4), Crabtree catches all SyRust benchmark bugs with
fewer tests. Neither tool finds bugs beyond the four initially reported by SyRust. Crabtree finds
three out of the four bugs faster than SyRust. Crabtree took more time to find the bug crossbeam-2
because Crabtree generated several computationally heavy API sequences for Miri to run.
We plot the line coverage of bitvec, crossbeam, csv-core, and encoding-rs in Fig. 7. The

plots show line coverage over time in seconds. The x-axis is the time spent testing in seconds and
the y-axis is the line coverage. The figure is only plotted up to 10 hours, which is how long SyRust
ran. Coverage gains after 10 hours are omitted. These coverage gains are minor and do not change
the order of the tools and ablation variants. For bitvec, Crabtree outperforms SyRust: more code
is tested with less time. Conversely, in crossbeam, Crabtree initially trails SyRust when it deals
with combinatorial explosion from the bigger API set. The bigger API set works in Crabtree’s favor
in the later phase, allowing it to beat SyRust with a large margin by calling APIs outside of the
15 used by SyRust. Compared to the first two data structure libraries, Crabtree benefits from the
larger API count early on when testing libraries with shallower API dependencies like csv-core
and encoding-rs and the coverage converges very quickly.

Given the fuzzing phase, the cost of running each synthesized test with Crabtree is significantly
higher than running it with SyRust where it runs once with concrete inputs. While it is difficult to
give direct computational cost for two tools that allow arbitrary parallel deployment, we find that
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Fig. 8. Comparison of Crabtree and RULF of coverage gain over time.

Crabtree requires more computational resources than SyRust. While the fuzzer initially spent time
mutating inputs, in the later phases, the fuzzer spends more time replaying the input corpus than
mutating and generating new inputs.
Compared toRULF. For 8 out of 10 benchmarks, Crabtree performs roughly the same or better than
RULF in line coverage and mutation catching. By supporting traits and polymorphism, Crabtree
can handle a wider-range of APIs than RULF, allowing it to hit APIs with complex input and
output types. However, Crabtree’s coverage is significantly worse than that of RULF for regex and
regex-syntax. Crabtree suffers from the previously noted issue of not been given adequate input
types to call many APIs. There are types for which Crabtree cannot generate via API call sequences,
no matter what APIs are called. As a consequence, some APIs will never be called because no
variables of the input types can be found. For example, in regex, RULF generated 2 harnesses
(template) with the input signature of (i16, &str) and (&[u8], usize) respectively. When we
picked the former to use as our template, we miss APIs that require usize or &[u8] to trigger. As a
consequence, Crabtree fails to catch regex bugs found by RULF.

API coverage is lower in Crabtree than RULF because RULF attempts to call every single function
once while Crabtree selects APIs based on coverage, deprioritizing small functions with simple
output types like getters that return primitive values. 5 benchmarks where Crabtree had lower API
coverage than RULF but higher line coverage contained large numbers of these functions.
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Table 4. The library number is the same as those in Table 3. When there are multiple bugs in one library, we
add an integer suffix to the library name. “(s)” indicates time in seconds and “(Nb.)” indicates number of tests
required to reach this bug.

Bug CT(Nb.) CT(s) SR(Nb.) SR(s) RULF(Nb.) RULF(s)
1 bitvec 566 109 4527 200 - -
2 crossbeam-1 21 10 20 4 - -
2 crossbeam-2 31759 3480 98548 2850 - -
3 encoding_rs 2281 239 7452 299 - -

11 clap-1 32 47 - - 24 <1
11 clap-2 40 53 - - 30 873
13 url-1 2615 12851 - - 35 2305
13 url-2 2717 12922 - - 60 1585
17 tui-1 200111 12851 - - 24 77
17 tui-2 200171 12874 - - 25 41
17 tui-3 200178 12875 - - 26 56
17 tui-4 200220 12912 - - 27 21
18 xi-core-lib-1 65899 61853 - - 16 11
18 xi-core-lib-2 65954 62112 - - 21 72
18 xi-core-lib-3 65966 62231 - - 23 25
18 xi-core-lib-4 65961 62215 - - 29 67
19 regex Not Found N/A - - 19 20

22 integer-encoding 3 <1 - - - -
23 leapfrog 852 59 - - - -
24 oxidebpf 797 197 - - - -
27 sparesey 2 <1 - - - -

As for the lower branch coverage, we suspect that it is due to the low fuzzing time, which was
5 minutes. This can be seen in testing of http where most of the HTTP packet parser remained
unreachable with only 5 minutes spent on fuzzing. Given the number of tests synthesized, it is not
computationally possible to increase this timeout across the board. This could be improved with
dynamic allocation of fuzzing resources, which we leave to future work.
We plot the line coverage over time graph for RULF benchmarks in Fig. 8 http, serde-json,

tui, and xi-core-lib. For all of the four libraries, Crabtree achieves higher coverage than RULF.
For http and tui, Crabtree without features performs worse because it contains complex APIs
that require user-defined types. For serde-json and xi-core-lib, little difference exists between
Crabtree and the variants without coverage or type because the structure and inputs to the APIs
are less complex.

As seen in Table 4, while Crabtree replicates bugs found by RULF with the exception of regex, it
is slower and generated more tests than RULF. This is because our tool prioritized other coverage-
increasing API sequences than the one that triggers the bug. As seen in Fig. 8, this yields higher
coverage in tui and xi-core-lib, but it takes longer for Crabtree to reach the bug. For regex, we
did not replicate any of the RULF bugs due to low coverage on a parser for regex expressions that
could be better tested if the tool spent more time fuzzing.

7.5 RQ3: Crabtree Features in Testing
We evaluate Crabtree’s features and how they contribute to the effectiveness of testing Rust
libraries. For search heuristics, we provide an ablation study using 8 benchmarks. bitvec, crossbeam,
csv-core, and encoding-rs are selected from SyRust’s benchmark set at random. http, serde-json,
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xi-core-lib, and tui are from RULF’s benchmark set at random. Benchmarks from SyRust and
RULF are shown in Fig. 7 and Fig. 8 respectively. For trait support and fuzzing, we provide a
qualitative analysis as these are fundamental to the Crabtree and cannot be turned off individually
without significantly impacting other components.
Type-Guided Synthesis. Across the benchmarks, we see that turning off the type heuristic resulted
in slower coverage gains compared to having the heuristic on. The loss from having this heuristic off
varied across libraries, with csv-core being hit the hardest when it failed to synthesize the mutable
reference to the CSVParser type and thus failing to achieve any coverage beyond the constructor.
Similarly, without type-guidance, the Encoder type is not synthesized for encoding_rs. For the
RULF dataset, http, tui, and xi-core-lib all failed to reach key types without the type guidance.
In http, Request type was not reached. In tui and xi-core-lib, both of which are stateful APIs, the
type holding the primary state was not reached.

For some libraries like crossbeam, where there is no single API that returns a type that is needed
as inputs by many other APIs, the type heuristic made Crabtree more efficient but most of the
coverage could be hit without it. For serde-json, the effect of type guidance is very small because
most of the complex APIs like iterators could be exercised by calling simple parser APIs with
primitive string inputs, which in turn calls complex APIs. Therefore, testing serde-json needed
neither deep API chains nor complex types that the type heuristic aims to build.
Coverage. Coverage guidance helps in some cases. With coverage guidance turned off, the coverage
for csv-core and encoding_rs dropped significantly, to even below that of SyRust. For RULF
benchmarks, http, tui, and xi-core-lib, Crabtree without coverage performed much worse than
Crabtree because key types for these libraries permit “empty” values. Type guidance alone cannot
tell whether an API sequence ran with a populated value or “empty” value of the same type. On the
other hand, for bitvec, crossbeam, and serde-json, Crabtree’s no-coverage variant trails Crabtree
by only a small margin. In these libraries, many functions had small bodies and a large number of
programmer-defined types already adequately guided the search, making coverage less important.
We see a significant difference between no type and no coverage guidance variants for bitvec

and crossbeam. For these libraries, type guidance is more critical than coverage guidance because
these libraries contain APIs with complex input types and reaching those types enable significantly
higher coverage. For all other libraries, these two variants trail Crabtree at the same coverage
level. Turning off either heuristic caused the tool to miss the same key types required by APIs to
effectively test the library, and thus both had the same coverage. These libraries had a hybrid of
both issues discussed previously: complex types required to call the APIs, and “empty” values for
these types that required coverage guidance to avoid.
Trait Support. In comparison with SyRust, Crabtree eliminates trait errors by construction. In
SyRust’s benchmark set, roughly half of the ill-typed test cases were due to trait errors with 72303 /
143744 bitvec errors and 1248 / 1367 crossbeam errors being trait mismatches. Crabtree produces
no such errors by construction. We note that csv-core and encoding-rs did not have extensive
trait functions so both tools produced zero trait errors. The same goes for RULF, whose benchmark
set excludes polymorphic, and thus trait-related, APIs. Eliminating trait errors also eliminated
ill-typed tests around higher-order functions.
Analyzing the 30 libraries in our benchmark, roughly 30% of APIs were defined as trait func-

tions. All the four bugs that we found involve traits. The first two bugs are in libraries that have
polymorphic types with trait constraints. The last two bugs we encountered were inside functions
that implement traits: (integer-encoding’s FixedInt and a From conversion in oxide-bpf). In
addition to bug-finding, trait support has a positive impact on coverage as well. For benchmarks
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tui and xi_core_lib, the support for trait was critical for Crabtree’s coverage improvements over
RULF. This allowed Crabtree to call a more diverse set of APIs because it can generate default values
for types required to call a function. Thus, the trait support in Crabtree is key to achieving higher
coverage and finding bugs. For higher-order APIs, turning on our model increased the coverage of
iterator APIs from 0% to 40%.

Higher-order functions that either take iterators as argument or return an iterator are about 5% of
the APIs (178 out of 3511) in our benchmark. Among all traits implemented in the benchmark (738
trait implementations), 25% of them are iterator traits. Testing these implementations is important
because iterator traits are frequently used by programmers looking for familiar trait interfaces to
exploit library-specific features. Taking into consideration the types available through iterators,
the set of all API calls enabled by our higher-order function support accounts for 10% of the APIs
in the entire benchmark set.
Fuzzing and Synthesis Together. The bugs identified by Crabtree (in integer-encoding and
oxide-bpf) require both particular API calls and particular inputs for them. This makes the use of
fuzzer-generated inputs in conjunction with synthesis important for triggering bugs.

8 Limitations and Future Work
While Crabtree addresses the scalability and feature limitations of prior work, there remains avenues
for future exploration. One major performance bottleneck of Crabtree is its repeated call to the
Rust compiler. Another performance bottleneck is Miri, which limited our fuzzing time. As future
work, we will explore alternatives to reduce interaction with the Rust compiler and Miri so more
tests and input corpus can be executed.
The evaluation showed that Crabtree cannot generate tests to reach APIs, whose input types

have not been seen by Crabtree. RULF implements a tool to collect simple types to alleviate this
problem. As future work, we will investigate a more sophisticated and complete tool for collecting
types needed to call APIs.
Both Crabtree and prior works like SyRust and RULF test for crashes only. We do not generate

assertions to check program-specific properties. This includes library-specific assertions and prop-
erties of the Rust language like invariants around Foreign Function Interfaces. We will investigate
how to use tests generated by Crabtree for property-based testing. In particular, we are interested
in customizing the synthesis process based on properties under test, so they are more likely to
identify property violations.
For libraries with few APIs and simple input types, such as parsers, Crabtree is slower and

generated more tests than RULF. Because it prioritizes new types, Crabtree prefers making new
API calls to deeply fuzzing a short API sequence. As a consequence, it takes longer to find bugs
quickly found by RULF. We plan to adopt a more flexible testing strategy to prioritize generating
new sequences or fuzzing differently based on characteristics of the library under test.
Though guided by new type discovery when extending API call sequences, Crabtree, unlike

RULF, only grows API sequences forward, and does not target reaching all APIs quickly a priori.
This significantly increased the number of test cases generated to reach the diverse set of short API
call sequences that RULF generates using a graph search. However, Crabtree can eventually get
there and overcome more complex typing constraints. We plan to incorporate what RULF does
better and seed the synthesis with short sequences early on.
Several Rust language features remain unsupported. While we support trait implementation

on generic types, using generics and lifetime variables inside associated types are not supported.
Crabtree does not generate any multi-threaded or async tests. async functions are not supported
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and thus higher-order functions involving async, such as callbacks, are not supported. Likewise,
any trait involving async is not supported.
The API type specification and traits data are automatically derived using rustdoc [35], Rust’s

official documentation system. rustdoc provides API type signatures as well as hierarchies of traits
required to synthesize well-typed Rust code. While we assume this information to be correct,
any errors will cause Crabtree to generate ill-typed programs when using that API or trait. This
occurred exactly once during our evaluation: while running sparsey, the API data missed default
type variable instantiations, leading to a small number of test cases. We are interested in developing
an automated validation tool for the specification against the Rust compiler.

9 Related Work
There are many fuzzing tools, such as the well-known coverage-guided fuzzers AFL [50] and
LLVM libFuzzer [25], that have achieved considerable success in bug finding and vulnerability
detection. Other works aim to extend the effectiveness of fuzzing, e.g., through symbolic execution
techniques [30, 34, 39]. Crabtree is agnostic to the choice of fuzzers and may be used with these
AFL alternatives. All these fuzzers require significant manual effort in the form of well-defined
fuzz targets, which are sequences of invocations. Several works study automated generation of
fuzz targets. For instance, Fudge [5] and FuzzGen [19] build fuzz targets from client projects, but
rely on these projects to be high quality. Another tool, RESTler [4], generates fuzz targets for
RESTful APIs, which are sequences of requests and responses of specific data format, as opposed to
API call sequences. Finally, GraphFuzz [17] tests APIs written in C and C++ by mutating a graph
representation of APIs equipped with awareness of pointer lifetimes. These automated fuzz harness
generators have similar goals as Crabtree, which is customized to work with Rust type system.

Existing approaches for automatically testing Rust programs are mainly based on fuzzing. AFL.RS
is a fuzzer for Rust which is built on AFL++ (based on AFL [50]). LLVM libFuzzer also provides
coverage-guided evolutionary fuzzing with Rust bindings [25]. RULF is a fuzzing tool that can
automatically generate a set of fuzz targets, based on a given API specification of a Rust library,
and integrate them with AFL++ for fuzzing [21]. Building on a similar search algorithm as RULF,
RPG [49] and Zhang et. al. [51] add support for polymorphism and traits. RPG keeps a dictionary
of valid type variable instantiations while Zhang et. al. internally model trait hierarchies like
Crabtree. However, neither tool generates closures necessary to synthesize tests with higher-order
function calls. SyRust focuses on Rust polymorphism and generates type-checkable tests by applying
semantic-aware synthesis [41]. SyRust has limited scalability and can only handle a few APIs in a
library at a time. Crabtree combines fuzzing and synthesis, supporting more Rust features than
RULF, RPG, Zhang et. al. [51], and SyRust. While we implemented Crabtree as an extension to
SyRust, it is possible to apply some of the techniques on other tools. Trait and higher-order function
support can extend RULF, RPG, or Zhang et. al., all of which generate tests with API chaining by
allowing more ways to chain APIs. Type and coverage search heuristics are less applicable for RULF
because it generates finitely many tests, but RPG and Zhang et. al. can be extended with these
heuristics to prioritize test-relevant API chains over others.
RustyUnit [44] performs search-based test suite generation for Rust, using a genetic algorithm.

It generates API calls by mutating and combining previous API sequences. These mutations and
combinations ensure that the resulting program is also well-typed. However, RustyUnit supports
fewer Rust features than Crabtree with polymorphism limited to common standard library types
and flat traits without higher-order functions.
Also related are techniques on automated unit test generation, such as Randoop [31] or the

testing approach in [46], that is based on Java PathFinder. These techniques generate sequences of
method invocations, to be used for testing. However, these techniques cannot be used directly on
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Rust because of Rust typing constraints. The techniques developed in Crabtree are applicable to
other languages with complex types: type and coverage heuristics are generally applicable. Trait
and higher-order function support applies to any language with these features such as Java with
its interfaces and higher-order functions in C++.
Rust verification tools like Verus [23], Aeneas [18], Creusot [11], Prusti [47], Flux [24], and

RustHornBelt [27] can all check programs for panic freedom in addition to verifying more complex
properties. While most of the former tools don’t handle unsafe code targeted by Crabtree, model-
checkers like Kani [45] and symbolic execution tools like RVT [33] can be used to check for memory
safety. To use these tools for libraries, the analyst must write harnesses to call the library functions.
While some harness synthesis approaches have been proposed [8, 40], harness writing in general
requires high manual effort. API sequences generated by Crabtree may be used by harness-based
verifiers to exhaustively check for crashing inputs.

Finally, for synthesizing Rust programs without considering testing, RusSOL [14] generates Rust
programs from a separation logic (SL) specification by searching through proof tree of SL rules that
translate into a program once the SL predicates are resolved. Both RusSOL and Crabtree can generate
inhabitant Rust expressions given a type signature. However, type inhabitation is not enough for
testing since first we don’t know the type signatures of high-coverage test cases and second,
multiple test sequences can have the same type signature, but different test coverage. Crabtree
performs both type inhabitation and type and call sequence search, which leverages heuristics like
coverage and type utility to automatically identify useful types and library API call sequences.

Generating well-typed programs is useful for testing compilers as well. Several approaches have
been proposed for testing compilers and type checkers such as Dewey et. al. [12] for Rust and
Thalia [38] for JVM languages like Scala . These approaches generate code in semantic-aware ways
for finding bugs that require the code to pass early checks of a compiler. While we share with them
some of the techniques such as using search to generate well-typed code, we differ in the intent
and thus these works are not guided by the type or coverage feedback from code under test.

10 Conclusion
We developed Crabtree, a testing tool for Rust APIs that employs program synthesis techniques
to generate well-typed API sequences. Crabtree improves upon the synthesis algorithms of prior
works by combining synthesis with fuzzing through a type- and coverage-guided search algorithm
that intelligently grows test programs and input corpus towards higher coverage and diverse types.
To the best of our knowledge, our tool is the first to model Rust traits and generate tests for arbitrary
traits and higher-order functions. Our evaluation of Crabtree shows that Crabtree is more scalable
than SyRust and can test libraries with features not supported by prior works.
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