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While static analysis tools that rely on Code Property Graphs (CPGs) to detect security vulnerabilities have

proven effective, deciding how much information to include in the graphs remains a challenge. Including

less information can lead to a more scalable analysis but at the cost of reduced effectiveness in identifying

vulnerability patterns, potentially resulting in classification errors. Conversely, more information in the graph

allows for a more effective analysis but may affect scalability. For example, scalability issues have been recently

highlighted in ODGen, the state-of-the-art CPG-based tool for detecting Node.js vulnerabilities.

This paper examines a new point in the design space of CPGs for JavaScript vulnerability detection. We

introduce the Multiversion Dependency Graph (MDG), a novel graph-based data structure that captures the

state evolution of objects and their properties during program execution. Compared to the graphs used by

ODGen, MDGs are significantly simpler without losing key information needed for vulnerability detection.

We implemented Graph.js, a new MDG-based static vulnerability scanner specialized in analyzing npm

packages and detecting taint-style and prototype pollution vulnerabilities. Our evaluation shows that Graph.js

outperforms ODGen by significantly reducing both the false negatives and the analysis time. Additionally, we

have identified 49 previously undiscovered vulnerabilities in npm packages.
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analysis; • Security and privacy → Software and application security; • Theory of computation →
Program analysis.
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1 INTRODUCTION

Static analysis tools based on Code Property Graphs (CPGs) [61] have become increasingly popular
in recent years. CPGs, as originally introduced for analyzing C/C++ functions, are a graph-based
representation that combines Abstract Syntax Trees (AST), Control FlowGraphs (CFG), and Program
Dependence graphs (PDG). This rich data structure captures patterns for common vulnerabilities,
such as buffer overflows and format strings. Tools that use CPGs start by generating the program’s
CPG and then iterating through the CPG in search of patterns that indicate potential vulnerabilities.
Because search patterns are customizable through graph traversal queries, CPGs offer high flexibility
in detecting a broad spectrum of vulnerability types.
CPGs have been adopted for many languages [2, 7, 10, 29, 36] and other analytical scopes,

including detection of GDPR compliance violations [4, 19, 48] and data privacy breaches [32]. The
original CPG data structure has been adapted to fit the specificities of programming languages and
analyses. For example, Li et al. [36] developed ODGen, a tool that extends CPGs with an Object
Dependence Graph (ODG) to detect vulnerabilities in Node.js applications. ODGen performs the
analysis on a combined CPG-ODG data structure, where ODG’s nodes represent objects, variables,
and scopes, while edges capture relations between them, enabling the detection of taint-style and
prototype pollution vulnerabilities. Currently, ODGen is the static vulnerability scanner for npm
packages with the most favorable trade-off between effectiveness and precision [6].
Even with these advances, a fundamental challenge in using CPGs for vulnerability detection

is deciding what information to include in the graphs so that the definition and identification
of vulnerability patterns are both straightforward and precise. On the one hand, including less
information limits the number of vulnerability patterns that can be precisely defined on the graph;
analysis can either over-approximate, resulting in high false positives, or under-approximate,
leading to high false negatives. For instance, using the original CPG alone, without the ODG
component, is insufficient for detecting vulnerabilities in JavaScript programs, leading to false
negatives. On the other hand, incorporating more program properties into the graph decreases
the performance of both graph construction and query execution. Prolonged query execution may
result in timeouts, causing the analysis to miss vulnerabilities. This has been observed for ODGen,
for which scalability issues have been recently highlighted [27, 63]. Furthermore, complex graphs
that intertwine multiple types of program representation into the same structure are challenging to
reason about, resulting in complex vulnerability queries whose correctness guarantees are difficult
to ascertain. Particularly, the construction of such graphs follows intricate semantic rules that
make it hard to understand the formal properties of the graphs, both in relation to the underlying
concrete program semantics and in relation to the true negatives and false positives allowed by the
analysis. For example, how can we be sure that if the program has a code injection vulnerability,
then the code injection pattern must exist in the constructed graphs?
This paper examines a different point in the design space of CPGs for JavaScript vulnerability

detection. In particular, we observe that the AST and CFG contain a lot of extraneous information
not needed for vulnerability detection. Furthermore, we note that with the current ODGs [27, 36, 63],
vulnerability queries must jump back and forth between the CPG and the ODG of the given program
in search of complex graph patterns that are not only difficult to specify and reason about, but also
degrade the performance of the analysis. We ask the question: can we design one unified graph to
capture all the essential information for common JavaScript vulnerability detection?

To this end, we introduceMultiversion Dependency Graphs (MDGs), an efficient graph-based data
structure for statically detecting common vulnerabilities in JavaScript programs, which encompasses
two types of analysis: (1) classical shape analysis [25, 51], where each object is mapped to the set
of properties it may have during execution; and (2) dependency analysis [33, 47], associating the
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objects and values created during execution with the values on which they depend. One key insight
of our work is that the graph and query complexity can be reduced by relying on a single graph that
models the evolution of objects and properties of the given program over time. Specifically, we create
new versions of objects and properties each time an object is updated. Version information allows
us to keep track of both data flows and the execution order in a single graph (more in §2), greatly
reducing graph and query complexity. A second insight is that using a summary fixed-pointed
representation for loops and recursive function calls reduces graph and query complexity without
increasing false positives in almost all vulnerability detection tasks in our datasets. To understand
the formal properties of the constructed MDGs, we formalize our MDG construction algorithm and
prove that it is sound, i.e., the generated MDGs are an over-approximation of the concrete execution
traces. This implies that if a program has a vulnerability that can be detected through the analysis
of the program trace, then the corresponding vulnerability pattern occurs in the generated MDG.
To evaluate the effectiveness of our approach, we implemented Graph.js1, a static vulnerabil-

ity scanner for JavaScript code. Graph.js focuses on analyzing npm packages from the Node.js
ecosystem, known to have numerous vulnerabilities [1, 6, 53, 64]. To analyze a package, Graph.js
generates its MDG, which it then stores in a Neo4j graph database. Graph.js proceeds to detect
vulnerabilities by executing specific queries written in Cypher. Currently, Graph.js can detect three
different kinds of taint-style vulnerabilities as well as prototype pollution vulnerabilities.
Our evaluation of Graph.js on two curated datasets [5, 6] shows that our tool significantly

outperforms ODGen, the state-of-the-art tool, with lower false negatives and shorter analysis time.
In particular, Graph.js detects 82% of the reported vulnerabilities in the ground truth datasets,
surpassing ODGen by 1.63×, with 1.23× the precision. On average, Graph.js completes its analysis
of 603 packages within 4.61 seconds and can analyze 95% in under 10 seconds. In 99% of the cases,
Graph.js’s MDG are smaller than the ODGs generated by ODGen, with only 0.14× the nodes
and 0.42× the edges. Moreover, with Graph.js, we have identified 49 previously undiscovered
vulnerabilities in npm packages, which we have responsibly disclosed to the package developers.

2 MOTIVATION AND OVERVIEW

In this section, after briefly reviewing CPGs, we introduce a motivating example of a vulnerable
JavaScript code (§2.1) and provide an overview of our proposed approach (§2.2).

In general, CPG-based vulnerability detection approaches have important advantages. (1) Gen-
erality and modularity: The graph serves as a universal structure for detecting a spectrum of
vulnerabilities; variations in vulnerabilities are addressed in the query phase, allowing graph reuse
and eliminating overhead in graph reconstruction. (2) Compositionality: Code changes only require
partial reconstructions of the CPG and rerunning pertinent queries instead of a full-scale analysis.

To facilitate tracking dependencies across objects and properties in JavaScript, ODGen augments
a program’s CPG with another data structure called the Object Dependency Graph (ODG) [36].
ODG’s nodes can represent variables or objects. Between the CPG and ODG, a total of seven
types of edges are used, including object definition edges for linking objects to the AST node where
the object was declared; data flow edges for connecting one object to another; property edges for
associating properties with objects; and AST-OBJ lookup edges for linking nodes between CPG and
ODG. ODGen has been shown to be effective in detecting many Node.js vulnerabilities [27, 36].

2.1 Motivating Example

Figure 1a presents an exemplary vulnerable JavaScript code sample that offers insight into how code
property graphs can be used to detect vulnerabilities. The git_reset function (lines 3-9) initiates a

1https://github.com/formalsec/graphjs
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(a) Vulnerable code.

(b) Example of a benign use of the package. (c) MDG of the program on the le�.

(d) Exploit for command injection vulnerability. (e) Exploit for prototype pollution vulnerability.

Fig. 1. A motivating example, with a command injection and prototype pollution vulnerability.

shell process that executes a git reset command, designed to revert a git repository to a previous
commit. As shown in line 9, the function git_reset is exported, and thus can be called by an
attacker with crafted inputs. The function accepts four input values. When called using the benign
inputs illustrated in Figure 1b, the git_reset function internally assigns the value ‘origin/main’

to config[‘reset’][‘main’] (line 5) and runs the shell command ‘git reset HEAD∼1’ (line 7).
The embedded commit number ‘1’ in this string is sourced from the config[’reset’][’commit’]

property, initialized in line 2 of Figure 1b before the git_reset function invocation. This function
hides two exploitable taint-style and prototype pollution vulnerabilities.

Taint-style vulnerability: Occurs when untrusted input from a given source reaches a vulner-
able sink without undergoing proper validation or sanitization, potentially leading to malicious
exploitation or unintended behavior. Specifically, the program in Figure 1a contains an exploitable
command injection vulnerability, i.e., by using the payload shown in Figure 1d, an attacker can
prompt the exec function to run the command ‘git reset HEAD∼1 | rm -rf /’, which deletes all
local files. In general, to detect such vulnerabilities, the analysis needs to perform the following
steps: (1) identify potential unsafe sources (e.g., function inputs) and unsafe sinks (e.g., exec) and (2)
determine whether tainted inputs from sources can reach the sinks. At a high level, CPGs enable (1)
searching through AST for known sink functions, and (2) tracking data dependency information
between the untrusted sources (tainted inputs) and arguments used by the sink function.

Prototype pollution vulnerability: It arises when an attacker manages to manipulate the proto-
type of an object, leading to side effects such as Denial-of-Service (DoS) or arbitrary code execution.
Figure 1e illustrates that a prototype pollution vulnerability within the git_reset function can be
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exploited to induce a DoS by substituting JavaScript’s built-in toString function with the function
referenced by the variable malicious_fn. The next invocation of toString will enter the infinite
loop of malicious_fn, causing the program to hang. The prototype is polluted on lines 4 and 5 of
Figure 1a. At a high level, to detect prototype pollution, CPG-based approaches need to collect
the following information: (1) the location where the prototype pollution happens, i.e., an object
lookup followed by an object assignment over the initial lookup (e.g, lines 4 and 5); and (2) whether
tainted inputs from sources can reach both the properties and the value assigned (op, branch_name
and url respectively). The former can be obtained from the AST and the latter needs dependency
analysis, similar to the previous example.

2.2 Overview of MDGs

To design a new and simpler CPG data structure for JavaScript, we first narrow down the following
vulnerabilities: prototype pollution (CWE-1321 [56]), and taint-style vulnerabilities, which include
OS command injection (CWE-78 [58]), arbitrary code execution (CWE-94 [59]), and path traversal
(CWE-22 [57]). These vulnerabilities include representative information that CPGs should capture.
We do not foresee technical difficulties in handling other vulnerabilities outlined in prior work [36],
as they use similar information. The information needed for identifying the above-mentioned
vulnerabilities includes: data dependencies between variables and objects, sequences of read/write
operations to objects and their properties, and a mapping between variables used in the source
code and heap objects/values that exist at runtime. We are able to use one graph, Multiversion
Dependency Graph (MDG), to capture all of these. Next, we present our MDGs and associated
queries using the example in Figure 1a.

MultiversionDependencyGraph (MDG), a simpler graph:TheMDG for the function git_reset

is shown in Figure 1c. The graph is generated by abstractly executing the program line by line.
The MDG consists of two types of nodes: objects and function calls. Object nodes represent objects

or primitive values computed during the execution of the program. Each node has a label >G :E~ ,
where >G identifies a specific object version, and E~ denotes the name of the variable (or variables)
in a given line of the source code pointing to the node’s object or value. Nodes in each gray box are
typically objects whose properties are accessed while the line of code indicated by the line number
above the gray box is abstractly executed. For instance, node >5, created during the analysis of line
4, refers to an object pointed to by: (i) the options variable and (ii) a property (op) of the object
referenced by the config variable. We will explain the wildcard * notation later. Function call nodes,
denoted as 5G :E~(), represent the invocations of a function E~() in a specific line and are identified
by the label 5G . Figure 1c includes node 51 corresponding to the exec() function call on line 7.
MDGs have three types of directed edges: property edges, version edges, and dependency edges,

and grows as the program is abstractly executed. Next, we detail how the graph in Figure 1c is
generated. Our analysis is applied to one statement at a time in a forward manner, with the MDG
being updated as the analysis proceeds.

• Line 3: The analysis creates four object nodes, one for each parameter: >1, >2, >3, and >4.
• Line 4: First, the analysis identifies a property lookup, config[op]. As the object that represents
config (>1) has no known property, the analysis lazily initializes a new property in >1, creating

a new node >5 for the accessed property op, and then adding a property edge >1
P(*)
−−→>5, meaning

that >5 is a property of >1. Since the property name is not known at static time, the property

edge is labeled with ‘*’. Additionally, the analysis creates a dependency edge >2
D
−→>5, indicating

that this dynamic property’s name depends on the value of the variable op (>2). Finally, the
analysis updates the value of the program variable options to the newly created object >5.
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• Line 5: This statement involves a dynamic property update in options[branch_name]. In this
case, the analysis creates a new version of the updated object. In the example, a new object
version for options (>6) is created from its previous version >5, linked via a version edge

>5
V(*)
−−→>6. Then, the analysis adds a property edge >6

P(*)
−−→>4, indicating that >6 has a dynamic

property whose value is represented by >4. In addition, since the value of branch_name is

not available at static time, the analysis adds a dependency edge >3
D
−→>6, meaning that >3

represents the name of the dynamic property. Importantly, when a new version is created, all
program variables that referred to the old version are updated to the new one; hence, after
line 5, the variable options is updated to >6.

• Line 6: Here, the analysis identifies a property update of the static property cmd, which follows
the same steps as the dynamic one, except that no dependency edges are created as the name
of the property is known at static time. So, the analysis creates a new version of options (>7)

linked from its former version with a version edge >6
V(cmd)
−−−−→>7 and creates another node >8 for

the written property options.cmd and connects both nodes with a property edge >7
P(cmd)
−−−−→>8.

• Line 7: The last line executes a call to the function exec(). First, the analysis must evaluate the
lookup expressions options.cmd and options.commit. The first expression trivially evaluates
to >8, since >7 defines the property ‘cmd’. For the second lookup, the analysis first constructs

node >9 and connects it to the initial version of options, >5, with a property edge >5
P(commit)
−−−−−−→>9,

because although the algorithm is only reading the property now, it existed from the beginning.
Then, similarly to Line 4, the analysis returns the object nodes that contain property commit.
However, in this case, it will find two versions: >9, because >5 is the latest version that contains
property commit; and >4, because a more recent version of the object (>6) has a dynamic
property, which may have overwritten property ‘commit’. Having evaluated both expressions,
the analysis creates three dependency edges from the resulting nodes to the node representing

the function call, >8
D
−→51, >9

D
−→51 and >4

D
−→51.

As shown above, the MDG captures how objects evolve over time as their properties are updated;
these updates are captured by new version edges. For instance, object >6, referenced by the variable
options, is a new version of object >5, resulting from the update of the object’s dynamic property
in line 5. Object updates can be identified by these version edges. Property edges % (?), where ? is
the property name, capture the internal structure of objects during the program’s execution. They
denote that the object pointed to by the edge is a sub-object of the object version from which the

edge originates. For example, the property edge >1
P(*)
−−→>5 indicates that >5 is a sub-object of object

version >1 derived from the dynamic property op (line 4). The dependency edges � denote data
dependencies between values/objects in two cases: (i) when a sub-object is looked up (read) by a

property name, as seen in dependencies >2
D
−→>5, >8

D
−→51, >9

D
−→51, or >4

D
−→51, and (ii) when the name of

the property being altered depends on a dynamic value, as in the dependency >3
D
−→>6.

MDG queries:MDG allows for simpler and more efficient query specifications for vulnerability
detection. Firstly, the order between operations delineated by writes can be easily determined due to

the tracking of multiple versions of objects. Specifically, given a version edge >G
V(p)
−−→>~ , we know that

the instruction on line line~ that led to the creation of object version >~ is a write operation and
that it was executed after the instruction on line lineG that resulted in the prior object version >G .
This characteristic facilitates the identification of prototype pollution vulnerabilities. For example,
a typical instance of prototype pollution, such as the one present in the vulnerable function shown
in Figure 1c, occurs when there is an object lookup in a property ?1, followed by an assignment
of a value E to a property ?2 of the obtained sub-object, where an attacker controls ?1, ?2, and E .
The MDG in Figure 1c allows for the identification of this pattern, where one can easily identify a
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tainted lookup dependent on >2, followed by a tainted property update dependent on >3 and >4.

The sequential ordering is captured by the version edge >5
V(*)
−−→>6.

Secondly, the MDG is self-contained, avoiding the need for costly AST and CFG visits. Specifically,
the MDG’s edge types encapsulate essential information, allowing data flows to be tracked through
simple graph traversals across these edge types. This characteristic is particularly beneficial for
detecting taint-style vulnerabilities. For instance, in Figure 1c, once we establish that the sensitive
sources are the git_reset’s input parameters (i.e., >1, >2, >3, and >4), and the sink is the exec

function call node (i.e., 51), it becomes apparent that the graph includes paths from all tainted
inputs reaching the sink. For example, we can trace the sequence of dependencies from >1 using

>1
P(*)
−−→>5

V(*)
−−→>6

P(*)
−−→>4

D
−→51.

3 SOUND MDGS FOR JAVASCRIPT

In this section, we formally define Multiversion Dependency Graphs (MDGs) (§3.1) and an abstract
interpretation-based analysis that computes them for a core of JavaScript (§3.2). We then present
a soundness theorem that establishes the guarantees of the proposed analysis (§3.3). A complete
account of the analysis, including the proof of its soundness, can be found in [21].

3.1 Syntax of Multiversion Dependency Graphs

A Multiversion Dependency Graph, denoted 6̂ = (+̂ , �̂) ∈ Ĝ, tracks the structure and evolution
of objects during the program execution and the data dependencies between the values that the

program manipulates. The graph nodes, +̂ , are taken from the set of abstract locations, ;̂ ∈ L̂,
and represent objects and primitive values computed during program execution. In the MDG of
the running example in Figure 1c, these abstract locations are represented with the label >G . The

graph edges �̂, taken from the set of labeled edges, connect pairs of abstract locations. Each edge is
annotated with its type, a label g , given by the grammar: g ::= D | P(?) | P(∗) | V(?) | V(∗).
Edges labeled with D are Dependency Edges. An edge ;̂1 ↦→D ;̂2 means that the value/object

represented by ;̂2 is computed using (depends on) the value/object represented by ;̂1. For instance,

;̂2 ↦→D ;̂5 in Figure 1c resulted from the property lookup on line 4, where the property name depends
on the value of variable op. Edges labeled with P(?)/P(∗) are Property Edges. A known-property

edge ;̂1 ↦→P(? ) ;̂2 means that the object represented by ;̂1 has a property named ? mapped to a value

represented by ;̂2. An unknown-property edge ;̂1 ↦→P(∗) ;̂2 has the same meaning as the known one,

except that the property name cannot be determined statically. For instance, ;̂1 ↦→P(∗) ;̂5 in Figure 1c
comes from the property lookup on line 4, where the property is represented by the variable op.

Edges labeled with V(?)/V(∗) are Version Edges. A known-property version edge ;̂1 ↦→V(? ) ;̂2 means

that the object represented by ;̂2 is a new version of the object represented by ;̂1, resulted from an

update of its property ? . An unknown-property version edge ;̂1 ↦→V(∗) ;̂2 has the same meaning
as the known one, except that the name of the updated property is not known at static time. The

version edge ;̂5 ↦→V(∗) ;̂6 in Figure 1c results from an update of a dynamic property on line 5.

MDGs form a lattice under standard subset inclusion; formally, given two MDGs 6̂1 = (+̂1, �̂1)
and 6̂2 = (+̂2, �̂2), 6̂1 is said to be lower than or equal to 6̂2, written 6̂1 ⊑ 6̂2, if and only if �̂1 ⊆ �̂2.

In the following, we write 6̂[;̂ , ?] to denote the set of abstract locations associated with the object

represented by ;̂ via property ? . These locations may be directly connected to ;̂ via a property edge

labeled with P(?) or connected to a previous version of ;̂ , as we do not duplicate properties that are

not updated when creating a new version of an object. For instance, Figure 1c, 6̂[;̂7, 2<3] = {;̂8}. The

abstract graph over-approximates the program’s concrete heap state, so 6̂[;̂ , ?] may contain more
than one abstract location, for instance, branches of an if statement updating an object differently,
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would result in different object versions at the join of the branches. For instance, in Figure 1c,

6̂[;̂7, 2><<8C] = {;̂4, ;̂9}.

3.2 Computing Multiversion Dependency Graphs

We formalize our analysis for computing MDGs for a core of JavaScript.

Core JavaScript syntax: Our core of JavaScript includes expressions and statements, shown
below. Expressions 4 ∈ EG? include values and program variables. Statements B ∈ SC< include:
assignments, binary operations, property lookups, property assignments, new object creation, if
and while statements, sequencing, and function calls. Each statement that computes new values or
objects has a unique index 8 , which we explain later with analysis rules.

4 ∈ EG? ::= E ∈ V | G ∈ X

B ∈ SC< ::= G := 4 | G :=8 41 ⊕ 42 | G :=8 4.? | G :=8 41 [42] | 41.? :=8 42 | 41 [42] :=8 43

G := { }8 | if (4){B1} else {B2} | while(4){B} | B1; B2 | G := 5 (41, ..., 4=)

Abstract variable store: To connect program variables to the objects that they represent, we

use abstract variable stores d̂ ∈ ŜC> : X ⇀ ℘(L̂) that map program variables to sets of abstract
locations, where d̂ (G) denotes the set of abstract locations that G represents. Given an expression
4 and an abstract store d̂ , the evaluation of 4 under d̂ , written ⟦4⟧d̂ , denotes the set of abstract

locations that 4 represents. For instance, ⟦options⟧d̂ = {;̂8} in the MDG of Figure 1c. Observe that
d̂ (G) only contains the newest versions of the objects associated with G . Abstract stores form a lattice
under the standard pointwise subset inclusion; formally: a store d̂1 is said to be lower than or equal
to a store d̂2, written d̂1 ⊑ d̂2, if and only if dom(d̂1) ⊆ dom(d̂2) and ∀G ∈ dom(d̂1). d̂1 (G) ⊆ d̂2 (G).
Focusing only on the dependency aspect of the graph, we can say a graph/store is lower than
another if it contains fewer dependency edges. If the sets of abstract locations and program variables
are finite, then so are the lattices of MDGs and abstract stores.

Auxiliary graph functions: Next, we explain two auxiliary functions used in graph construction.
The function NV8 (6̂, d̂, !1, ?1) is used to create a new version of objects represented by locations

in !1, due to an assignment to property ?1. Here 8 is the index of the statement where this function is
called. It returns a tuple (6̂′, d̂ ′, !′

1
), where 6̂′ is the updated graph, !′

1
is the set of abstract locations

representing newly created objects, and d̂ ′ is the updated store with the occurrences of older version
locations replaced by their corresponding newer versions.

The function AP8 (6̂, !, ?1) extends a set of objects represented by locations in ! with a property
edge P(?1) and returns the new graph 6̂′. The index 8 has the same meaning as above. If a location

;̂1 in ! already has a property edge labeled as % (?1), then no action is taken; otherwise, a new

location ;̂2 is allocated and ;̂1 ↦→P(?1 ) ;̂2 is added to the graph.
The above functions have an alternate version for properties whose values are computed dy-

namically. For example, on line 4 of the program in Figure 1a, the property name (op) is non-static.
In this case, AP∗8 (6̂, !1, !? ) extends each object in !1 with an unknown-property edge pointing to
an abstract location that depends on all locations in !? , where !? is the set of abstract locations

that represent the non-static property ? . If a location ;̂1 in !1 does not have a property edge labeled

as % (∗), then a new location ;̂2 is allocated and ;̂1 ↦→P(∗) ;̂2 is added to the graph; otherwise, the
dependencies in !? are added to the existing property. Analogously, NV∗

8 (6̂, d̂, !1, !? ) creates a
new version of all objects corresponding to locations in !1, making each new object depend on all
locations in !? . These dynamic versions of the rules ensure that locations denoting dynamically
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Assign-Op

⟦4 9⟧d̂ = !9 | 9=1,2 ;̂8 = alloc(6̂, 8)

6̂′ = 6̂ ⊎
{
;̂ ↦→D ;̂8 | ;̂ ∈ !1 ∪ !2

}

A(G :=8 41 ⊕ 42, 6̂, d̂) ≜ (6̂′, d̂ [G ↦→
{
;̂8
}
])

New Object

;̂8 = alloc(6̂, 8) d̂′ = d̂ [G ↦→ {;̂8 }]

6̂′ = AddNode(6̂, ;̂8 )

A(G := { }8 , 6̂, d̂) ≜ (6̂′, d̂′)

Static Property Lookup
⟦4⟧d̂ = ! 6̂′ = AP8 (6̂, !, ?)

!′ = {;̂ ′ | ;̂ ∈ ! ∧ ;̂ ′ ∈ 6̂′ [;̂ , ?]}

A(G :=8 4.?, 6̂, d̂) ≜ (6̂′, d̂ [G ↦→ !′])

Dynamic Property Update
⟦48⟧d̂ = !9 |39=1 (6̂′′, d̂′, !′1) = NV∗8 (6̂, d̂, !1, !2)

6̂′ = 6̂′′ ⊎ {;̂1 ↦→P(∗) ;̂3 | ;̂1 ∈ !′1 ∧ ;̂3 ∈ !3}

A(41 [42] :=8 43, 6̂, d̂) ≜ (6̂′, d̂′)

If Statement
A(B 9 , 6̂, d̂) = (6̂ 9 , d̂ 9 ) |

2
9=1

A(if (4){B1} else {B2}, 6̂, d̂) ≜ (6̂1 ⊔ 6̂2, d̂1 ⊔ d̂2)

While
lfp(A(B)) (6̂, d̂) = (6̂′, d̂′)

A(while(4){B}, 6̂, d̂) ≜ 6̂′, d̂′

Fig. 2. Selected Graph Construction Analysis: A(6̂, d̂, B) ≜ 6̂′, d̂′.

computed properties are connected to the updated/looked-up objects via dependency edges; these
are essential for effective taint propagation.

Analysis rules for graph construction:We formalize our graph construction using a declarative
functionA. We writeA(B, 6̂, d̂) = (6̂′, d̂ ′) to mean that the analysis of statement B starting from the
initial abstract state (6̂, d̂) results in the final abstract state (6̂′, d̂ ′). Selected rules for A are shown
in Figure 2. The rule [Assign-Op] evaluates both expressions, 41 and 42, and creates a new location,

;̂8 , representing the result of the binary operation; this new location is then set to depend on all
the locations to which 41 and 42 evaluate and the variable G is set to the singleton set containing

{;̂8 } in the abstract store. The [New Object] rule generates an abstract location for the created
object, calling the function alloc with the unique identifier 8 and the current graph 6̂. An abstract
allocation does not necessarily generate a fresh abstract location; we choose to always generate
the same abstract location for the same literal object. This means that objects created within a loop
are represented by the same abstract location, avoiding object explosion.

The [Static Property Lookup] rule evaluates the expression 4 denoting the object being inspected,
obtaining a set of locations !; it then uses the function AP to extend the objects in ! with the
property ? in case they do not define it; finally, it obtains the set of locations !′ representing the
values of property ? in the objects in ! and sets the variable G to !′ in the abstract store. The
[Dynamic Property Lookup] Rule (omitted) is analogous, except that AP∗ is used with an additional
argument corresponding to the set of locations representing the dynamic value of the property.
Figure 3 illustrates the graphs and stores after applying the analysis rules for lines 4 and 5 of

the running example in Figure 1a. The graph on the left is a subgraph of Figure 1c. The abstract
stores d̂: represent the content of the abstract store d̂ after analyzing line : . The edges in blue are
generated as a result of analyzing line 4 and those in red are generated when analyzing line 5.
The rule [Dynamic Property Lookup] is used when analyzing line 4 of the example. Here B =

options :=8 config[op]. First, config and op evaluate to {;̂1} and {;̂2}, respectively. Then, the rule

callsAP∗8 (6̂, {;̂1}, {;̂2}), which (1) extends ;̂1 with the dynamic property ∗, represented by the abstract

location ;̂5, via edge ;̂1 ↦→P(∗) ;̂5, and (2) adds a dependency edge ;̂2 ↦→D ;̂5, as the property being

looked up depends on the value of ;̂2. Finally, it sets the variable options to ;̂5 in the store.
The [Dynamic Property Update] rule evaluates the expressions 41, 42, and 43, respectively denoting

the object being updated, the property to be updated, and the assigned value, obtaining three sets
of locations !1, !2, !3; then, the rule uses the function NV∗ to create a new version of all the objects
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Fig. 3. Sub-MDG of the motivating example in Figure 1a.

Fig. 4. Concrete sub-MDG of the motivating example in Figure 1a.

in !1, updating the abstract store and graph accordingly; finally, the rule adds a property edge
corresponding to the property being assigned to the new version objects contained in !′

1
. The rule

[Static Property Update] is similar except that NV is used with ? being the last argument.
Back to our example, rule [Dynamic Property Update] is applied when analyzing line 5, where

B = options[branch_name] :=8 url. First, expressions options, branch_name and url, are evaluated

to {;̂5}, {;̂3} and {;̂4}, respectively. Then, the rule calls NV∗
8 (6̂, d̂, {;̂5}, {;̂3}), which (1) creates a new

version of object ;̂5, represented by the abstract location ;̂6, via edge ;̂5 ↦→V∗ ;̂6, and (2) updates the

variable options to the new abstract location ;̂6 in the abstract store. Finally, the rule extends ;̂6
with the dynamic property ∗, via edge ;̂6 ↦→P(∗) ;̂4, as url is represented by the abstract location ;̂4.
The [If] rule evaluates both branches of the if statement and combines the results using the least
upper bound operator. Finally, the [While] rule computes the least fixed point of the analysis on the
body of the loop. When analyzing a loop while(4){B} on a state (6̂, d̂), we must find the smallest
state (6̂′, d̂ ′) such that: (6̂, d̂) ⊑ (6̂′, d̂ ′) andA(B, 6̂′, d̂ ′) = (6̂′, d̂ ′). Such fixed point is guaranteed to
exist because the set of abstract states forms a finite lattice and the analysis is monotone: for any 6̂1
and 6̂2, d̂1 and d̂2, and statement B , it holds that: (6̂1, d̂1) ⊑ (6̂2, d̂2) =⇒ A(B, 6̂1, d̂1) ⊑ A(B, 6̂2, d̂2).

3.3 Soundness

To better understand the formal properties of our MDG, we first define a concrete semantics for
the core language and then show that the MDGs generated by our analysis overapproximate
the concrete object layout and structure in the concrete semantics. At a high level, the property
established here guarantees that our graph generation algorithm consistently handles dynamic
properties such that the abstract graph does not miss any edges that the concrete one generates.

Instrumented concrete semantics: Similar to the abstract store used in the analysis semantics,
we define concrete stores, d ∈ SC> : X ⇀ L, to map program variables to locations. To track the
values computed during execution, we use heaps ℎ ∈ H : L ⇀ V that map locations to values.
Compared to directly using values and variables, using the store simplifies dependency tracking.
Object structure and dependencies are modeled through the concrete multiversion dependency
graphs, 6 = (+ , �) ∈ G, which are analogous to their abstract counterparts in all respects except
that nodes are taken from the set of concrete locations, + ⊆ L, all edge types are known, and any
given location ; can only be connected to at most one other location via a given property edge P(?).
Figure 5 shows selected rules for the instrumented big-step semantics of Core JavaScript. The

semantics rules take the form ⟨6, ℎ, d, B⟩ ⇓c ⟨6
′, ℎ′, d ′⟩, meaning that the evaluation of statement B

in the initial concrete MDG 6, heap ℎ, and store d , yields the final graph 6′, heap ℎ′, and store d ′.
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Dynamic Property Lookup

⟦48⟧d = ;8 |
2
8=1 ? = ℎ(;2)

6[;1, ?] = ; ′ d ′ = d [G ↦→ ; ′]
6′ = 6 ⊎ {;2 ↦→D ; ′}

⟨6, ℎ, d, G :=8 41 [42]⟩ ⇓c ⟨6
′, ℎ, d ′⟩

Dynamic Property Update

⟦48⟧d = ;8 |38=1 ? = ℎ(;2)
(6′′, d ′, ; ′) = NVc (6, d, ;1, ?, ;2)

6′ = 6′′ ⊎ {; ′ ↦→P(? ) ;3}

⟨6, ℎ, d, 41 [42] := 43⟩ ⇓c ⟨6
′, ℎ, d ′⟩

Fig. 5. Fragment of Instrumented Concrete Semantics: ⟨6, ℎ, d, B⟩ ⇓c ⟨6′, ℎ′, d′⟩

Analogously to the abstract semantics, the concrete semantics also keeps track of the entire history
of the program execution by creating a new version of each object whenever it is updated.

The [Dynamic Property Lookup] Rule evaluates the expressions 41, 42, respectively denoting the
object and property being looked up, and obtains the locations ;1 and ;2. Then, it obtains the location
; ′ denoting the property value and updates the store accordingly. Finally, it adds a dependency
edge ;2 ↦→D ; ′, as the property being looked up depends on the value of ;2. The [Dynamic Property

Update] Rule evaluates the expressions 41, 42, and 43, respectively denoting the object being updated,
the property to be updated, and the value assigned to that object, obtaining three locations ;1, ;2, ;3;
then the rule extends the graph with a new version of the object represented by ;1 and the edge
;1 ↦→D ; ′. Analogously to the abstract counterpart, it adds a property edge corresponding to the
property being assigned (;3) to the new version object (; ′). The NV2 function is similar to NV8

function, except that the property name is resolved to a static value, instead of the wildcard ‘*’.
Similarly to Figure 3, Figure 4 illustrates the concrete sub-MDG, resulting from evaluating the first

five lines of the example of Figure 1c, where config is the object { reset: {}}, and op, branch_name
and url are strings ‘reset’, ‘main’, and ‘origin/main’, respectively. The concrete stores d: represent
the content of the concrete store d after analyzing line : , and the heaps ℎ: represent the content of
the heap ℎ after analyzing line : . In contrast to the abstract sub-graph of Figure 3, since we know
the object’s structure and values in the initial state, line 4 only adds a dependency edge ;2 ↦→D ;5,
also mapping the variable options to ;5. Line 5 contains a dynamic property update, and, similarly
to the abstract sub-graph, we create a new version of the object represented by ;5, and extend the
newly created version (;6) with a property edge pointing to ;4. However, as we know the value of
the property being updated, instead of using the wildcard ‘*’, we use the property name ‘main’.

Analysis guarantees:We establish that the abstract MDG overapproximates concrete MDG. We

define abstraction functions, U : L ⇀ L̂, that map concrete locations to abstract locations; i.e.,

U (;) = ;̂ means that the concrete location ; is represented by ;̂ in the abstract domain. Intuitively,
an abstract store d̂ over-approximates a concrete store d according to an abstraction function
U if all the variables in the domain of d are over-approximated by d̂ . Analogously, an abstract
graph 6̂ over-approximates a concrete graph 6 if all the edges of 6 have corresponding edges in 6̂.
Definitions 3.1 formalizes the relation between abstract graphs and concrete graphs.

Definition 3.1 (MDGs Over-Approximation). An abstract MDG 6̂ is said to over-approximate a
concrete MDG 6 via abstraction function U , written 6̂ ∼U 6, if and only if the following hold:

• ∀;1, ;2 . ;1 ↦→D ;2 ∈ 6 =⇒ U (;1 ↦→D ;2) ∈ 6̂

• ∀;1, ;2, ? . ;1 ↦→P(? ) ;2 ∈ 6 =⇒ U (;1 ↦→P(? ) ;2) ∈ 6̂ ∨ U (;1 ↦→P(∗) ;2) ∈ 6̂

• ∀;1, ;2, ? . ;1 ↦→V(? ) ;2 ∈ 6 =⇒ U (;1 ↦→V(? ) ;2) ∈ 6̂ ∨ U (;1 ↦→V(∗) ;2) ∈ 6̂

Where U (;1 ↦→g ;2) is used to mean U (;1) ↦→g U (;2).

In the following, wewrite 6̂, d̂ ∼U 6, d tomean that 6̂ over-approximates6 and d̂ over-approximates
d according to U . Theorem 3.2 states that if the initial abstract state over-approximates the initial
concrete state, then the final abstract state also over-approximates the final concrete state.
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Table 1. Base graph traversals. Notation as defined in Section 3.1.
Traversal Description Pattern

BasicPathB=

Finds sequence of distinct : nodes connecting >B to >= , via

: + 1 distinct edges. If = is not specified, return all distinct

paths that start in >B . If B = =, return >= .
>B {

g:
−→ >: }

: g=
−→ >= , where : ≥ 0

UntaintedPathB=
Finds paths that include an object assignment followed by

an object lookup on the same property ? . Returns the path.
(>1

+ (? )
−−−→ >2 {

g:
−→ >: }

: % (? )
−−−→ >3),

where : ≥ 0

TaintPathB=
Finds a dependency path between node >B and node >= . If

= is not specified, return all distinct paths that start in >B .
BasicPathB= \ UntaintedPathsB=

Arg8
5

Matches a function 5 and returns its 8-th argument [61]. -

ObjLookup∗8
Searches for an object lookup via dynamic property. Re-

turns >: .
>8

% (∗)
−−−→ >:

ObjAssignment
∗,8
?,E

Searches for an object >8 assignment via dynamic property.

Returns >E and >? .
>8

+ (∗)
−−−→ >E

P(*)
−−→ >?

Table 2. Graph Traversals for detecting taint-style and prototype pollution vulnerabilities.

Vulnerability Graph Queries

Command Execution TaintPathB ◦ ARG=
5
, where { (5 , =) ∈ Sinkscommand_execution , >B ∈ Sources }

Code Injection TaintPathB ◦ ARG=
5
, where { (5 , =) ∈ Sinkscode_injection , >B ∈ Sources }

Path Traversal TaintPathB ◦ ARG=
5
, where { (5 , =) ∈ Sinkspath_traversal , >B ∈ Sources}

Prototype Pollution
(ObjLookup∗8 ◦ObjAssignment

∗,8
?,E ) ◦ ( TaintPath

B
8 ∩ TaintPathBE ∩ TaintPathB? ), where

>B ∈ Sources

Theorem 3.2 (Soundness with Full Knowledge). For all graphs 6̂, 6̂′, 6, 6′, abstract stores d̂, d̂ ′,
concrete stores d, d ′, heaps ℎ and ℎ′, statement B , and abstraction function U , it holds that:

A(B, 6̂, d̂) = (6̂′, d̂ ′) ∧ 6̂, d̂ ∼U 6, d ∧ ⟨6, d, ℎ, B⟩ ⇓c ⟨6
′, ℎ′, d ′⟩ =⇒ ∃U ′ . U ′ ≥ U ∧ 6̂′, d̂ ′ ∼U ′ 6′, d ′

4 GRAPH.JS

To validate our approach, we implemented Graph.js, a novel static vulnerability scanner for
JavaScript code, based on MDG graphs. Here, we describe the graph queries performed by Graph.js
to detect taint-style and prototype pollution vulnerabilities and the implementation of Graph.js.

Basic graph traversals: A graph traversal, as proposed by Yamaguchi et al. [61], is a function
T : P(V) → P(V), that maps a set of nodes to another set of nodes, whereV is a set of nodes
and P(V) is the power set ofV . This definition allows for chaining multiple traversals together,
e.g., T0 ◦T1 represent two graph traversals T0 and T1 chained together, using a function composition
◦. It also allows for filtering traversals, e.g., T0\T1 represent a graph traversal T0, excluding the
paths included in T1.

Table 1 defines elementary traversals, which are the building blocks for more complex traversals
for finding vulnerabilities (summarized in Table 2). We first define BasicPath8= , which finds a path
between >8 and >= . For instance, the MDG of Figure 1c contains a basic path between >1 and >8,

presented as >1
P(*)
−−→>5

V(*)
−−→>6

V(cmd)
−−−−→>7

P(cmd)
−−−−→>8. The other traversals are built upon this notion, adding

more restrictions to the path. For instance, TaintedPath8= returns all paths returned by BasicPath
8
= ,

except those that are also included in UntaintedPath8
= (explained later in this section).

In Table 2, Sources represent untrusted input, e.g., user input, and SinksC represent functions
that are classified as unsafe sinks for vulnerability of type C . The list of Sinks considered by Graph.js
can be set dynamically via a configuration file, where each sink is defined by a JavaScript native
function or a function imported from an external package 5 , and the sensitive argument(s) =.
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Taint-style vulnerability queries: The detection of the three taint-style injection vulnerabilities,
i.e., code injection, command injection, and path traversal, share the same graph traversal pattern
and differ from each other only in their unsafe sink functions. Code injection vulnerabilities,
which consist of injecting code that is later executed by the server, can involve sinks such as
eval and Function(). The sinks of command injection vulnerabilities, which entail executing
arbitrary commands in the server’s operating system, include exec, child_process.spawn, and
child_process.execFile. Path traversal vulnerabilities, which allow for accessing restricted files on
the server by injecting malicious input, use sinks such as fs.readFile and fs.createReadStream.

Graph.js detects such scenarios by searching for paths connecting the tainted source to an unsafe
sink in the MDG of the program being analyzed. The traversals for each taint-style vulnerability are
shown in Table 2. First, Graph.js performs a graph traversal TaintPathB in the MDG, which returns
all paths that start in >B but excludes untainted paths. Untainted paths contain a new version edge
V(prop) followed by an object lookup of the same property P(prop); this pattern indicates that that
(tainted) property has been overwritten and is no longer tainted through that path. This traversal
is chained with Arg=

5
to return tainted paths that end in argument = of an unsafe function call 5 .

Prototype pollution vulnerability queries: A prototype pollution allows an attacker to manipu-
late the prototype of an object. In this work, we focus specifically on Object.prototype, which is
the topmost object on every prototype chain. Graph.js’s prototype pollution queries search for an
object lookup where the attacker controls the property, followed by an object assignment over the
result of the initial lookup where the attacker controls both the property and the value assigned.
Table 2 shows the traversal for prototype pollution. In a first step, Graph.js performs a graph
traversal ObjLookup∗8 chained with ObjAssignment

∗,8
?,E , which together search for an object lookup

(>8
% (∗)
−−−→ >: ), followed by a sub-object assignment (>:

+ (∗)
−−−→ >E

P(*)
−−→ >? ). This traversal is then chained

with three TaintPathB
= , that, similarly to taint-style vulnerabilities, check if the attacker controls

>8 , >E and >? , sequentially. We can identify this pattern in Figure 1c, where there is an object lookup,
followed by an object assignment over the result of the initial lookup, by identifying the pattern

>1
P(*)
−−→>5

V(*)
−−→>6

P(*)
−−→>4. The property of the first lookup >5, the property of the sub-object assignment

>6 and the value of the assignment >4 are tainted through paths >2
D
−→>5, >3

D
−→>6, and >4, respectively.

Implementation: Graph.js takes npm packages as input and reports potential vulnerabilities. It
is composed of two processing pipelines: MDG generator and graph engine. The MDG generator
is implemented with 6K lines of TypeScript code and is responsible for parsing and transpiling
JavaScript programs to the core JavaScript and then producing the corresponding MDG. Graph.js
uses Esprima v4.0.1 [14] for parsing before generating the program’s AST and CFG in line with the
original CPGs introduced by Yamaguchi et al. [62]. Then, the MDG builder creates the MDG. The
query engine consists of 500 lines of Python code and is responsible for importing the MDG into a
graph database and executing a set of queries on the MDG. We used Neo4j v4.2.1 [40] as the graph
database engine and wrote two Cypher [39] queries with 80 lines of code, one for the taint-style
vulnerabilities and the other for the prototype pollution.

5 EVALUATION

In this section, we evaluate the effectiveness and performance of Graph.js against npm packages.
Specifically, our evaluation aims to answer the following three central research questions:

• RQ1: How effective is Graph.js in detecting vulnerabilities and how does it compare to ODGen?

• RQ2: Can Graph.js find zero-day security vulnerabilities in real-world npm packages?

• RQ3: What is Graph.js’s performance and how does it compare to ODGen?

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 164. Publication date: June 2024.



164:14 M. Ferreira, M. Monteiro, T. Brito, M. Coimbra, N. Santos, L. Jia, and J. Fragoso Santos

Table 3. Summary of the reference datasets per vulnerability type: “Raw Total” show the total number of
packages in the dataset; “Total” show the number of packages excluding incorrect annotations and duplicates.

Vulnerability Type CWE
VulcaN SecBench

Total Distribution (%)
Raw Total Total Raw Total Total

Path Traversal CWE-22 5 5 170 161 166 27.5%

Command Injection CWE-78 92 87 101 82 169 28.03%

Code Injection CWE-94 41 33 40 21 54 8.96%

Prototype Pollution CWE-1321 98 94 192 120 214 35.49%

Total 236 219 503 384 603 100%

5.1 Experimental Setup

To answer our research questions, we leverage three datasets. Two of these, are complementary
vulnerability datasets from prior work which we use as ground truth: VulcaN [6] and SecBench [5].
They have different vulnerability distributions over vulnerability types, summarized in Table 3.
Combined, these two reference datasets provide a comprehensive set of vulnerabilities for our
evaluation. The third dataset, which we call Collected, is a set of popular packages (>2K weekly
downloads) that we downloaded from the npm repository. Next, we describe these three datasets.

• Dataset 1 (VulcaN): VulcaN [6] is a vulnerability benchmark with 957 npm package versions
that contain confirmed Node.js vulnerabilities, reported in the GitHub Advisory Database [22].
Each package contains one or more vulnerabilities, each of which is annotated with the
sink and source line number. Out of the 957 packages, we selected all 174 that contain
vulnerabilities that Graph.js targets: code injection, command injection, path traversal, and
prototype pollution. These selected packages contain a total of 236 vulnerabilities. Out of the
236 vulnerabilities, we excluded 17 that either have incorrect annotations (e.g., the annotated
vulnerability type is different from the correct type and the correct type is outside our scope)
or are located in an external imported package, whose source is unavailable for analysis.

• Dataset 2 (SecBench): SecBench [5] comprises 601 vulnerable packages, reported in the GitHub
Advisory Database [22], Snyk [49], and Huntr.dev [24]. Each package only includes a single
vulnerability and is annotated with the sink line number. Out of the 601 vulnerabilities, we
selected a total of 384. We excluded 217 vulnerabilities in total: 98 refer to out-of-scope ReDoS
vulnerabilities, 71 are incorrectly annotated (e.g., non-existent or wrong sink line, or missing
files), and 38 were already included in VulcaN. The rest of the excluded cases either are
unavailable for download or their file type was TypeScript. While our methodology applies to
TypeScript, Graph.js uses a JavaScript parser that cannot handle TypeScript.

• Dataset 3 (Collected): Contains 32,137 (∼32K) popular real-world npm packages, that we
crawled from the npm repository in September, 2023. Following Snyk’s guidelines, we consider
a package popular if it had more than 2,000 weekly downloads at the time of collection.

To compare Graph.js with prior work, we set up the open-source implementation of ODGen [36]
and run it on our ground truth datasets. We chose ODGen because it is the state-of-the-art CPG-
based vulnerability detection tool for npm packages. We evaluated Graph.js on the same set of
vulnerability types for which ODGen was evaluated. Similarly to ODGen, our evaluation does
not include XSS and SQL injection vulnerabilities because the identification of these types of
vulnerabilities relies on application-specific sinks. Furthermore, Brito et al. [6], the authors of
VulcaN, present an empirical study for evaluating JavaScript vulnerability detection tools on npm
packages, and elects ODGen as offering the most favorable trade-off between effectiveness and
precision, ranking highest in precision and fourth in overall effectiveness among the assessed tools.
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Table 4. Effectiveness and precision of Graph.js and ODGen for the VulcaN and SecBench datasets combined.

CWE Total
Graph.js ODGen

TP FP TFP Recall Precision F1 TP FP TFP Recall Precision F1

CWE-22 166 161 56 30 0.97 0.84 0.9 131 6 0 0.79 1 0.88

CWE-78 169 160 151 9 0.95 0.95 0.95 111 110 77 0.66 0.59 0.62

CWE-94 54 47 20 13 0.87 0.78 0.82 23 86 84 0.43 0.21 0.29

CWE-1321 214 126 112 85 0.59 0.60 0.59 39 18 13 0.18 0.75 0.29

Total 603 494 339 137 0.82 0.78 0.80 304 220 174 0.50 0.64 0.56

Fig. 6. Venn diagram of the vulnerabilities detected by Graph.js and ODGen.

Our testbed consisted of 6 64-bit Ubuntu 22.04.3 servers with 64GB of RAM and 2x Intel(R)
Xeon(R) Gold 5320 2.2GHz CPUs. We conducted the experiments involving the reference datasets
on a single server. To analyze the Collected dataset, we used six servers to distribute the load and
speed up the analysis. We set the total analysis timeout to five minutes.

5.2 RQ1: Effectiveness in Vulnerability Detection

We assess Graph.js’s effectiveness in detecting vulnerabilities and compare it to ODGen by running
both tools on our ground truth datasets: VulcaN and SecBench. Results are summarized in Table 4.

True positives (TP): We consider a reported vulnerability a true positive if the vulnerability type
and sink line number reported by the tools match the dataset annotations. For ODGen, a report
is also considered a true positive if it only correctly detects the vulnerability type but does not
pinpoint the sink code line2. We include all vulnerabilities reported by ODGen until it times out.

The columns titled “TP” in Table 4 show that Graph.js can detect 1.63× more vulnerabilities than
ODGen, identifying 494 versus 304 vulnerabilities. In particular, Graph.js finds twice as many code
injection vulnerabilities (CWE-94) and three times as many prototype pollution vulnerabilities
(CWE-1321) as ODGen. The improvement is largely attributable to Graph.js building simpler graphs
(as detailed in §5.4), enabling it to complete analysis more quickly than ODGen. In 95% of the
cases, ODGen timed out without detecting any vulnerability, struggling particularly to recognize
prototype pollution patterns. A contributing factor is that ODGen’s abstract interpretation often
fails to complete analysis of prototype pollutions involving recursion and loops. In §5.5, we present
a case study of a prototype pollution vulnerability where Graph.js’s version edges and summary
fixed-pointed representation for loops enable a speedy detection, whereas ODGen times out.
Regarding the specific vulnerabilities each tool can identify, Figure 6 reveals that the set of

vulnerabilities detected by Graph.js largely subsumes those found by ODGen. Apart from 17
vulnerabilities detected exclusively by ODGen, Graph.js identifies all other vulnerabilities that

2We saw many instances of such reports from ODGen. Since the lack of information about the sink may be an issue related

to the implementation, not the approach itself, such a report is credited as a true positive. Thus, our reported TP for ODGen

is a conservative upper bound.
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ODGen detects, i.e., 94%. The reasons for Graph.js missing said vulnerabilities are similar to
those for false negatives in general. The main reason for false negatives in Graph.js is the set
of unimplemented JavaScript functionalities not represented by the MDG, resulting in missing
dependency edges in the graph. Currently, MDGs do not provide full support for the arguments

and the this keywords, some array operations, and Function.prototype.call(). When compared
to taint-style detection, Graph.js exhibits a lower TP rate in prototype pollution detection. This
lower rate is partly because prototype pollution patterns often involve third-party npm packages,
such as for-own and for-in, which are instrumental in leading to vulnerabilities. However, since
the code of these external packages is not represented in the MDG, the prototype pollution query
fails to recognize the associated vulnerability pattern. Additionally, prototype pollution sources
frequently use the arguments keyword, which, as noted above, is not fully supported by MDGs.

False positives (FP) and true false positives (TFP):We consider a false positive (FP) when a
vulnerability is reported by a tool but was not annotated as such in the original dataset. However, it is
important to note that both tools often discovered additional confirmed vulnerabilities not annotated
in the datasets. This occurrence is not unusual, given that the datasets are not complete. For instance,
SecBench reports only one vulnerability per package, yet it is common for vulnerable packages to
contain multiple exploitable unsafe sinks; e.g., CVE-2019-10783 describes three exploitable sinks
for lsof_v0.1.0 while SecBench only reports one. Therefore, in our classification, we specifically
designate a result as a true false positive (TFP) only when it does not correspond to an actual,
exploitable vulnerability for which we have been able to generate a successful exploit.
Table 4 presents both of these metrics under the columns “FP” and “TFP”. Although Graph.js

reports a higher number of false positives than ODGen (339 versus 220, respectively), the datasets
are incomplete. Consequently, a false positive identified by a tool could be a real, unannotated
vulnerability in the dataset, making it a true positive. To account for potential inaccuracies in false
positive reporting due to incomplete dataset annotations, we focus on the TFP metric. Analyzing
this metric reveals that Graph.js outperforms ODGen by reporting 37 fewer true false positives.

In Graph.js, the main causes for TFPs are as follows. For taint-style TFPs, a tainted value reaches
an unsafe sink, but it only occurs under highly specific circumstances, which prevent a successful
exploitation of the vulnerability. In the case of prototype pollution TFPs, this issue arises because
our graph traversals do not evaluate if conditions, which leads to the reporting of recursive object
assignments as sinks, even if cases where the if condition is not executed. While these assignments
may contribute to the vulnerability’s existence, they do not directly pollute Object.prototype.
In comparison, ODGen has no TFPs in path traversal (CWE-22). This is because ODGen uses

very specific queries that only search for the unsafe sinks in the context of a web server, i.e., the
tainted path must pass in functions CreateServer or CreateHttpServer. For prototype pollution
vulnerabilities, ODGen has only 13 TFPs, though it also has a low TP rate, as discussed above.

Precision, recall, and F1-score: Table 4 also presents the precision, recall, and F1-score of both
Graph.js and ODGen. Precision is computed as)%/()% +)�%), where TP only includes the annotated
vulnerabilities. Recall is calculated as )%/()% + �# ). F1-score is determined using the harmonic
mean of precision and recall: (2× Precision × Recall)/(Precision + Recall). Globally, Graph.js achieves a
precision of 78%, which is an increase of 14 points over ODGen’s precision. The most significant
improvement of Graph.js over ODGen is observed on the recall, which rises from 50% to 82%,
respectively, playing a decisive role in boosting Graph.js’s F1-score by 1.42× that of ODGen.

Takeaway 1: Graph.js detects 82% of the reported vulnerabilities in the ground truth datasets,
outperforming ODGen by 1.63×. It achieves a total precision of 78%, which is 1.23× higher than
ODGen’s precision, and an F1-score of 80%, surpassing ODGen by 1.42×.
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Table 5. Vulnerabilities found by Graph.js in the Collected dataset

.

Vulnerability Reported Checked Exploitable Unreported FP

Path Traversal 1,223 26 4 3 21

Command Injection 384 159 71 26 91

Code Injection 701 201 10 4 191

Prototype Pollution 361 33 16 16 15

Total 2,669 419 101 49 318

5.3 RQ2: Vulnerability Detection in the Wild

We assess Graph.js’ capability to detect zero-day vulnerabilities, by applying Graph.js to analyze the
32K npm packages from the Collected dataset. We define a vulnerability as zero-day if (1) a human
expert confirms the vulnerability with a generated exploit, (2) we cannot find any information
about the vulnerability online, and (3) it is not an intended functionality of the package.

Table 5 summarizes our results. Initially, Graph.js reported 2,669 vulnerabilities (see the column
“Reported”). From those, we randomly sampled 396 packages to manually analyze, corresponding
to 419 vulnerabilities (column “Checked”). To limit the manual effort, we prioritized analyzing
packages with less than 10 files and code injection and command injection vulnerabilities, as they
typically are simpler, making it easier to create the exploits to confirm the vulnerabilities, per our
prior experience. From the 419 vulnerabilities we manually checked, we successfully created an
exploit for 101 of them (column “Exploitable”); 49 of them were not previously reported and were
not an intended functionality of the package.

We detected 318 non-exploitable vulnerabilities (i.e., false positives), mainly due to the presence
of sanitization functions between tainted sources and unsafe sinks, or tainted data reaching unsafe
sinks only under highly specific circumstances, making the creation of an exploit exceptionally
challenging or even impossible, especially in code injection vulnerabilities. In particular, the high
false positive rate in detecting code injection vulnerabilities is primarily caused by us considering
the Node.js function require as an unsafe sink. This assumption is not always true. Although an
attacker is able to control the imported package name, most times it is not able to also execute an
exported function of that package or control the arguments. This is not manifested as an issue in
the ground truth datasets, because there were few require functions with dynamic package names.

Ethical disclosure:We performed responsible disclosure for the confirmed vulnerabilities. We
contacted all package maintainers, either directly or via Snyk, to explain the discovered vulner-
abilities, along with proof of vulnerability. We were unable to find contact information for 3 of
them. We provided a 30-day response deadline, and if we do not receive any communication from
package maintainers within 30 days we report the vulnerability to CVE (MITRE) [12]. At the time
of submission, we obtained 3 CVEs: CVE-2023-26156, CVE-2023-49210, and CVE-2023-40582. We
received 6 replies, of which 4 developers confirmed the vulnerability: #1 deprecated the package
and #2 produced a fix, as a result of our reporting; #3 asked us to create a pull request with a
warning, and #4 said that the package was not being maintained anymore, and won’t investigate a
possible fix. #5 asked for a timeline extension, and #6 did not agree with our assessment.

Takeaway 2: Graph.js found 101 exploitable vulnerabilities in the Collected dataset, where 49 of
them were not previously reported and were not an intended functionality of the package.

5.4 RQ3: Performance Evaluation

Execution time:We measure the time taken by Graph.js and ODGen to detect vulnerabilities in
each npm package from both our reference datasets, consisting of 160 packages from VulcaN and
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Fig. 7. CDF of total time to finish analysis.

Table 6. Average time, taken by each analysis phase.

CWE #
Graph.js ODGen

Graph Traversals Total Graph Traversals Total

CWE-22 166 1.51s 2.2s 3.71s 1.19s 0.5s 1.69s

CWE-78 169 1.65s 2.11s 3.82s 3.75s 0.56s 4.32s

CWE-94 54 4.52s 2.15s 6.81s 1.4s 0.44s 1.84s

CWE-1321 214 2.4s 2.97s 5.47s 3.42s 12.04s 15.45s

Total 603 2.1s 2.44s 4.61s 2.68s 2.73s 5.41s

384 from SecBench. Figure 7 plots the cumulative distribution function (CDF) of the percentage of
packages that each tool managed to analyze according to the analysis time of each package. We
depict the first 60 seconds, although each package can take as much as 5 minutes to be processed
as per our pre-defined analysis timeout. We can see that Graph.js completes the analysis for almost
all the 544 packages from both datasets. Within just 10 seconds, Graph.js had already finished
analyzing more than 95% of the packages. The remaining long tail represents only 10 packages that
Graph.js was unable to analyze within the 5-minute limit, accounting for 1.8% of the total. In stark
contrast, ODGen showcases limited scalability, successfully analyzing only 71.5% of the packages.
Interestingly, in the initial five seconds, ODGen outperforms Graph.js by analyzing packages

considerably faster. For instance, by the 2-second mark, ODGen had already analyzed 39.5% of
the packages, while Graph.js had completed only 1.1% of the total. To understand the reasons
behind this difference, we calculated the average package analysis times of Graph.js and ODGen
for packages that did not time out, grouped by vulnerability type. We further break down the time
into two phases: graph construction and graph traversals. Table 6 summarizes these findings. In
the table, the columns “Graph” and “Traversals” indicate the average time each tool takes to build
its graph and execute the corresponding query. “Total” represents the total time.
Considering all vulnerability types, Graph.js analyzes a package on average 0.8 seconds faster

than ODGen. However, a more detailed analysis by vulnerability type reveals some interesting
insights. On the one hand, ODGen’s graph traversal is considerably more efficient for most taint-
style vulnerabilities (CWE-22, CWE-78, and CWE-94), with Graph.js potentially taking up to 4.8
times longer to process a package. This efficiency in ODGen can be attributed to its queries being
natively implemented in Python as part of the tool, whereas Graph.js relies on Neo4j’s query engine,
which is slower. Consequently, taint-style detections tend to complete more quickly in ODGen than
in Graph.js, explaining the performance discrepancy highlighted in the CDF. Notably, for prototype
pollution (CWE-1321), the situation is reversed: ODGen takes significantly longer to analyze
prototype pollution vulnerabilities. This delay is primarily due to the considerable expansion in the
size of its ODG caused by patterns associated with prototype pollution vulnerabilities [36].

Takeaway 3: Graph.js’s average package analysis time is 4.61 seconds, and it successfully analyzes
98.2% of all packages from our reference datasets, demonstrating greater scalability than ODGen.

Graph complexity:We assess the complexity of MDG, by measuring the number of nodes and
edges for all analyzed packages, and compare it with ODGen. Table 7 presents the graph size of
Graph.js and ODGen for the reference datasets combined, grouped by the number of lines (LoC)
of the analyzed package. To ensure a fair comparison with ODGen, we included the AST and
CFG nodes used to generate the final MDG, even though they are not used in the queries. The “#”
column represents the total number of packages and the “# Graphs” column represents the number
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Table 7. Graph complexity of Graph.js and ODGen for the VulcaN and SecBench datasets combined.

LoC #
Graph.js ODGen

# Graphs
Nodes Edges

# Graphs
Nodes Edges

Avg. Min/Max Avg. Min/Max Avg. Min/Max Avg. Min/Max
[0, 50) 220 220 185 38/687 252 46/976 199 5,594 1,851/103,655 2716 1,241/32,405
[50, 100) 116 116 569 200/1,092 797 264/1,504 85 7,227 1,820/61,487 3,582 1,227/16,386
[100, 200) 98 98 1,180 576/2,474 1,640 826/3,292 67 25,989 1,820/477,121 10,444 1,227/73,891
[200, 1k) 87 85 3,095 701/10,416 4,356 963/14,058 37 23,064 3,978/97,070 11,734 3,101/40,540
[1k, 2k) 11 10 9,474 6,284/18,006 13,585 9,170/25,674 2 14,016 12,041/15,992 12,014 9,253/14,776

[2k, 30,605] 12 5 47,841 15,121/62,158 72,237 20,875/89,677 0 - - - -
Total 544 534 1539 38/62,158 2,209 46/89,677 390 11,187 1,820/477,121 5,146 1,227/73,891

of graphs that each tool was able to generate before timing out. Note that the total number of
packages is different than the number of vulnerabilities presented in previous sections, because
one package may contain more than one vulnerability (see §5.1). Similarly to §5.4, we measure the
number of edges and nodes of the graph generated by ODGen for each vulnerability type alone.
The graphs built by Graph.js are significantly simpler, having on average 7.2× fewer nodes and
2.3× fewer edges than ODGen. MDGs grow linearly with the number of lines of code given that
our fixed-point computation algorithm only generates a single node per allocation site, re-using
the same node in every iteration. Conversely, ODGen allocates a new node every time an object
initializer command is analyzed, leading to the object explosion problem noted by its authors.

Takeaway 4: In 99% of the cases, Graph.js generates graphs significantly smaller than ODGen.

5.5 Case Study

We highlight a case study, sourced from the reference datasets, that showcases a prototype pollution
vulnerability in the context of a loop. Figure 8 presents a code snippet adapted from the npm
package set-value v3.0.0, which is used to set nested properties on an object using dot notation, and
is susceptible to a prototype pollution vulnerability (CVE-2021-23440). The MDG of the prototype
pollution vulnerability presented in Figure 8 is illustrated in Figure 9. The edges are numbered
according to their creation timestamp.

The initial graph contains >1, >2, and >3, as these are the function parameters. In line 2, object >4
(path) is created with a dynamic property, which depends on >1 (edges 1 and 2 ). In line 3, >4 is
extended with property length (edge 3 ). When we execute the first iteration of the loop, variable
obj is mapped to >1; so, in line 6, we update a dynamic property on >1 with a dynamic value,
similarly to the running example (edges 4 , 5 , 6 and 7 ). In line 8, we have two versions of obj: >1,
if the if branch was not executed, and >4 otherwise; so, we only extend >1 with a dynamic property
edge ( 8 , 9 ), as >7 already has one, and map obj to {>8, >9}. Now, we execute the second (and last)
iteration of the loop. In line 6, we update a dynamic property on {>8, >9} with a dynamic value,
as before. Due to our cyclic representation, we generate the same abstract location for the same
literal object. So, we add edges 5 , 6 , 7 and 10 when updating >8, and edges 5 , 6 , 7 and 11 when
updating >9. Finally, similarly to the first iteration, extend >8 and >9 with a dynamic property edge
( 12 and 13 ). We can easily recognize the prototype pollution pattern by identifying the pattern

>1
P(*)
−−→>9

V(*)
−−→>7

P(*)
−−→>6. The property of the lookup >9, the property of the sub-object assignment >7

and the property of the first lookup >8 are tainted through paths >6
D
−→>9, >6

D
−→>7, >7

D
−→>8, respectively.

6 DISCUSSION

Currently, Graph.js suffers from two types of limitations. One pertains to the inherent limitations
of static analysis, as it cannot precisely analyze programs that rely on dynamic features of the
language. Graph.js only analyzes dynamic function calls that can be resolved statically (e.g., we know
statically to which function a given variable/property points to) and does not support dynamic
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Fig. 8. SetValue function (CVE-2021-23440) Fig. 9. MDG of the program given in Figure 8

code evaluation with eval and the Function constructor. It handles arrays similarly to objects,
evaluating indexes as property names, but it may introduce ambiguities, e.g., when the number of
elements cannot be determined statically. Nonetheless, Graph.js is able to analyze packages with
unimplemented features but can miss vulnerabilities.
Graph.js outperforms ODGen due to our design decision of not to keep the full AST and CFG

information and not to unfold loops and recursive calls. One implication is that the order of two
property reads x.a and x.b that are not separated by updates to x, cannot be distinguished in MDG.
However, such reads could be reordered while preserving the program semantics. The evaluation
results indicate that the precision we gave up allowed Graph.js to be more performant in finding
vulnerabilities that we target.

The precision of Graph.js is bounded by the queries presented in §4, which may not encode all
the patterns that match a specific vulnerability type, or detect if proper sanitization was employed.
Graph.js’s queries can be expanded to identify other taint-style vulnerabilities, such as SQL injection,
without modifying the underlying MDG. For instance, to detect SQL injections, one can supply
common sinks like mysql.connection.query. The query can also be extended to not report program-
specific sanitization functions, reducing false positives.

The soundness proofs established that the abstract graph over-approximates the concrete graph.
We could go one step further and define concrete semantics that uses a regular object graph, as
opposed to the multiversion one. Collapsing the multiversion graph to include only the latest
version would yield the regular object graph. Using this concrete semantics, we can define concrete
attack traces. The soundness proof could then be used to show that if there is a real attack trace on
the concrete semantics, then there is a corresponding pattern in the concrete MDG, which in turn,
means that the pattern exists in the abstract graph, i.e., our MDG does not miss any vulnerabilities.

7 RELATED WORK

Program analysis using CPGs: CPGs [61] have been used for detecting security vulnerabilities
in web application code for various languages, including PHP [2, 46], JavaScript [10, 29, 36], and
WebAssembly [7]. Khodayari and Pellegrino [29] explored CPGs for detecting cross-site request
forgery vulnerabilities in client-side JavaScript. Li et al. [35] introduced a CPG version for identifying
prototype pollution vulnerabilities in Node.js applications using an Object Property Graph (OPG).
OPG enhances the original CPG by representing JavaScript objects, including variable names and
properties. ODGen [36] evolved from this work, introducing the Object Dependence Graph (ODG)
to detect Node.js vulnerabilities using graph queries. However, ODGen’s combined CPG-ODG
structure is complex and lacks soundness proofs. Our work addresses these limitations by tracking
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object versions using an MDG to improve the effectiveness and trustworthiness of the analysis.
Although MDGs were designed to address JavaScript-specific challenges, their underlying ideas can
also be applied to reasoning about mutation in other dynamic languages, such as PHP and Python.

Vulnerability detection tools for Node.js applications: Various studies [1, 6, 53, 64] have
reported a profusion of security vulnerabilities in npm packages and Node.js applications. To detect
them, many existing tools employ dynamic code analysis [9, 23, 52–54, 60], sometimes in combina-
tion with symbolic execution Xiao et al. [60]. Some approaches focus on specific vulnerabilities,
such as prototype pollution [30, 35] or code and command injection vulnerabilities [41]. Others, also
generate exploits [9, 27, 43]. Brito et al. [6] studied several static vulnerability scanners, including
ODGen and CodeQL [10], and found that ODGen offers the best trade-off between effectiveness and
precision among the evaluated tools. Graph.js, while sharing the goal of detecting vulnerabilities in
npm packages with the aforementioned work, explores a distinct analysis technique.

Vulnerability detection for client-side JavaScript code on the browser. Researchers have
utilized a variety of code analysis techniques to detect malicious JavaScript code [8, 15, 16], vul-
nerabilities in JavaScript code in web applications [29, 34, 37, 38, 46, 55], and browser extensions
[17, 50, 63]. DoubleX [17], leverages an Extension Dependence Graph for enhanced automated de-
tection of vulnerable extensions. Although our focus is predominantly on server-side npm packages,
Graph.js can in principle be adapted to the client side. Such an extension would require handling
browser-specific APIs and analysis of event handlers. We leave this exploration for future research.

Static analysis of JavaScript code: Abstract interpretation [11] analyzes a program in an ab-
stract domain rather than the concrete domain in which it operates. Some tools leverage abstract
interpretation for analyzing errors in JavaScript code [3, 13, 26, 28, 31, 42, 44, 45]. Although CPG
(and MDG) construction is not abstract interpretation in the classical sense defined by Cousot
and Cousot [11], abstractly executing the program to construct the CPG shares similarities with
computations in an abstract domain, as both aim to capture higher-level properties of programs.
Points-to-analysis for JavaScript [18, 25, 51] aims to identify potential memory locations that a
pointer or reference variable might target. While Graph.js integrates points-to information within
its MDG, it includes additional information on the program’s behavior to enhance the vulnerability
analysis. In particular, instead of computing an abstract representation of the final concrete states,
it models the entire program execution with new version edges.

8 CONCLUSIONS

We introduce Multiversion Dependency Graph (MDG), an efficient graph-based data structure
for statically detecting common vulnerabilities in JavaScript programs. MDG relies on a single
graph that models the state evolution of objects and properties, greatly reducing graph and query
complexity. We implemented Graph.js, a static vulnerability scanner for npm packages based on
MDG graphs, that detects taint-style and prototype pollution vulnerabilities. Our evaluation shows
that Graph.js detects 82% of the reported vulnerabilities in the ground truth dataset, and is able to
analyze 95% of the packages in under 10 seconds. Additionally, we have identified 49 previously
undiscovered vulnerabilities in npm packages.
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