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ABSTRACT
Attackers can steal sensitive user information from web pages via

third-party scripts. Prior work shows that secure multi-execution

(SME) with declassification is useful for mitigating such attacks,

but that attackers can leverage dynamic web features to declassify

more than intended. The proposed solution of disallowing events

from dynamic web elements to be declassified is too restrictive to

be practical; websites that declassify events from dynamic elements

cannot function correctly.

In this paper, we present SME
T
, a new information flow monitor

based on SME which uses taint tracking within each execution to

remember what has been influenced by an attacker. The result-

ing monitor is more permissive than what was proposed by prior

work and satisfies both knowledge- and influence-based defini-

tions of security for confidentiality and integrity policies (respec-

tively). We also show that robust declassification follows from our

influence-based security condition, for free. Finally, we examine

the performance impact of monitoring attacker influence with SME

by implementing SME
T
on top of Featherweight Firefox.

1 INTRODUCTION
Online services for banking, social media, shopping, etc., typically

require access to the user’s personal information such as their phone

number, location, or credit card details. Web attackers have been

known to steal sensitive user data [25], sometimes via third-party

scripts, which have been observed indiscriminately collecting data

from web forms, including personal information [38].

Information flow control (IFC) monitors are a promising way to

prevent sensitive information from leaking to attackers [21, 30, 34].

They have been used to secure applications in many domains [20,

22, 26, 27, 39, 43]. The canonical IFC security property is nonin-
terference. The simplest form of noninterference says that public

outputs (least privileged) should never be influenced by secret in-

puts (requiring the most privilege). However, in many real-world

applications, this definition is too restrictive to be practical. Sup-

porting principled declassification, which allows selected sensitive

information to be leaked while maintaining an otherwise provably

secure system, is important for many useful web services like web-

site analytics. For instance, if a company wants to know which

products are being clicked on, they may want to track some of their

customers’ interactions on their site. Declassification can ensure

that these third-party analytics will have access to the information

they need (e.g., which products are clicked on), without releasing

other sensitive information.

Prior work that allowed declassification by web scripts either did

not prove formal properties about declassification [11, 12], or used

a simplified model missing some dynamic JavaScript features that

could be leveraged by an attacker to leak information [40]. Later

work explored the threat posed by declassifying events associated

with dynamically added page elements and developed a technique

using secure multi-execution (SME) to prevent these leaks [29]

(detailed discussion in Section 2.2). However, the proposed solution

disallows all events from dynamically generated web elements

from being declassified. While this technique is provably secure, it

risks altering the behavior of secure programs and could prevent

declassification in the benign example described above.

This paper aims to develop an IFC monitor that allows flexi-

ble declassification without sacrificing security. Since SME enjoys

strong security guarantees and do not need to abort the program

(as opposed to NSU [7]), which is desirable for web applications,

we build on prior work on securing dynamic secrets with SME [29]

to develop a more fine-grained technique for protecting dynamic

features from leaking secrets due to declassification.

One key insight is that leaks caused by attackers’ interactions

with declassification can be stopped if the monitor tracks attacker

influence on the page, only preventing declassification when it

involves code added by the attacker. We provide more detailed

examples in Section 3.

We design SME
T
by extending prior work [29] with techniques

based on integrity labels to enforce robust declassification [19, 42].

Specifically, SME
T
uses taint tracking within each execution to re-

member the trustworthiness of page elements and their event han-

dlers via integrity labels. These integrity labels indicate attacker

influence and decide whether declassification is allowed.

We define our security conditions based on knowledge-based

noninterference [1, 4, 6, 9, 10]. We present a novel knowledge-

based security condition where robust declassification follows from

influence-based security for free.

The same techniques may be applied to knowledge-based secu-

rity conditions to prove transparent endorsement [18] (the integrity

dual of robust declassification), but in this paper, we focus on robust

declassification for ease of understanding. We prove that the design

of SME
T
is secure.We implement ourmodel on top of Featherweight

Firefox as a sanity check on our semantics and to understand the

impact of our more complex security lattice on performance.

This paper makes the following technical contributions.

• A novel IFC monitor design that combines SME and taint

tracking for more permissive declassification

• Novel security conditions that capture confidentiality, in-

tegrity, and robust declassification.

• Proofs that SME
T
is secure.

• A prototype implementation in Featherweight Firefox.
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Figure 1: Standard SME (left) and SME with declassification
and multiple DOMs (right)

2 BACKGROUND AND RELATEDWORK
2.1 Reactive systems and IFC monitors
Reactive systems have been widely used to model web applications.

A reactive program is a set of event handlers which execute when

they are triggered by events [16]. We consider a single-threaded

model where event handlers execute one at a time. While an event

handler is running, the system is in Producer state. After the event
handlers finish execution, the system waits in Consumer state for

more events to process.

Secure multi-execution (SME) enforces IFC policies in reactive

programs by executing event handlers multiple times—once at each

security level. Each execution only receives the inputs it has privi-

lege to see, and only outputs to channels matching the security level

of the execution [23, 24]. Consider a two-point security lattice with

labels P (Public) and S (Secret), and the ordering P ⊑ S (meaning

information can flow from P to S but not vice versa). As shown in

Figure 1, SME would run event handlers twice, where both copies

of the execution see P-labeled data. The S copy of the execution

can see all of the data, but can only output to privileged (Secret)
channels. In the P copy of the execution, Secrets are replaced with

a default value (dv) and can only output to Public channels.
Faceted execution [8, 14] is a similar multi-execution technique.

Rather than running all of the code multiple times, this approach

creates “facets” of values for every level in the lattice, only when

they depend on a secret. The code runs once until the control flow

depends on a faceted value and the execution splits to evaluate each

facet. Later work combines SME and faceted execution [36] (and an

optimization [2]) and proposes “generalized” multiple facets [32]

to balance the security and performance tradeoffs of the two multi-

execution techniques (in the first two cases), consider a more gen-

eral security lattice (in the last case), and each achieves stronger

(termination-sensitive) security guarantees than offered by tradi-

tional faceted execution. SME
T
also uses a general security lattice.

The techniques SME
T
uses may be relevant to faceted execution,

but we focus on SME because the semantics are simpler.

Taint tracking approaches enforce IFC policies by attaching la-

bels to the data in the system, which indicates their secrecy and

trustworthiness. The label on the data determines if an output is

permitted (if the channel trusts the data and has enough privilege

to receive it) or not. Taint tracking is susceptible to implicit leaks

when branching on a secret. One solution is to abort the execution

when updating public data in secret contexts (called no sensitive
upgrade [7]), or simply permit the leaks and block only explicit

leaks that output secret information to public channels (satisfying

onKeypress(secret) = case secret :
| 1 =⇒ new(b1); addEH(b1, onClick{outputP (1)});
· · ·

| n =⇒ new(bn ); addEH(bn , onClick{outputP (n)});
| dv =⇒ new(b1); addEH(b1, onClick{outputP (1)});

· · ·

new(bn ); addEH(bn , onClick{outputP (n)});

(a) Event handler added by the attacker.

(P)
(S)

b1

bibi

bn

…

…

(b) Resulting attacker view (P ) and user view (S ) of the page.

Figure 2: Example of dynamic features causing leaks. The dv
case guarantees that the attacker copy will have a matching
button (colored light blue) to capture the declassified event
and leak the secret.

a weaker security condition called explicit secrecy [28, 37]). SME
T
is

a new monitor which composes SME with taint tracking so that we

can keep track of the trustworthiness of the event handlers within

each execution. These labels are determined when the event han-

dler is initially registered and remain fixed throughout execution,

so we don’t need to worry about sensitive upgrades, nor do we

have to resort to an explicit secrecy security condition.

2.2 Declassification with dynamic features
The monitors described above enforce strict noninterference, where
secret inputs are never allowed to influence public outputs. But

this is often too restrictive for common use cases such as analyt-

ics where an online shop wants to learn which products users are

clicking on most, or user authentication where a bank wants to

know a user’s location. Declassification offers a principled way to

release some information. Vanhoef et al. developed an approach to

stateful declassification in SME [40], where declassification policies

are flexible enough to release events, as well as aggregated/approx-

imated data. For instance, “the user’s approximate location may be

released after they give permission” and “the average location of

every 100 mouse clicks may be released” are both stateful policies.

However, McCall et al. [29] showed that dynamic features can

be used by an attacker to leak more than is allowed by these de-

classification policies via the following attack. Consider the 2-point

security lattice from before and a web page with the policy: all

user events are secret, click events and the occurrence of keypress

events may be declassified (however, which key was pressed should

remain secret). The P copy of the page is visible to the attacker, and

receives only the public (or declassified) events, while the S copy

is visible to the user and receives all of the events. Suppose the

attacker registers the event handler shown in Figure 2a which runs

whenever a key is pressed and adds a different button to the page,
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depending on what is typed (stored in secret). If the user types i ,
this event handler would add button bi to the S copy of the page

based on the actual value of the secret. The P copy of the page

receives the event with a default value dv to hide what was typed,

so the event handler adds all possible buttons to the page. When

the user clicks on bi (S copy of the page), the click is declassified

to the P copy, which is guaranteed to have a matching button to

capture the event. The onClick event handler executes the state-

ment outputP (i ). Since outputs to P channels are allowed in the P
execution, this leaks what the user typed to the attacker.

To prevent this leak, McCall et al. [29] propose an additional

label S∆ for dynamically-generated elements, and restrict declassifi-
cation to only apply to elements labeled S , i.e., events dispatched
on elements labeled S∆ are never declassified to P . Accordingly, in
the previous example, the button bi is labeled S∆; hence, the mouse

click on bi is not declassified to P , which prevents the attacker from

learning which key was pressed. While this prevents unintentional

leaks, it can be too restrictive to be practical, which is one of the

motivations for this work.

3 MOTIVATING EXAMPLES
Recall the scenario from Section 1 where an online shop wants

to know which of their products are receiving the most attention.

They use JavaScript to dynamically display products on their site

depending on what the user has searched. To measure product pop-

ularity, they use a third-party analytics library to track where users

are clicking on their site. Because they do not want the third-party

to have access to all of the user’s private information, they treat

the script as Public. To give the library access to the relevant click

information, the shop employs a policy where the coordinates of

each click are Secret, but which product is clicked may be declas-

sified. With the solution described above, everything dynamically

loaded to the page (even by code not controlled by the attacker)

will be labeled S∆ and excluded from declassification, and thus, the

online shop won’t be able to perform their analytics.

The reason the earlier example (Figure 2b) leaked more than

intended is that the attacker leveraged the declassification policy

to leak information by adding buttons to the page. Meanwhile, the

products added to the web page described above are added by the

shop itself, who should be trusted to trigger declassification. The

underlying problem is not the dynamic page elements, but their

source. Instead of disallowing any dynamic features to influence

declassification, an intuitive fix would simply restrict the attacker’s

influence. This involves protecting the integrity of the data, which

is dual to the confidentiality policies we have discussed so far.

3.1 Tracking integrity in SME
Consider a 4-point security lattice with 2 confidentiality labels

(Public and Secret) and 2 integrity labels (T rusted and Untrutsed).

Information is allowed to flow from Public to Secret andT rusted to
U ntrusted. The complete security lattice is a diamond with (P ,T ) at
the bottom, (S,U ) at the top, and the other labels (P ,U ) and (S,T )
in between. SME can enforce information flow policies drawn from

this lattice by running one execution for each of these 4 security

levels as shown in Figure 3. In this model, the attacker and other

Untrusted parties, like ad.com, are only able to influence the code

(P,U)

(P,T)

(S,U)

(S,T)bsecret

bsecret

bdv

bdv
b1 bn…b2

bAgree

bAgree

b1 bn…b2

bAgree

bAgree

within.news.com

within.news.com

within.news.com

within.news.com

between.news.com

between.news.com

between.news.com

between.news.com

Figure 3: Information is allowed to flow in the direction of
the arrows. The attacker can influenceUntrusted executions
to add page elements or event handlers to try to manipulate
declassification directly within an execution (blue case) or
indirectly between executions (orange case).

running on theUntrusted executions, while T rusted parties (like

news.com) may influence code running in any execution. In our

examples, the (P ,U ) execution communicates with the attacker via

ad.com and the user is shown the (S,U ) version of the webpage.

In the following examples, we show that attackers can influence

declassification irrespective of whether the user interacts with at-

tacker code directly (similar to the leak from [29]) or indirectly (if

a declassification triggers attacker code in another execution).

Example 3.1. Leakswithin an execution. Suppose a user visits
a webpage (within.news.com) which explains that it will share their

account preferences with advertisers (ad.com), but only if they

click the “Agree” button (identified in the code as bAgree) to consent.
When the page loads, ad.com adds a large bAgree button at the

top of the page with the text “Click me!”, as in Figure 3, where

the buttons coming from ad.com are light blue and the ones from

within.news.com are dark blue. A user may click the button, not

realizing it will declassify their preferences. We call this a leak

within an execution because the user is interacting directly with

attacker-controlled code. This is similar to the attacks from prior

work [29], where the user interacts directly with the page element.

Example 3.2. Leaks between executions. Consider another
webpage (between.news.com) which has the policy that keypress

events are Secret, but clicks may be declassified from Secret to
Public. news.com installs an event handler which adds a different

button to the page, depending on which key the user presses (sim-

ilar to onKeypress in Figure 2, without the dv case). Meanwhile,

ad.com adds all possible buttons to the page and registers an event

handler which is triggered by a click to send them a message, telling

them which button was clicked (similar to the dv case from the

onKeypress event handler in Figure 2). The resulting page is shown

in Figure 3, where the dark orange buttons were added by news.com
3



and the light orange buttons were added by ad.com. Note that be-

cause news.com is T rusted, the dark orange buttons are added to

all copies of the webpage, including theUntrusted ones.

Like the leak from prior work [29], if the user clicks the bsecret
button on the (S,U ) page, the event will be declassified to the

(P ,U ) execution, which is guaranteed to have a matching button to

capture the event and leak the keypress to the attacker. We call this

a leak between executions because the user is interacting with code

added by the host page which triggers attacker-controlled code in

another execution. This example highlights that it is not enough to

only look at the page the user is interacting with, we also need to

consider the executions capturing the declassified events.

To prevent the attacker from influencing declassification, one

approach would be to extend the solution from prior work [29] to

apply to events originating from dynamic elements in Untrusted

executions (which might include attacker-controlled code), as well

as events being released to dynamic elements in the Untrusted

executions. But as we described above, this would also prevent

innocent declassifications, like the online shop in the previous

example. Likewise, it wouldn’t be enough to prevent the user from

interacting directly with attacker-controlled code by showing them

the (S,T ) copy of the page instead of the (S,U ) copy, because this
would still be susceptible to the leaks between executions.

Our approach: To prevent these leaks without sacrificing func-

tionality, we develop SME
T
(Section 5.2), which is SME with taint

tracking to reflect the trustworthiness of the source of the code

adding new page elements and event handlers. We check that the

user trusts the code they’re interacting with directly to decide if a

declassification should be triggered (preventing leaks within execu-

tions), as well as the code in other executions to decide whether they

should receive the event (preventing leaks between executions).

4 SMEWITH DYNAMIC FEATURES
We first describe the syntax and semantics of SME for reactive

systems with dynamic features (declassification will be added in

the next section). Our semantics are flexible enough to work with

any finite security lattice of confidentiality and integrity labels.

Following prior work [29], we organize our SME semantics into

three levels: the top-most level is responsible for processing inputs

and outputs, looking up event handlers, and switching between

executions. The mid-level manages the execution for a particular

execution. The lowest level runs the current event handler.

4.1 I/O Processing and EH Lookup
The syntax for these rules is summarized in Figure 4. The security

lattice includes confidentiality labels, lc ∈ Lc , which specifies the

privilege needed to access data, and integrity labels, li ∈ Li , which
specifies how trusted a component is. Information may flow from

(lc , li ) to (l ′c , l
′
i ) if l

′
c has privilege to see data from lc (lc ⊑ l ′c ) and

l ′i trusts data from li (li ⊑ l ′i ). Our earlier example used a security

lattice with Lc = {P , S } and Li = {T ,U } for P ⊑ S and T ⊑ U , but

our rules are general enough to accommodate any (finite) lattice.

Events are associated with elements given by unique identifiers

id. Event handlers of the form onEv (x ){c} run command c with

argument x when the system receives event Ev (such as a click).

The security label (lc , li ) of an event is determined by the security

policy P. An execution trace T is zero or more steps of the top-

level system. An SME configuration K is a snapshot of the system

including the SME state Σ and the configuration stack ks.
Σ keeps track of the persistent state for each execution; each

security level pc = (lc , li ) has its own store σEH
(lc ,li )

which is the

event handler storage (i.e., the DOM) for each execution. The event

handler storage maps identifiers id to attributesv and event handler

mapsM , which maps events Ev to their respective event handlers

eh1, ..., ehn . This model allows each execution to have its own copy

of the DOM, whose contents may vary in privilege and trust. Each

execution runs its event handlers separately, beginning at the top

of the configuration stack ks. Each element of the configuration

stack determines what event handler to run, given by configuration

κ, and in which execution, given by the security level pc.
As the system runs, it may react to/emit various actions, α . In

the reactive setting, the system waits until it receives an input

which is an event triggering (zero or more) event handlers which

may produce some outputs. In our case, inputs are user interac-

tions id.Ev (v ) which are events Ev associated with an element id
(possibly) carrying some argument (e.g., which key is pressed for

a keyPress event or the location of a click). Outputs are given by

values sent along a channel ch. The other actions are silent •.
The semantics for the top-most level are shown in Figure 5. Rule

In receives an event Ev for page element id with parameter v from

the principal with privilege and trustworthiness given by pc. The
security policy tells us the label on the event is pc′. We run the

event handlers associated with the event in each execution with

enough privilege to see the event and who trust the event, i.e.,

at all executions at or above pc ⊔ pc′ in the security lattice. The

lookup semantics (Σ,E { ks) looks up the event handlers in Σ and

constructs a configuration for each execution in E, resulting in ks.
The output rules run event handlers one at a time. When an

event handler is running, the configuration at the top of the stack is

in producer state, producer(κ). Rule Out handles outputs produced
by the event handler. An execution performs outputs to channels

only if the label on the channel matches the execution context,

i.e., P (ch(v )) = pc. Otherwise, the output is suppressed. Rule Out-
Silent handles steps which don’t produce outputs. When the event

handler finishes running, the configuration at the top of the stack is

in consumer state, consumer(κ), and rule Out-Next pops the con-

figuration off the stack to run the next event handler. The execution

state is managed by the mid-level semantics, described next.

Example: Example 3.1 of leaks within an execution uses the se-

curity policy that click events are considered secret and trusted,

P (_.Click(_)) = (S,T )1 and page load events are public and trusted,
P (_.load(_)) = (P ,T ). The user interacts with the (S,U ) copy of

the page and the attacker who serves ads from ad.com is listening

on (P ,U ) channels.
Initially, before any events have been triggered, we assume that

the SME state is well-formed, meaning the source of the code (li )
loaded to each execution (l ′i ) is trusted (li ⊑ l ′i ). The attacker-

controlled code from ad.com only appears inU ntrusted executions,

while the code from T rusted news.com will appear in all of the

executions. For our example, we also assume that ad.com registers

1
Not to be confused with the isTrusted property distinguishing events which come

from a user from events which were generated by an event handler (see [41]).
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Security lattice: L ::= Lc × Li
Event: Ev ::= click | keyPress | ...
Event handler: eh ::= onEv (x ){c}
Security policy: P
Individual event handler

Expression: e ::= x |v | id | uop e | e1 bop e2
Command: c ::= skip | c1; c2 | x := e | id := e

| while e do c | if e then c1 else c2
| output ch e | new(id, e )
| addEh(id, eh) | trigger id.Ev (e )

Single configuration: κ ::= σv , c, s,E
Execution state: s ::= P |C

SME traces: T ::= K | P ⊢ T
αl
=⇒ K

Event queue: E ::= · | E, (id.Ev (v ), pc)
SME configuration: K ::= Σ; ks
SME state: Σ ::= · | Σ, pc 7→ σEH

pc
EH state: σEH

::= · | σEH , id 7→ (v,M )
EH map: M ::= · |M, Ev 7→ {eh1, ..., ehn }
Configuration stack: ks ::= · | (κ, pc) :: ks
Actions: α ::= id.Ev (v ) | ch(v ) | •

Figure 4: SME Syntax

P ⊢ K
(α ,pc)
=⇒ K ′

P (id .Ev (v )) = pc′

E = ((id .Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′) Σ, E { ks

P ⊢ Σ; ·
(id .Ev (v ),pc)
=⇒ Σ; ks

In

producer(κ ) Σ, κ
ch(v )
−→ pc Σ

′, ks′

α = ch(v ) if P (ch) = pc α = • otherwise

P ⊢ Σ; (κ, pc) :: ks
(α ,pc)
=⇒ Σ′; ks′ :: ks

Out

producer(κ ) Σ, κ
α
−→pc Σ

′, ks′ α , ch(v )

P ⊢ Σ; (κ, pc) :: ks
(α ,pc)
=⇒ Σ′; ks′ :: ks

Out-Silent

consumer(κ )

P ⊢ Σ; (κ, pc) :: ks
(•,pc)
=⇒ Σ; ks

Out-Next

Σ, E { ks

Σ(pc) (id .Ev (v )) = c κ = ·, c, P, · Σ, E { ks

Σ, (id .Ev (v ), pc) :: E { (κ, pc) :: ks
lookup

Σ, · { ·
lookup-empty

Figure 5: Top-level SME rules for processing inputs and out-
puts, and looking up event handlers

an onLoadU function to add the “Click me!” button (from Figure 3),

and news.com registers onLoadT to add the “Agree” button.

Then, the initial SME configuration is K0 = Σ0; ks0 where ks0
runs body.load for each execution (ks0 will be described in more

detail in the next section) in the following SME state:

Σ0 = (S,U ) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT }),
(P ,U ) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT }),
(S,T ) 7→ body 7→ (_, load 7→ {onLoadT }),
(P ,T ) 7→ body 7→ (_, load 7→ {onLoadT }),

Next, the (S,U ) execution runs the onLoadU event handler. Rule

Out-Silent applies and makes a step: K0

(•, (S,U ))
=⇒ K1. The new

configuration K1 has a new button in the (S,U ) copy of the store

Σ,κ
α
−→pc Σ

′, ks

Σ,σ , skip, P , ·
•
−→pc Σ, ((σ , skip,C, ·), pc)

PtoC

E = (id.Ev (v ), pc) :: E ′ Σ,E { ks

Σ,σ , skip, P,E
•
−→pc Σ, ((σ , skip,C, ·), pc) :: ks

PtoLC

Σ,σ , c
α
−→pc Σ

′,σ ′, c ′,E ′

Σ,σ , c, P ,E
α
−→pc Σ

′, ((σ ′, c ′, P , (E,E ′)), pc)
P

Figure 6: Mid-level rules for processing the event queue

and the other copies remain unchanged:

Σ1 = (S,U ) 7→ body 7→ (...),bAgree 7→ (“Click me!”, ·)
the rest are the same as Σ0

The same process will repeat to add the “Click me!” button to the

(P ,U ) store and the “Agree” button to the other executions. Now

that the event handlers have finished running, rule Out-Next pops

the event handler from ks and the system waits for user input.

Suppose the attacker also installed an event handler in the (S,U )
and (P ,U ) executions which directly sends them the user’s account

preferences. Since they are listening on a (P ,U ) channel, the rule
out would suppress the output from the (S,U ) execution which

knows the real preferences (since P (ch) , (S,U )). The same rule

allows the output from the (P ,U ) execution, which would instead

output a default value dv, with no access to the real preferences.

4.2 Execution State and EH Queue
A single configuration κ is a snapshot of one execution, including

the local variablesσv (which are only accessible to the event handler

currently running), the current command c being executed, the

execution state s of the event handler, and the event queue E. The
execution state is either P for producer (meaning an event handler

is running) or C for consumer (meaning the event handlers have

finished and the execution is ready to process a new event). Here,

the event queue, E, is a list of the events triggered by other event

handlers. The events will run in the same execution, so the pc on
each event in the queue will match the current execution context.
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Σ,σ , c
α
−→pc Σ

′,σ ′, c ′,E

JeKpcσ ,Σ = v

Σ,σ , output ch e
ch (v )
−→ pc Σ,σ , skip, ·

output

JeKpcσ ,Σ = v E = (id.Ev (v ), pc)

Σ,σ , trigger id.Ev (e )
•
−→pc Σ,σ , skip,E

trigger

JeKpcσ ,Σ = v Σ(pc) = σEH

id < σEH Σ′ = Σ[pc 7→ σEH
[id 7→ (v, ·)]]

Σ,σ , new(id, e )
new(id)
−→ pc Σ

′,σ , skip, ·
new

Σ(pc) = σEH σEH (id) = (v,M )

σEH ′ = σEH
[id 7→ (v,M[Ev 7→ M (Ev) ∪ eh])]
Σ′ = Σ[pc 7→ σEH ′

]

Σ,σ , addEh(id, Ev, eh)
new(id,eh)
−→ pc Σ

′,σ , skip, ·
add-eh

Figure 7: (Selected) rules for running event handers

The semantics for managing the event handler queue and ex-

ecution state are shown in Figure 6. Rule PtoC handles the case

where an event handler has finished running (c = skip) and no

other event handlers have been triggered (E = ·). In this case, the

execution state is changed to C for consumer state. On the other

hand, if an event handler has triggered other event handlers to run

(E , ·), rule PtoLC will additionally look up the event handlers

in E and return these event handlers in ks. Finally, rule P runs an

event handler using the event handler semantics, described below.

Example: The top-level I/O rules use the execution state to decide

whether they should continue running the event handler (rules Out

and Out-Silent) or pop the event handler off ks to run the next

event handler, if one exists (rule Out-Next), or wait for another

input (rule In) if one doesn’t. From the leaks between executions

example in Section 3.1, before the user presses a key on their key-

board or clicks the button, the system is inConsumer state, waiting

for user interaction (ks = ·). When the user clicks the secret button,
the input rule In looks up the event handler for secret.Click() and
the rule lookup sets the execution state to Producer. The rule P in

the mid-level semantics run the event handler to completion and

then PtoC switches the execution state back to Consumer state.

4.3 Individual Event Handlers
Expressions in the body of an event handler include variables, val-

ues (integers and booleans), page element identifiers, id, unary,
and binary operators. Commands are mostly standard and include

outputs to channels and dynamic behaviors for adding new page el-

ements (new(id, e )), registering new event handlers (addEh(id, eh)),
and triggering event handlers (trigger id.Ev (e )).

Selected event handler operational semantic rules are in Figure 7.

Expression evaluation is denoted JeKpcσ ,Σ where pc tells us which
copy of the shared storage to access in Σ and σ is the store local

to the current event handler. Candidate outputs are produced by

rule output. The other rules are for handling dynamic elements,

including triggering event handlers (rule trigger), generating new

page elements (rule new), and registering a new event handler (rule

add-eh). In each of these rules, we interact with the copy of the

global storage that matches the current execution context. Event

handlers run in the same context they were triggered in, denoted by

pc. New page elements must have a unique identifier, id < σEH
, and

are initialized with the given attribute and no event handlers,M = ·.
When registering a new event handler, the existing event handlers

associated with the event are looked up in the event handler map,

M (Ev). The event handler map is updated to include the original

event handlers plus the new one,M[Ev 7→ M (Ev) ∪ eh].

5 DECLASSIFICATION AND SMET

We extend the syntax and semantics from Section 4 to include

declassification. Due to space constraints, we describe the changes

to the rules in this section and present the full rules in Appendix A.

P,D ⊢ K
(α,pc)
=⇒ K ′

P (id.Ev (v )) = pc′

E = ((id.Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′)
(R ′,Ed ) = declassify(D,R, Σ, (id.Ev (v ), pc), pc′)

Σ,E :: Ed { ks

P,D ⊢ R; Σ; ·
(id .Ev (v ),pc)
=⇒ R ′; Σ; ks

In

declassify(D,R, Σ, (id.Ev (v ), pc)) = (R ′,E)

R = (ρ,d ) D ((id.Ev (v ), pc), pc′, ρ) = (ρ ′,vd ,Ed )
d ′ = update(d,vd )

declassify(D,R, Σ, (id.Ev (v ), pc), pc′) = ((ρ ′,d ′),Ed )
declassify

Figure 8: Updated input rule for declassification. Key
changes are shown in red text.

5.1 Stateful Declassification
We use stateful declassification [29, 40]. A stateful policy is one that

may involve the system state when deciding whether to declassify.

Here, we describe the syntax for declassification, shown below.

Declass. policy: D
Declass. module: R ::= (ρ,d )
Declass. state: ρ ::= · | ρ, (id1.Ev1,n1)
Declass. channel: d ::= (ι1,v1), · · · , (ιn ,vn )

The declassification policy is given by D. Given an event and the

current state, as well as information from the security policy, P,

D updates the current state and decides whether the event should

be declassified. The declassification module R keeps track of the

current state for making decisions about declassification as well as

channels for event handlers to access released values. A declassifi-

cation state ρ keeps track of relevant state conditions, such as the

number of times an event has been seen, and the declassification

channel d associates locations ι (such as a line number in the code)

with the released value accessible by that location.
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Rules for the I/O semantics is updated to include D and R:

P,D ⊢ R; Σ; ks
αl
=⇒ R ′; Σ′; ks′

A declassification function (declassify), shown in Figure 8 is added

to the input rule. It uses the declassification policy D to determine

whether the new event should be released to run event handlers

in additional execution contexts Ed , whether the system state ρ
should be updated, and what values should be updated on the

declassification channel d (if any).

Example: Recall Example 3.1 of leaks within an execution, where

the security policy says that clicks are (S,T ), and the declassification
policy says that the user’s preferences may be declassified from S
to P when bAgree is clicked.

When the user clicks bAgree in the (S,U ) execution, In will share

the event with all the executions with enough privilege trust the

user (just (S,U )), but we also use declassify to determine whether

the event should be declassified to additional executions:

D ((bAgree.Click( ), (S,U )), (S,T ), (bAgree.Click,n)) =
((bAgree.Click,n + 1), pref, ·)

This indicates that the state ρ has been updated to reflect that one

more click has been seen (n becomes n + 1), the user’s preferences
should be released on the declassification channel (pref), and the

click event should not be released to any additional executions.

For Example 3.2 of leaks between executions, the security policy

says that button clicks and keypresses are both (S,T ), but now, the
declassification policy says that button clicks may be released from

S to P . When the user clicks bsecret, In runs the event as-is in the

(S,U ) execution and declassifies the event as follows:

D ((bsecret.click( ), (S,T )), (S,T ), (bsecret.click,m)) =
((bsecret.click,m + 1), none, (bsecret.click( ), (P ,U )))

Here, ρ is updated to reflect the click, nothing is updated on the

declassification channel (none), and the click event is released to

the P executions who trust the event. That is, the event is released

to all executions with label li s.t. li trusts the event l
′
i (determined

by the security policy) and the source of the event l ′′i (formally,

l ′i ⊔ l
′′
i ⊏ li ). Here, this is just (bsecret.Click( ), (P ,U )). The result is

that the onClick event handler will run in both the (S,U ) and (P ,U )
executions. The rule Out will suppress the output from the (S,U )
execution, but permit the output from the (P ,U ) execution, which
is guaranteed to have a matching button to capture the event.

5.2 Robust Declassification in SMET

In the presence of an active attacker who may control some of the

code, we need to ensure that they do not control what/whether data

is declassified [42]. For the declassifications to be robust against

attacker influence, we need to ensure that the source of the event

li trusts the code l
′
i on the same execution they’re interacting with

(l ′i ⊑ li ). Additionally, we need to check that the source of the event
trusts the code which added the page element in the other execution
receiving the declassified event.

SME
T
composes taint tracking with the SME semantics presented

in the previous section to also keep track of the source of the page

elements in each execution. First, we modify the event handler

storage σEH
so that page elements and event handlers have labels

indicating the trustworthiness of their source:

EH state: σEH
::= · | σEH , id 7→ (v,M )l

EH map: M ::= · | Ev 7→ {ehl1
1
, ..., ehlnn }

The input rules prevent leaks within executions by using the labels

in σEH
to decide whether to proceed with a declassification. In

order to declassify, the source of the event must trust the source

of the page element. We use the shorthand labelOf (σEH (id)) to
represent the label on the element identified by id in σEH

, and

we write pc ↓i to mean the integrity label in pc. Then, an event

from a user at security level pc associated with a page element

given by id in σEH
is allowed to be declassified when the following

holds: labelOf (σEH (id)) ⊑ pc ↓i (rule In-Release). Otherwise, rule
In-No-Release only runs the event in the executions which have

enough privilege to see the event and who trust the user.

We use the declassification function described in Section 5.1 to

prevent leaks between executions. The updated declassification rules
are shown in Figure 9. In addition to looking up the declassified

event(s) and the execution(s) they will run in, robust throws out
any executions where the source of the event doesn’t trust the

source of the page element. Rule robust handles the case where

the user trusts the source of the code (the event is sent to the

execution), and rule not-robust handles the case where they do

not (the execution does not receive the event). Then, the lookup

semantics (judgement l , r ⊢ Σ,E { ks) ensure only the trusted

event handlers run. We define (eh, l ′) ↓l as eh when l ′ ⊑ l and
· otherwise. When there is at least one event handler the user

trusts (Σ(pc) (id.Ev (v )) ↓l= c), rule lookup-R adds the trusted

event handlers to ks and attaches a label Σ(pc) ⊔ Σ(pc) (id.Ev (v ))
reflecting the source of the code. When there are no trusted event

handlers (Σ(pc) (id.Ev (v )) ↓l= ·), rule lookup-notR moves to the

next execution receiving the declassified event. The rules adding

a new page element (new) or event handler (add-eh) from the

command semantics are responsible for assigning the labels in the

event handler store, where lsrc is the label from rule lookup-R.

Example: We assume that the initial SME state is well-formed,

i.e., page elements and event handlers are trusted by the execution

context they appear in: execution (lc , li ) should trust the page

elements and their event handlers, from source l ′i , that is, l
′
i ⊑ li .

For our example of leaks within an execution, there are three

event handlers. onLoadU is added by the attacker via ad.com, who

isU ntrusted, and onLoadT is added by the host via news.com, who

is T rusted. These event handlers are associated with the body of

the page, which we treat as T rusted. Recall that we assume that

the source of the code is trusted by the execution, meaning code

from ad.com only runs in theUntrusted executions and code from

news.com runs in both theU ntrusted andT rusted executions. Then,
the initial SME state with integrity labels is:

Σ0 = (S,U ) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT })T

(P ,U ) 7→ body 7→ (_, load 7→ {onLoadU , onLoadT })T

(S,T ) 7→ body 7→ (_, load 7→ {onLoadT })T

(P ,T ) 7→ body 7→ (_, load 7→ {onLoadT })T

Now, when the onLoadU event handler runs, the execution

knows the code came from an Untrusted source because of the

labelU . When the event handler adds the “Click me!” button, rule
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P, D ⊢ K
(α ,pc)
=⇒ K ′

P (id .Ev (v )) = pc′ labelOf (Σ(pc) (id)) ⊑ pc ↓i

E = ((id .Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′)
(R′, Ed ) = declassify(D, R, Σ, (id .Ev (v ), pc), pc′)

Σ, E { ks pc ↓i , r ⊢ Σ, Ed { ksd

P, D ⊢ R; Σ; ·
(id .Ev (v ),pc)
=⇒ R′; Σ; ks :: ksd

In-Release

P (id .Ev (v )) = pc′ labelOf (Σ(pc) (id)) @ pc ↓i

E = ((id .Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′)
Σ, E { ks

P, D ⊢ R; Σ; ·
(id .Ev (v ),pc)
=⇒ R′; Σ; ks

In-No-Release

declassify(D, R, Σ, (id .Ev (v ), pc), pcEv ) = (R′, E )

D ((id .Ev (v ), pc), pc′, ρ ) = (ρ′, vd , Ed )
d ′ = update(d, vd ) E = robust(Σ, Ed , pc ↓

i )

downgradeD ((ρ, d ), Σ, (id .Ev (v ), pc), pc′) = ((ρ′, d ′), E )
declassify

robust(Σ, E, pcEv ) = E
′

labelOf (Σ(pc) (id)) ⊑ l

robust(Σ, ((id .Ev (v ), pc) :: E ), l ) =
(id .Ev (v ), pc) :: robust(Σ, E, l )

robust

labelOf (Σ(pc) (id)) @ l

robust(Σ, ((id .Ev (v ), pc) :: E ), l ) =
robust(Σ, E, l )

not-robust

pc, r ⊢ Σ, E { ks

Σ(pc) (id .Ev (v )) ↓l= c κ = ·, c, P, · l, r ⊢ Σ, E { ks

l, r ⊢ Σ, (id .Ev (v ), pc) :: E {
(κ, pc, Σ(pc) ⊔ Σ(pc) (id .Ev (v ))) :: ks

lookup-R

Σ(pc) (id .Ev (v )) ↓l= · l, r ⊢ Σ, E { ks

l, r ⊢ Σ, (id .Ev (v ), pc) :: E { ks
lookup-notR

l, r ⊢ Σ, · { ·
lookup-Remp

lsrc, d ⊢ Σ, σ , c
α
−→pc Σ

′, σ ′, c′, E

JeKpcσ ,Σ = v
Σ(pc) = σ EH id < σ EH Σ′ = Σ[pc 7→ σ EH

[id 7→ (v, ·)lsrc ]]

lsrc, d ⊢ Σ, σ , new(id, e )
•
−→pc Σ

′, σ , skip, ·
new

Σ(pc) = σ EH σ EH (id) = (v, M )lid

Σ′ = Σ[pc 7→ σ EH
[id 7→ (v, M[Ev 7→ M (Ev) ∪ ehlsrc ])lid ]]

lsrc, d ⊢ Σ, σ , addEh(id, Ev, eh)
•
−→pc Σ

′, σ , skip, ·
add-eh

Figure 9: Robust declassification. Key changes are in red.

new uses the label on the page element T and event handlerU to

determine the trustworthiness of the new button T ⊔U = U . The

state after adding the “Click me!” button to the (S,U ) execution is:

Σ1 = (S,U ) 7→ body 7→ (...)T ,bAgree 7→ (“Click me!”, { })U

· · ·

(P,U)

(P,T)

(S,U)

(S,T)bsecret

bsecret

bdv

bdv
b1 bn…b2

bAgree

bAgree

b1 bn…b2

U U U

U U U

T

T

T

T

T

T

bAgree
U

bAgree
U

within.news.com

within.news.com

within.news.com

within.news.com

between.news.com

between.news.com

between.news.com

between.news.com

Figure 10: Insecure example from Section 3 with robustness
checks. The labels tell us the trustworthiness of the source
of the page elements and event handlers, depicted here as
small white labels on each page element.

Figure 10 shows the resulting page after all of the buttons are

loaded, including their labels. When the user clicks the “Click me!”

button on the (S,U ) copy of the page, the input rules will use the

label on the button to determine if the declassification is allowed.

The user is treated as aT rusted source of events, so becauseU @ T ,
rule In-No-Release prevents the event from being declassified and

the attacker doesn’t learn the user’s settings.

For our example of leaks between executions, the host installs

an onKeypress event handler to some field which adds a different

button to the page depending on what the user types, and the

attacker adds all possible buttons to the page. After the user presses

a key, the SME store has one T rusted button per execution, and

severalUntrusted buttons in theUntrusted executions:

Σ0 = (S,U ) 7→ bsecret 7→ (...)T ,b1 7→ (...)U , ...,bn 7→ (...)U

(P ,U ) 7→ bdv 7→ (...)T ,b1 7→ (...)U , ...,bn 7→ (...)U

(S,T ) 7→ bsecret 7→ (...)T

(P ,T ) 7→ bdv 7→ (...)T

When the user clicks the bsecret button on the (S,U ) copy of

the page, rule In-Release attempts to declassify the event to the

(P ,U ) execution since the button is T rusted. Next, the robust rules
use the labels on the button capturing the event to determine if

the (P ,U ) execution should receive the declassified event. In this

case, the button bi capturing the event was added by the attacker.

SinceU @ T , rule not-robust skips the (P ,U ) execution and the

attacker does not learn which key the user pressed.

6 SECURITY
We define two security conditions and prove that SME

T
satisfies

them. First, we define a knowledge-based progress-insensitive non-

interference with declassification (Section 6.1) which ensures that

the attacker’s knowledge of the secret inputs is not refined as the

system runs outside of what is declassified (and the fact that the

system makes progress). Second, we describe a novel influence-

based progress-insensitive noninterference (Section 6.2) which is

the integrity dual to the knowledge-based security condition to
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demonstrate that SME
T
do not allow the attacker to influence the

more trusted components of the system (except the fact that the

system makes progress). Finally, we show if we treat declassifica-

tion as a trusted behavior, the influence-based security condition

may be extended so that robust declassification follows.

6.1 Knowledge-based security (confidentiality)
Knowledge-based security conditions allow precise specification of

what information (if any) is leaked. We informally define several

knowledge conditions (summarized in Figure 11) to set up our

knowledge-based progress-insensitive noninterference definition.

Formal definitions may be found in Appendix C- H.

For someone with enough privilege to observe data up to label

l , their knowledge is the set of all possible inputs which might

have produced the observations they made. Knowledge can also be

thought of as a measure of uncertainty. As the attacker learns more,

they will become more confident about the inputs received by the

system and the knowledge set will become smaller (i.e., the attacker

has become more certain about what the inputs might have been).

We define the knowledge of an observer with privilege l ∈ Lc :

K (T , Σ0,R,P, l ) = {τ | ∃T
′ ∈ runs(Σ0,R,P),

T ≈cl T
′,τ = in(T ′)}

The knowledge of an observer with privilege l is the set of all
inputs from execution traces T ′ (τ = in(T ′)) that have observa-
tionally equivalent at l to T (T ≈cl T ′) and start from the same

initial state with the same security and declassification policies

(T ′ ∈ runs(Σ0,R,P)). For now, an input is a user-generated event

(id.Ev (v )). We say that two runs are observationally equivalent at
l , T ≈cl T ′, if they look the same to an observer with privilege l

(i.e., they make the same outputs on any l-visible channel and the

l-visible executions behave the same) T ↓cl = T
′ ↓cl . The observation

of a trace is the sequence of actions observable by an attacker and

include inputs, outputs, silent actions,
2
and declassifications rls(...).

Sequence of actions : τ ::= · | τ :: α | τ :: rls(id.Ev (v ),R,E)

The rules for the observation of a trace are shown in Figure 12.

Note that T ↓
p
l is parameterized by p, where p = c is for confiden-

tiality and T ↓cl is the observation of a trace at l , and p = i will

be for integrity (Section 6.2) and T ↓il is the behavior of a trace at

l . The observation of an output is ch(v ) if the output is made on

an observable channel P (ch) ⊑ l or by an observable execution

pc ↓p⊑ l (rule TP-Out2), otherwise the output is skipped (rule

TP-Out-S1). Inputs are observable if the security policy and source

is observable (rule TP-In), and declassifications are observable if

they are successful (rule TP-In-R). Other actions are observable if

they happen in an observable execution (rules TP-Out1); otherwise,

they are skipped (rule TP-Out-S2).

A knowledge-based progress-sensitive noninterference says that

an attacker should not be able to refine their knowledge of the

secret inputs by watching the system run:

K (T , Σ0,R,P, l ) ⊆⪯ K (T =⇒ K , Σ0,R,P, l )

2
We consider silent actions observable only when they come from an observable

execution, which makes proofs for observable executions more uniform. Since our

equivalence definitions force observable executions to be the same anyway, this choice

does not effect our security conditions.

We write A ⊆⪯ B to mean that each element of A is a prefix of

an element in B (since the last step of T =⇒ K may be an input).

When the system takes a step (T =⇒ K ), the attacker’s knowledge
should not be refined; they should be equally uncertain about the

possible secret inputs before and after the step. Because we run

event handlers in a single-thread, it is possible for an event handler

to get “stuck” in an infinite loop, which could leak something to the

attacker if the loop condition is secret. Therefore, we will permit

this leak and prove progress-insensitive noninterference instead. We

define progress knowledge as the set of traces producing the same

outputs and making enough progress to accept another input.

A knowledge-based progress-insensitive security condition is:

Kp (T , Σ0,R,P, l ) ⊆⪯ K (T =⇒ K , Σ0,R,P, l )

When the system takes a step, the attacker’s knowledge should

not be refined (except that they learn the system makes progress).

This definition has yet to capture declassification. For example, if a

user’s click on a hat bHat is declassified for analytics (like for the

shop from Section 3), the attacker’s knowledge would be refined to

inputs that include the click on bHat. This leak is permitted by de-

classification, but not by the definition above. Therefore, we define

release knowledge as the set of traces producing the same outputs,

making progress, and releasing the same event. Our definition for

knowledge-based progress-insensitive noninterference with declas-

sification says that, outside of declassification, the attacker should

not learn anything by watching the system take a step (except that

the system has made progress) and when something is declassi-

fied, the attacker should only learn what is declassified. We say

releaseA(T =⇒ K ) if (last(T ) =⇒ K ) ↓cl = rls(...), where last(T ) is
the last state in T. That is, releaseA(T =⇒ K ) means something was

declassified in the last step.

Definition 1 (PINI with Declassification). A system satisfies progress-
insensitive noninterference, outside of what is declassified, against
l-observers for l ∈ Lc iff given any initial global store Σ0, security
policy P, and declassification policy R , it is the case that for all traces

T , actions α , and configurations K s.t. (T
α
=⇒ K ) ∈ runs(Σ0,R,P),

then, the following holds

• If releaseA(T
α
=⇒ K ):

K (T
α
=⇒ K , Σ0,R,P, l ) ⊇⪯ Krp (T , Σ0,R,P,α , l )

• Otherwise: K (T
α
=⇒ K , Σ0,R,P, l ) ⊇⪯ Kp (T , Σ0,R,P, l )

Example Recall Example 3.2 of leaks between executions. The se-

curity policy is that keypress events should be Secret, but clicks
may be declassified from Secret to Public. Which button is added

by the host depends on what the user types. The attacker adds all

buttons b1, ...,bn and registers an onClick event handler to each

button which outputs i to a (P ,U ) channel if registered forbi . When

the user types, the attacker isn’t sure which key is pressed. Their

knowledge at this point includes all possible keypresses:

K (K , Σ0,R,P, P ) = { f .keyPress(1), ..., f .keyPress(n)}

The keypress triggers the onKeypress event handler which adds

button bi to the user’s page if they pressed i . Suppose the attacker
also registered a Click event handler to bsecret to directly leak the

user’s keypress through a (P ,U ) channel. If the output were allowed,
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Knowledge K (T , Σ0, R, P, l ) = All possible inputs producing the same observations

{τ | ∃T ′ ∈ runs(Σ0, R, P), T ≈cl T
′, τ = in(T ′) }

Progress Kp (T , Σ0, R, P, l ) = All possible inputs producing the same observations and accept another

input: prog(T ′) holds if T ′ can reach the consumer stateKnowledge {τ | ∃T ′ ∈ runs(Σ0, R, P), T ≈cl T
′, τ = in(T ′), prog(T ′) }

Release Krp (T
α
=⇒ K, Σ0, R, P, l ) = All possible inputs producing the same observations, accept another input,

and release the same event: releaseT(T ′, α ) holds if T ′ can be extended to

release the same event α
Knowledge {τ | ∃T ′ ∈ runs(Σ0, R, P), T ≈cl T

′,

τ = in(T ′), prog(T ′), releaseT(T ′, α )) }

Figure 11: Knowledge definitions. Knowledge and progress knowledge are for defining a knowledge-based progress-insensitive
noninterference. Release knowledge accounts for what is leaked to the attacker through declassification.

T ↓
p
l = τ

P ⊢ K ↓
p
l = ·

TP-Base

pc ↓p⊑ l α < {id.Ev (v ), ch(v )}

(P,D ⊢ K
(α,pc)
=⇒ T ′) ↓

p
l = α :: T ′ ↓

p
l

TP-Out1

pc ↓p⊑ l ∨ P (ch) ↓p⊑ l

(P,D ⊢ K
(ch(v ),pc)
=⇒ T ′) ↓

p
l = ch(v ) :: T ′ ↓pl

TP-Out2

pc ↓p@ l ↓p P (ch) ↓p@ l

(P,D ⊢ K
(ch(v ),pc)
=⇒ T ′) ↓

p
l = T

′ ↓
p
l

TP-Out-S1

α < {id.Ev (v ), ch(v )}pc ↓p@ l

(P,D ⊢ K
(α,pc)
=⇒ T ′) ↓

p
l = T

′ ↓
p
l

TP-Out-S2

P (id.Ev (v )) = pc′ Σ(pc) (id) @ pc ↓i

τ = id.Ev (v ) if pc′ ↓p ⊔pc ↓p⊑ l τ = · otherwise

(P,D ⊢ _; Σ; _
(id .Ev (v ),pc)
=⇒ T ′) ↓

p
l = τ :: T ′ ↓

p
l

TP-In

P (id.Ev (v )) = pc′ Σ(pc) (id) ⊑ pc ↓i

(R ′,E) = declassify(D,R, Σ, (id.Ev (v ), pc), pc′)
τ = rls(id.Ev (v ),R ′,E ↓pl ) if R , R

′

τ = id.Ev (v ) if R = R ′ ∧ pc ↓p ⊔pc ↓p⊑ l
τ = · otherwise

(P,D ⊢ R; Σ; _
(id .Ev (v ),pc)
=⇒ T ′) ↓

p
l = τ :: T ′ ↓

p
l

TP-In-R

Figure 12: The observation (p=c) or behavior (p=i) of T at l

the attacker would be able to eliminate the traces where the user

pressed a different key which refines their knowledge.

K (K
ch(i )
=⇒ K ′, Σ0,R,P, P ) = { f .keyPress(1), ...,

f .keyPress(secret) :: bsecret.Click(_), ..., f .keyPress(n)}

Our knowledge-based security condition would correctly iden-

tify this output as insecure because: K (K
ch(i )
=⇒ K ′, ...) ⊉ K (K , ...)

In reality, the SME monitor would prevent the output from the

(S,U ) execution to the (P ,U ) channel. The user’s click would not

be able to directly leak their keypress to the attacker, but it could

be declassified to the (P ,U ) execution. Since the attacker added

all possible buttons b1, ...,bn , they are guaranteed to trigger the

leaky output and learn which key the user pressed. Because the

releaseA condition allows the attacker’s knowledge to be refined by

declassifications, our security condition for confidentiality does not

catch this leak. Next, we describe our security condition for integrity

and how this condition can be used to describe both progress-

insensitive noninterference as well as robust declassification.

6.2 Influence-based security (integrity)
We measure the attacker’s ability to change the behavior of the

system with a dual condition to knowledge called influence, (based
on attacker power [5]). At a high level, an attacker’s influence is

the set of all untrusted inputs which might have produced the same

trusted behaviors. The attacks in the influence set have the same

relative ability to influence the system’s behavior. If the attacker

has no influence over the system, then the set should include all

possible attacks: all of the attacks are equally powerless. As the

system runs, the refinement of attacker’s influence indicates that

some attacks are more powerful than the others because the ones

eliminated couldn’t have led to the observed behavior. We define

the attacker’s influence over behaviors at l (for l ∈ Li ) below:

I (T , Σ0,R,P, l ) = {τ | ∃T
′ ∈ runs(Σ0,R,P),

T ≈il T
′ ∧ τ = in(T ′)}

The influence of an attacker over behaviors at l is the set of all
τ which are inputs from execution traces T ′ (τ = in(T ′)) that are
behaviorally equivalent at l to T (T ≈il T

′
) and start from the same

initial state with the same security and declassification policies

(T ′ ∈ runs(Σ0,R,P)). We say that two runs are behaviorally equiv-
alent at l if they produce the same l-trusted actions (i.e., they make

the same outputs on any l-trusted channel and the l-trusted execu-

tions behave the same).T ↓
p
l is defined in Figure 12. We summarize

our influence definitions in Figure 13.

An influence-based progress-sensitive noninterference says the

attacker’s influence over a system should never be refined:

I (T , Σ0,R,P, l ) ⊆⪯ I (T =⇒ K , Σ0,R,P, l )

Similar to progress knowledge, we define progress influence as
the set of traces producing the same behaviors and making enough

progress to accept another input. Then, an influence-based progress-

insensitive security condition states that when the system takes a

step, the attacker’s influence should not be refined, outside of what

control they have over whether the system makes progress:

Ip (T , Σ0,R,P, l ) ⊆⪯ I (T =⇒ K , Σ0,R,P, l )
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Influence I (T , Σ0, R, P, l ) = All possible inputs producing the same trusted actions

{τ | ∃T ′ ∈ runs(Σ0, R, P), T ≈il T
′, τ = in(T ′) }

Progress Ip (T , Σ0, R, P, l ) = All possible inputs producing the same trusted actions and accept another

input: prog(T ′) holds if T ′ can reach the consumer stateInfluence {τ | ∃T ′ ∈ runs(Σ0, R, P), T ≈il T
′, τ = in(T ′), prog(T ′)

Robust Irp (T
α
=⇒ K, Σ0, R, P, l ) = All possible inputs producing the same trusted actions, accept another

input, and capable of the same robust declassifications: robustT(T ′, α )
holds if T ′ can be extended to create the same trusted page event α

Influence {τ | ∃T ′ ∈ runs(Σ0, R, P), T ≈il T
′,

τ = in(T ′), prog(T ′), robustT(T ′, α )) }

Figure 13: Influence definitions. Influence and progress influence are for defining an influence-based progress-insensitive
noninterference. Robust influence is for defining robust declassification.

(P,U)

(S,U)

(P,T)

(S,T)

Figure 14: The states above and below the dotted line are be-
haviorally equivalent at T even there are different products
in the (P ,U ) and (S,U ) states.

6.3 Robust declassification
In addition to showing that the attacker doesn’t have influence over

trusted behaviors, we also want to show that the attacker doesn’t

influence declassification. We can define robust declassification by

extending our influence-based security condition.

A naïve formalization of robust declassification is as follows.

We model an active attacker by treating the addition of a page

element or event handler (new(id, pc), new(id, eh, pc)) as an input.

A system is robust if any of these attacks have equivalent power.
That is, when a new declassification happens, we will know the

attacker’s code influenced the declassification if the set of attacks

without their code could not have led to the same declassification.

However, it turns out that this definition is too strong and leads to

false positives.

Consider the online shop described in Section 3. The buttons

are all loaded by the T rusted host, so they can safely influence

declassification: the declassifications in this example are robust.

The issue is that behavioral equivalence at T only guarantees that

the T rusted executions behave the same. See the example of two

equivalent traces in Figure 14. The (S,T ) execution has the same

products in both traces, as does the (P ,T ) shop, but even among

two equivalent runs, the (S,U ) and (P ,U ) executions may have

different products. When the user clicks bHat in the (S,U ) execu-
tion, the click is declassified. But it isn’t possible to produce the

same declassification in the equivalent state because there is no

bHat for the user to click on. This makes it appear as though the

attacker had some influence over the declassification, even though

the declassification is actually robust against their influence.

α ∈ {new(id, lsrc ), new(id, eh, lid , lsrc )}
pc ↓i@ l τ = r(id, pc) if lsrc ⊑ pc ↓i

τ = r(id, eh, pc) if lid ⊔ lsrc ⊑ pc ↓i τ = · otherwise

(P,D, ⊢ K
(α,pc)
=⇒ T ′) ↓il= τ :: T ′ ↓il

TP-New

Figure 15: New rule for the behavior of a trace for robust
declassification.

To make these benign influence refinements concrete, we in-

troduce robust influence for when trusted page elements are cre-

ated. Robust influence is the set of traces producing the same

elements, making progress, and capable of producing the same

robust declassifications in the untrusted executions. This is sim-

ilar to release knowledge from Section 6.1. We say robustA(T ) if
(last(T ) =⇒ K ) ↓i= r(...), where last(T ) is the last state in T. That

is, robustA(T =⇒ K ) means something capable of robust declassifi-

cation was added to anUntrusted execution.

To model an active attacker’s ability to add code to the page,

we emit an action for dynamically-generated elements and event

handlers. new(id, pc) is a new page element identified, id, added
to the pc execution, while new(id, eh, pc) is a new event handler

eh registered to the element identified by id in the execution at

security level pc. Sequences of actions include page elements/event

handlers which are capable of robust declassification r(...).

Actions: α ::= id.Ev (v ) | ch(v )
| new(id, pc) | new(id, eh, pc) | •

Sequence of actions : τ ::= · | τ :: α | τ :: rls(id.Ev (v ),R,E)
| τ :: r(id, pc) | τ :: r(id, eh, pc)

We modify the behavior of a trace as shown in Figure 15. When a

new page element is created or event handler is registered, this is

not considered an observable action unless it is capable of a robust

declassification (rule TP-New).

Definition 2 (Influence-based PINI with Robust Declassification).
A system satisfies progress-insensitive noninterference with robust
declassification for behaviors at l ∈ Li iff given any initial global
store Σ0, security policy P, and declassification policy R , it is the case

that for all traces T , actions α , and configurations K s.t. (T
α
=⇒ K ) ∈

runs(Σ0,R,P), then, the following holds

• If robustA(T
α
=⇒ K ):

I (T
α
=⇒ K , Σ0,R,P, l ) ⊇⪯ Irp (T , Σ0,R,P,α , l )

• Otherwise: I (T
α
=⇒ K , Σ0,R,P, l ) ⊇⪯ Ip (T , Σ0,R,P, l )
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Example: To illustrate how this new definition is sufficient for

defining robust declassification, we will walk through examples

from Section 3. In Example 3.1 of a leak within an execution, the

Untrusted attacker registers the event handler onLoadU and the

T rusted host registers onLoadT to add buttons to the page.

After the page finishes loading, we know that theT rusted “Agree”
button, bAgree, must have been dynamically loaded because all of

the behaviorally-equivalent T rusted executions have run onLoadT .
On the other hand, we aren’t sure whether the Untrusted “Click

me!” button, was added because theU ntrusted pages are equivalent

whether or not onLoadU has run. At this point, the attacks where

the “Click me!” button has been added are equally as powerful as

the attacks without it:
3

I (K , Σ0,R,P,T ) = {new(b)T , new(b)U :: new(b)T , ...}

If the system allowed the click on the Untrusted bAgree to be

declassified, it would mean there must be a “Click me!” button on

the (S,U ) copy of the page. Therefore, the only viable attack leading
to this behavior are the ones including theU ntrusted bAgree button:

I (T
bU
=⇒ K ,R,P,T ) = {new(b)T ,

new(b)U :: new(b)T :: bU .Click( ), ...}

Because I (T
bU
=⇒ K ,R,P,T ) ⊉⪯ Ip (T ,R,P,T ), the attacker must

have had influence over the declassification, so it isn’t robust.

Example 3.2 of leaks between executions is similar. The T rusted
host adds a different button to the page depending on what the user

has typed and theUntrusted attacker adds all possible buttons.

After the user presses a key on their keyboard, we know that

there is one button on the (S,T ) page (based on the actual secret
value) and another button on the (U ,T ) page (based on the default

value dv) because all of the behaviorally-equivalent T rusted execu-

tions have run the T rusted event handler in response to the user’s

keypress. We also know that the (S,U ) and (P ,U ) copies of the page
must include bsecret and bdv (respectively) because those buttons
are capable of robust declassification since they were added by the

host. On the other hand, we aren’t sure whether the attacker has

added their buttons, because the Untrusted pages are equivalent

with or without those buttons:

I (K , Σ0,R,P, l ) = {new(bsecret)
S
:: new(bdv)

P ,

new(bsecret)
S
:: new(bdv)

P
:: new(b1)

U
:: ... :: new(bn )

U , ...}

Now, when the user’s click on bsecret in the (S,U ) page is declas-
sified to the matching button bi in the (P ,U ) page, we know there

must be a bi button on the (P ,U ) copy of the page to capture the

event. Then, the only viable attack is the one where bi has been
added to the page:

I (K , Σ0,R,P, l ) = {new(bsecret)
S
:: new(bdv)

P ,

new(bsecret)
S
:: new(bdv)

P
:: new(b1)

U
:: ... :: new(bn )

U , ...}

Since the attacker’s influence has been refined we know this exam-

ple is not robust either.

Finally, consider the secure web shop where the host adds prod-

ucts to the page and declassifies click counts so that a (P ,U ) library
can do analytics for them. All of the elements are added by the

3
Due to space constraints, we write new(b )T instead of new(bAgree, (S, T )) and

new(bAgree, (P, T )), and likewise for new(b )U for theU ntrusted executions

T rusted host, so they are capable of robust declassification. From

the robustA case in Definition 2, the attacker’s influence can be

refined by the addition of these elements to include only the traces

that load the same products on the web store. This means that

declassifying a user’s click won’t refine the attacker’s influence and

our security condition correctly identifies this as robust.

6.4 Metatheory
We prove that our semantics are sound. Formally:

Theorem 3 (Soundness). ∀P,D, Σ0, the SME state Σ0 satisfies
knowledge-based progress-insensitive noninterference with declassi-
fication at lc ∈ Lc and influence-based progress-insensitive nonin-
terference with robust declassification at li ∈ Li w.r.t. the security
policy P and declassification policy D.

Complete proofs may be found in Appendix H. Robust declas-

sification follows from influence-based progress-insensitive non-

interference. If we treat declassifications as trusted and prove that

untrusted sources cannot influence trusted behaviors, then it must

be the case that the declassifications are robust.

Corollary 4 (Robust Declassification). ∀P,D, Σ0 s.t. Σ0 satisfies
influence-based progress-insensitive noninterference at li w.r.t. the
security policy P and declassification policy D, then an attacker at
l ′i ∈ Li with l

′
i @ li has no influence over whether the user’s events

at li are declassified.

7 IMPLEMENTATION AND EVALUATION
We have prototyped SME

T
in OCaml on top of Featherweight Fire-

fox [15], which is a lightweight implementation of the web browser

model. The implementation provides a sanity check on the seman-

tics and helps understand the behavior of programs that restrict

declassification to certain cases. The original Featherweight Firefox

does not include recent browser features, but is expressive enough

to enforce all features of our formalization and demonstrate its

feasibility in a browser-like setting. We leave enforcement in a real

browser to future work.

We modify the model to attach labels to nodes on a web page.

The host page has higher integrity than the user and third-party

integrity. We leverage the implementation from prior work [13] to

label input events and the outputs generated. The labels of the nodes

are fixed across all executions of the browser model. To emulate

the behavior of adding a new node, we define the handlers of the

node up front and insert it into the page along with the handlers,

when the event handler is called. We omit the trigger command

from the semantics and assume that all events are user-generated.

We implement the release module to perform declassification

as per the release policies. When an input event is received, we

check the context (label) of the event (which is user in our case)

and compare it against the label of the node on which the event

was triggered. If the label on the node is not trusted by the source

of the event, then the release module is not called. Otherwise, the

release module writes the declassified value to a shared channel.

For simplicity, we declassify all values in the release module to the

confidentiality level P. In the current implementation, we assume

that the declassify command reads the last declassified value for

that level.
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Evaluation: To compare against SME models with declassifica-

tion, we also implement versions of the model with the original

stateful declassification approach [40] and the one that prohibits

declassification on dynamically created elements [29]; we modify

the release module to declassify without checking the node label

(for the former) and assigning a special label SD, which never de-

classifies (for the latter). We observe that the example programs

presented earlier leak information with unrestricted declassification

while our approach is more permissive compared to the approach

where declassification is never allowed for events from dynamic

elements. In terms of performance overhead, our monitor performs

worse compared to the existing approaches due to the operations

involving multiple levels and the additional integrity label. More

concretely, the overhead of running our monitor as compared to

the prior approaches is around 15% and 9%, respectively, for the

example presented earlier.

8 DISCUSSION
Robust declassification and attacker control Prior work on ro-

bust declassification that is most similar to our setting involves

attacker control [5] which is the set of attacks (i.e., untrusted in-

puts) with a similar effect on knowledge. They say declassification

is robust if the attacker control (which are the possible attacks

resulting in the same declassification) includes all of the attacks

reaching the declassification; otherwise the attacker must have in-

fluenced the declassification. Our definition is similar. We relate the

set of possible attacks before and after declassification and consider

the declassification robust if attacks reaching the declassification

could also result in the same declassification. The key benefit of

our condition over prior work is that robust declassification fol-

lows from our influence-based security condition which makes the

definitions more uniform and simplifies the proofs.

(Transparent) endorsement and qualified robustness The fo-
cus of this work is robust declassification, but like our “influence-

based” security condition is the integrity dual of “knowledge-based”

security conditions for confidentiality, (transparent) endorsement is
the integrity dual of (robust) declassification. Endorsement allows

a program to treat untrusted data as if it were more trusted, and

transparent endorsement ensures that the data is sufficiently public

before endorsing. The idea being that if the attacker supplies infor-

mation they do not actually have the privilege to see, we should

not trust it. For example, prior work [18] proposing transparent en-

dorsement explains that without restricting endorsement to what

data the attacker has the privilege to see, they could cheat in a

sealed-bid auction by simply bidding “one more than the other

person” (even though they don’t know what the other person bid).

In Appendix A, we include (transparent) endorsement by adding

an endorsement policy E and module S, which functions similarly

to D and R. We update the input rules to ensure the source of the

event has enough privilege to see the page element (Σ(pc) (id) ↓c⊑
pc ↓c ). An event may be both declassified and endorsed as long

as the original event is both robust and transparent (we do not

declassify before checking for transparency or vice versa).

The changes to the security conditions are similarly straight-

forward. We add sanitized influence to prove an influence-based

progress-insensitive noninterference with endorsement. Sanitized

influence measures the amount of influence the attacker gains

through endorsement and is defined as the set of all possible inputs

producing the same trusted actions, accepting another input, and

capable of the same endorsements (similar to release knowledge). If

we treat endorsements as public, transparent endorsement follows

from our knowledge-based security condition if we add transparent
knowledge which captures the information leaked by adding an

element to a secret execution that is capable of transparent endorse-

ment (similar to robust influence). The supporting definitions for

these security conditions may be found in Appendix D and G.

Note that because an event associatedwith an attacker-controlled

page element might be endorsed, we are actually proving a qualified
robustness condition [31] (and qualified transparency) which says

that the attacker does not have influence over declassifications,

outside of what has been endorsed (and we do not endorse what

the attacker does not have privilege to see, outside of what has been

declassified). This does not change our security conditions because

sanitized influence (and release knowledge) already capture this,

but it does give the attacker more power over what is declassified

since untrusted code could be endorsed and then be permitted to

influence declassification.

Alternative DOM models: In our model, each execution has its

own copy of the DOM, similar to prior work [13, 17, 29]. Another

option would be to have a single DOM [23, 40]. In these models,

the security policy would determine which API calls would suc-

ceed and which would be replaced with a default value. Yet other

work looks at the possibility of using a single DOM with SME by

tracking secrets (taint) through the nodes, attributes, and event

handlers [28]. It would be challenging to allow similar fine-grained

declassifications of events related to dynamically generate elements

in the first model, and the second model is susceptible to implicit

leak through control flow decisions.

Our “DOM” is a flat structure with few APIs since the struc-

ture of the DOM did not contribute directly to the relationship

between attacker influence and robust declassification. As future

work, it would be interesting to have a more realistic tree-structured

DOMs [28, 35] to model more complex DOM features [3, 33] to ex-

plore whether attacker influence over event bubbling order and

pre-emptive event scheduling (for instance) yields new attacks.

9 CONCLUSION
We developed SME

T
, an IFC monitor, which combines SME and

taint tracking to prevent attackers from influencing declassifica-

tion. SME
T
permits the benign declassifications involving trusted

dynamic features—without sacrificing security. We proved that

SME
T
satisfies progress-insensitive noninterference for both confi-

dentiality and integrity using knowledge-based and influence-based

security conditions, respectively. We showed that robust declassifi-

cation follows from our novel influence-based security condition.
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A SME SYNTAX AND SEMANTICS

Confidentiality label: ℓc ∈ Lc
Integrity label: ℓi ∈ Li
Label set: L ::= Lc × Li
Program counter: pc ∈ L

Policy context: P ::= (Γ,ml )
Downgrade state: ρ ::= · | ρ, (id1.Ev1,n1)
Downgrade channels: d ::= (ι1,v1), · · · , (ιn ,vn )
Declassification function: D

Endorsement function: E

Declassification: R ::= (ρd ,dd )
Endorsement: S ::= (ρe ,de )
Declassified/endorsed value: r ::= · | none | some(ι,v )
Event: Ev ::= ...

Event handler: eh ::= onEv (x ){c}
Expression: e ::= x | id | uop e | e1 bop e2
Command: c ::= skip | c1; c2 | x := e | id := e |while e do c | if e then c1 else c2 | output ch e

| trigger id.Ev (e ) | new(id, e ) | addEh(id, eh) | x := declassify(ι, e ) | x := endorse(ι, e )
Event handler map: M ::= · |M, Ev 7→ EH
Event handler set: EH ::= { } | EH ∪ {(eh, pc)}
Local (variable) state: σv ::= · | σv ,x 7→ v
Global (variable) state: σд ::= · | σд ,x 7→ v

EH state (DOM): σEH
::= · | σEH , id 7→ (v,M, pc)

Single global state: σG ::= σд ,σEH

Event queue: E ::= · | E, (id.Ev (v ), pc)
Execution state: s ::= P |C
Single configuration: κ ::= σv , c, s,E
Configuration stack: ks ::= · | (κ, pcsrc, pc) :: ks
Actions: α ::= id.Ev (v ) | ch(v ) | • | dcl(v ) | end(v ) | new(id, pcsrc ) | newEH(id, eh, pcid , pcsrc )
Labeled actions: αl ::= (α , pc)
Global state: Σ ::= · | pc 7→ σG , Σ
SME Configuration: K ::= R,S; Σ; ks

SME Exec. Traces: T ::= K |T
αl
=⇒ K

Input rules. These rules process inputs and determine which event handlers to run. All of the executions who trust/have enough privilege

to see the event receive the event: E = ((id.Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′) Here, we consider both the source of the event (pc)
and the policy (pc′). The event handler lookup semantics Σ,E { ks look up the event handlers for the event in each copy of the DOM that

receives the event. First, we look up the matching page element in the DOM for each execution receiving the event. Rule lookup handles

the case where there is a matching page element (we use pc, pcid ,v ⊢ M (Ev) { ks to set up the execution context for the resulting event

handlers inM (Ev)), while rule lookup-missing skips executions where no matching element exists. Rule lookupEH attaches two labels to

the event handler. One reflects the trustworthiness of the source of the given event handler (this is the execution context, plus the source of

the page element and event handler, pc ⊔ pcid ⊔ pceh). If this event handler were to add a new page element (or register a new event handler),

this would be the label attched to that element (resp., event handler). The other label reflects the execution context (pc), which determines

which copy of the DOM/other shared storage the event handler interacts with.

The input rules also perform declassification and endorsement, ensuring that the user trusts/has enough privilege to interact with the

page element associated with the event. That is, we need to ensure the declassification is robust and the endorsement is transparent. Rule In

handles the case where the declassification would not be robust (labelOf (σEH (id)) ↓i@ pc ↓i ) and the endorsement would not be transparent

(labelOf (σEH (id)) ↓c@ pc ↓c ). Rules In-D and In-E handle the case where the declassfication is robust, but endorsement would not be

transparent (resp., endorsement is transparent, but declassification is not robust), and rule In-DE handles the case where both are true.

If downgrading is deemed safe, we use downgrade to downgrade the event. downgrade uses policies D (for declassification) and E (for

endorsement) to determine what (if anything) is downgraded. Note that D and E also run the downgraded event in the executions which

trust (resp. have enough privilege) to see the original event. For example, suppose D declassifies an event at (lc , li ) to confidentiality label l ′c ,
it will also release the event to (l ′c , l

′
i ) for all l

′
i s.t. li ⊑ l ′i . That is, declassification will make the event more public, but it will also run this
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P,D, E ⊢ K
(α,pc)
=⇒ K ′

P (id.Ev (v )) = pc′ Σ(pc) = (_,σEH )

labelOf (σEH (id)) ↓i@ pc ↓i labelOf (σEH (id)) ↓c@ pc ↓c

E = ((id.Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′) Σ,E { ks

P,D, E ⊢ R,S; Σ; ·
(id .Ev (v ),pc)
=⇒ R,S; Σ; ks

In

α = (id.Ev (v ), pc) P (id.Ev (v )) = pc′ Σ(pc) = (_,σEH )

labelOf (σEH (id)) ↓i⊑ pc ↓i labelOf (σEH (id)) ↓c@ pc ↓c

E = ((id.Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′) Σ,E { ks
downgradeD (R, Σ,α , pc′) = (R ′,Ed ) pc, r ⊢ Σ,Ed { ksd

P,D, E ⊢ R,S; Σ; ·
α
=⇒ R ′,S; Σ; ks :: ksd

In-D

α = (id.Ev (v ), pc) P (id.Ev (v )) = pc′ Σ(pc) = (_,σEH )

labelOf (σEH (id)) ↓i@ pc ↓i labelOf (σEH (id)) ↓c⊑ pc ↓c

E = ((id.Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′) Σ,E { ks
downgradeE (S, Σ,α , pc

′) = (S′,Ee ) pc, t ⊢ Σ,Ee { kse

P,D, E ⊢ R,S; Σ; ·
α
=⇒ R,S′; Σ; ks :: kse

In-E

α = (id.Ev (v ), pc) P (id.Ev (v )) = pc′ Σ(pc) = (_,σEH )

labelOf (σEH (id)) ↓i⊑ pc ↓i labelOf (σEH (id)) ↓c⊑ pc ↓c

E = ((id.Ev (v ), pc′′) | pc′′ ∈ L s.t. pc ⊔ pc′ ⊑ pc′′) Σ,E { ks
downgradeD (R, Σ,α , pc′) = (R ′,Ed ) pc, r ⊢ Σ,Ed { ksd
downgradeE (S, Σ,α , pc

′) = (S′,Ee ) pc, t ⊢ Σ,Ee { kse
downgradeD,E (R,S, Σ,α , pc

′) = Ed,e pc, rt ⊢ Σ,Ed,e { ksd,e

P,D, E ⊢ R,S; Σ; ·
α
=⇒ R ′,S′; Σ; ks :: ksd :: kse :: ksd,e

In-DE

Figure 16: SME Input Rules

event at all of the executions trusting the original event. This is similar to the way that the original event (before downgrading) is received

by all of the executions which trust/have enough privilege to see the event.

Next, use the event handler lookup semantics{ to look up the event handlers for the downgraded event. These rules are similar to the

lookup semantics described above, except that we use a flag to indicate whether the event is a result of declassification/endorsement/both so

that we can ensure robustness/transparency. When we look up downgraded events, we need to ensure that the source of the event trusts/has

enough privilege to interact with the event handler. The lookup rule lookup-R handles the case where there is at least one event handler

that is sufficiently trusted (M (Ev) ↓il is the set of event handlers trusted by l ) to be declassified and the rule lookup-notR handles the case

where there is no such event handler (Ev < M orM (Ev) ↓il= ·). The rules for transparency and both robustness and transparency are similar.

We use both the policy and the source of the event to decide which events are triggered. An event runs in all of the executions as

public/untrusted as both the policy and source of the event. The event can also run in executions that are more public/trusted than the

source of the event (up to what is given by the policy) if declassification and/or endorsement are safe to do.

Output rules. Out-Silent handles all of the actions which are not communications on channels. These may be silent actions, •, or tracking

downgrades (dcl and end). Declassifications and endorsements are not outputs on channels, but we do track them as explicit actions to make

proofs easier. producer(κ) is true if the execution state is producer (i.e., κ = σ , c, P ,E) and consumer(κ) is true otherwise (i.e., the execution
state is consumer, κ = σ , c,C,E).

We use pc ⊔ pcid ⊔ pceh for the source of the event handler in the{ lookup semantics because pcid ⊔ pceh captures the integrity/secrecy

of the code which added id to the page (and registered eh to id), and pc captures the integrity/secrecy of the event triggering this event

handler. For instance, pcid would capture an element added by a third-party (i.e., anything added to the page by this element shouldn’t be

declassified or the third-party will have influenced the declassification) and pc would capture whether the event itself is secret (i.e., anything

this event adds shouldn’t be endorsed or you risk laundering secrets through the endorsement).
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P,D, E ⊢ K
(α,pc)
=⇒ K ′

producer(κ) R = (ρd ,dd ) S = (ρe ,de )

pcsrc,dd ,de ⊢ Σ,κ
ch(v )
−→ pc Σ

′, ks′ P (ch) = pc

P,D, E ⊢ R,S; Σ; (κ, pcsrc, pc) :: ks
(ch(v ),pc)
=⇒ R,S; Σ′; ks′ :: ks

Out

producer(κ) R = (ρd ,dd ) S = (ρe ,de )

pcsrc,dd ,de ⊢ Σ,κ
ch(v )
−→ pc Σ

′, ks′ P (ch) , pc

P,D, E ⊢ R,S; Σ; (κ, pcsrc, pc) :: ks
(•,pc)
=⇒ R,S; Σ′; ks′ :: ks

Out-Skip

producer(κ) R = (ρd ,dd ) S = (ρe ,de )

pcsrc,dd ,de ⊢ Σ,κ
α
−→pc Σ

′, ks′ α , ch(v )

P,D, E ⊢ R,S; Σ; (κ, pcsrc, pc) :: ks
(α,pc)
=⇒ R,S; Σ′; ks′ :: ks

Out-Silent

consumer(κ)

P,D, E ⊢ R,S; Σ; (κ, pcsrc, pc) :: ks
(•,pc)
=⇒ R,S; Σ; ks

Out-Next

Figure 17: SME Output Rules

downgradeD (R, Σ, (id.Ev (v ), pc), pcEv ) = (R ′,E)

R = (ρ,d ) E = ((id.Ev (v ), (lc , li )) | lc ∈ Lc s.t. pc ↓c⊑ lc ⊏ pcEv ↓
c ∧li = pcEv ↓

i ⊔pc ↓i )
D ((id.Ev (v ), pcEv ), pc, ρ) = (ρ ′,vd ,Ed ) d ′ = update(d,vd ) Er = robust(Σ,E :: Ed , pcEv )

downgradeD (R, Σ, (id.Ev (v ), pcEv ), pc) = ((ρ ′,d ′),Er )
downgrade

Σ(pc) = (_,σEH ) labelOf (σEH (id)) ↓i⊑ pcEv ↓
i

robust(Σ, ((id.Ev (v ), pc) :: E), pcEv ) = (id.Ev (v ), pc) :: robust(Σ,E, pcEv )
robust

Σ(pc) = (_,σEH ) id < σEH or labelOf (σEH (id)) ↓i@ pcEv ↓
i

robust(Σ, ((id.Ev (v ), pc) :: E), pcEv ) = robust(Σ,E, pcEv )
not-robust

robust(Σ, ·, pcEv ) = ·
robust-emp

Figure 18: Downgrade (declassification only) Semantics

We could update the label on the page elemetn for update, but we don’t in favor of simpler semantics and to avoid implicit leaks. For

example, if an attacker modifies a trusted page element, updating the label would prevent declassifications associated with that element–

meaning the attacker has some (implicit) control over whether a declassification happens. When adding a new element to the DOM or

registering a new event handler, we label it as pcsrc instead of pc because pcsrc captures the secrecy/integrity of the triggering event as

well as the source of the event handler code. If we used pc instead, our monitor would be too rigid. For instance, the code in an untrusted

execution may have been added by a trusted or untrusted party–but using only the label on the execution, we would treat all code in the

untrusted execution as untrusted.

B ADDITONAL SYNTAX/TERMINOLOGY
≈
p
l represents equivalence for property p for attackers at level l ∈ Lp . p may be c (confidentiality) or i (integrity).
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downgradeE (S, Σ, (id.Ev (v ), pc), pcEv ) = (S′,E)

S = (ρ,d )

E = ((id.Ev (v ), (lc , li )) | li ∈ Li s.t. pc ↓i⊑ li ⊏ pcEv ↓
i ∧lc = pcEv ↓

c ⊔pc ↓c ) E ((id.Ev (v ), pcEv ), pc, ρ) = (ρ ′,ve ,Es )
d ′ = update(d,ve ) S′ = S[pcEv 7→ (ρ ′,d ′)] Et = transparent(Σ,E :: Es , pcEv )

downgradeE (S, Σ, (id.Ev (v ), pcEv ), pc) = ((ρ ′,d ′),Et )
downgrade

Σ(pc) = (_,σEH ) labelOf (σEH (id)) ↓c⊑ pcEv ↓
c

transparent(Σ, ((id.Ev (v ), pc) :: E), pcEv ) =
(id.Ev (v ), pc) :: transparent(Σ,E, pcEv )

transparent

Σ(pc) = (_,σEH ) id < σEH or labelOf (σEH (id)) ↓c@ pcEv ↓
c

transparent(Σ, ((id.Ev (v ), pc) :: E), pcEv ) =
transparent(Σ,E, pcEv )

not-transparent

transparent(Σ, ·, pcEv ) = ·
transparent-emp

Figure 19: Downgrade (endorsement only) Semantics

R = (ρd ,dd ) S = (ρe ,de ) Ec = ((id.Ev (v ), (lc , li )) | lc ∈ Lc s.t. pc ↓c⊑ lc ⊏ pcEv ↓
c ∧li = pcEv ↓

i ⊔pc ↓i )
Ei = ((id.Ev (v ), (lc , li )) | li ∈ Li s.t. pc ↓i⊑ li ⊏ pcEv ↓

i ∧lc = pcEv ↓
c ⊔pc ↓c )

D ((id.Ev (v ), pcEv ), pc, ρd ) = (ρ ′d ,vd ,Ed ) E ((id.Ev (v ), pcEv ), pc, ρe ) = (ρ ′e ,ve ,Ee )
E = mergeEvents(Ec :: Ed ,Ei :: Ee )
E ′ = robustTransparent(Σ,E, pcEv )

downgradeD,E (R,S, Σ, (id.Ev (v ), pcEv ), pc) = E ′
downgrade

E = ((id.Ev (v ), (pc ↓c , pc′ ↓i )) | (id.Ev (v ), pc′) ∈ Ee )

mergeEvents((id.Ev (v ), pc) :: Ed ,Ee ) =
E :: mergeEvents(Ed ,Ee )

mergeEv-same

∄(id.Ev (v ), _) ∈ Ee
mergeEvents((id.Ev (v ), pc) :: Ed ,Ee ) =

mergeEvents(Ed ,Ee )

mergeEv-diff

mergeEvents(·,Ee ) = Ee
mergeEv-emp

Figure 20: Downgrade (declassification and endorsement) Semantics

Σ(pc) = (_,σEH ) labelOf (σEH (id)) ↓i⊑ pcEv ↓
i labelOf (σEH (id)) ↓c⊑ pcEv ↓

c

robustTransparent(Σ, ((id.Ev (v ), pc) :: E), pcEv ) =
(id.Ev (v ), pc) :: robustTransparent(Σ,E, pcEv )

robustTransparent

Σ(pc) = (_,σEH )

id < σEH or labelOf (σEH (id)) ↓i@ pcEv ↓
i or labelOf (σEH (id)) ↓c@ pcEv ↓

c

robustTransparent(Σ, ((id.Ev (v ), pc) :: E), pcEv ) =
robustTransparent(Σ,E, pcEv )

not-robustTransparent

robustTransparent(Σ, ·, pcEv ) = ·
robustTransparent-emp
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Σ,E { ks

Σ(pc) = (_,σEH ) σEH (id) = (_,M, pcid )
pc, pcid ,v ⊢ M (Ev) { ks Σ,E { ks′

Σ, (id.Ev (v ), pc) :: E { ks :: ks′
lookup

Σ(pc) = (_,σEH )

id < σEH or σEH (id) = (_,M, _) ∧ Ev < M
Σ,E { ks

Σ, (id.Ev (v ), pc) :: E { ks
lookup-missing

Σ, · { ·
lookup-empty

ks = ((·, eh(v ), P , ·), pcid ⊔ pceh, pc) pc, pcid ⊢ EH { ks′

pc, pcid ,v ⊢ {(eh, pceh)} ∪ EH { ks :: ks′
lookupEH

pc, pcid ,v ⊢ · { ·
lookupEH-emp

Figure 21: Event Handler Lookup Rules

pc, f ⊢ Σ,E { ks

Σ(pc) = _,σ
EH σEH (id) = (_,M, pcid )

l = pcEv ↓
i M (Ev) ↓il= EH , · pc, pcid ,v ⊢ EH { ks pcEv , r ⊢ Σ,E { ks′

pcEv , r ⊢ Σ, (id.Ev (v ), pc) :: E { ks :: ks′
lookup-R

Σ(pc) = _,σ
EH σEH (id) = (_,M, pcid )

l = pcEv ↓
i Ev < M orM (Ev) ↓il= ·
pcEv , r ⊢ Σ,E { ks

pcEv , r ⊢ Σ, (id.Ev (v ), pc) :: E { ks
lookup-notR

pcEv , r ⊢ Σ, · { ·
lookup-R-emp

Σ(pc) = _,σ
EH σEH (id) = (_,M, pcid )

l = pcEv ↓
c M (Ev) ↓cl = EH , · pc, pcid ,v ⊢ EH { ks pcEv , t ⊢ Σ,E { ks′

pcEv , t ⊢ Σ, (id.Ev (v ), pc) :: E { ks :: ks′
lookup-T

Σ(pc) = _,σ
EH σEH (id) = (_,M, pcid )

l = pcEv ↓
c Ev < M orM (Ev) ↓cl = ·
pcEv , t ⊢ Σ,E { ks

pcEv , t ⊢ Σ, (id.Ev (v ), pc) :: E { ks
lookup-notT

pcEv , t ⊢ Σ, · { ·
lookup-T-emp

Σ(pc) = _,σ
EH σEH (id) = (_,M, pcid )

li = pcEv ↓
i lc = pcEv ↓

c

M (Ev) ↓(lc ,li )= EH , ·
pc, pcid ,v ⊢ EH { ks pcEv , rt ⊢ Σ,E { ks′

pcEv , rt ⊢ Σ, (id.Ev (v ), pc) :: E { ks :: ks′
lookup-RT

Σ(pc) = _,σ
EH σEH (id) = (_,M, pcid )

li = pcEv ↓
i lc = pcEv ↓

c Ev < M orM (Ev) ↓(lc ,li )= · pcEv , rt ⊢ Σ,E { ks

pcEv , rt ⊢ Σ, (id.Ev (v ), pc) :: E { ks
lookup-notRT

pcEv , rt ⊢ Σ, · { ·
lookup-RT-emp
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pcsrc,dd ,de ⊢ Σ,σ , c
α
−→pc Σ

′,σ ′, c ′,E

pcsrc,dd ,de ⊢ Σ,σ , skip; c
•
−→pc Σ,σ , c, ·

skip

pcsrc,dd ,de ⊢ Σ,σ , c1
α
−→pc Σ

′,σ ′, c ′
1
,E

pcsrc,dd ,de ⊢ Σ,σ , c1; c2
α
−→pc Σ

′,σ ′, c ′
1
; c2,E

seq

JeKpcσ ,Σ = v Σ(pc) = (σд , _) x < σд

pcsrc,dd ,de ⊢ Σ,σ ,x := e
•
−→pc Σ,σ [x 7→ v], skip, ·

assign-l

JeKpcσ ,Σ = v Σ(pc) = (σд ,σEH ) x ∈ σд σд
′

= σд[x 7→ v] Σ′ = Σ[pc 7→ (σд
′

,σEH )]

pcsrc,dd ,de ⊢ Σ,σ ,x := e
•
−→pc Σ

′,σ , skip, ·
assign-g

JeKpcσ ,Σ = v Σ(pc) = (σд ,σEH ) σEH (id) = (_,M, pcid ) σEH ′ = σEH
[id 7→ (v,M, pcid )] Σ′ = Σ[pc 7→ (σд ,σEH ′ )]

pcsrc,dd ,de ⊢ Σ,σ , id := e
•
−→pc Σ

′,σ , skip, ·
update

JeKpcσ ,Σ = true

pcsrc,dd ,de ⊢ Σ,σ , if e then c1 else c2
•
−→pc Σ,σ , c1, ·

if-true

JeKpcσ ,Σ = false

pcsrc,dd ,de ⊢ Σ,σ , if e then c1 else c2
•
−→pc Σ,σ , c2, ·

if-false

JeKpcσ ,Σ = true

pcsrc,dd ,de ⊢ Σ,σ ,while e do c
•
−→pc Σ,σ , c;while e do c , ·

while-true

JeKpcσ ,Σ = false

pcsrc,dd ,de ⊢ Σ,σ ,while e do c
•
−→pc Σ,σ , skip, ·

while-false

Figure 22: Operational Semantics for Local Evaluation

τ is a sequence of actions visible at some security level. This includes standard actions α , declassifications and endorsements, and the

creation of a new element/event handler which is capable of robust declassification or transparent endorsement.

Sequence of actions: τ ::= · | τ :: α | τin | τrls | τsntz | τdown | τnm
Input actions: τin ::= · | (id.Ev (v ), pc)
Release actions: τrls ::= τin | rls(id.Ev (v ), ρ,v,E, pc)
Sanitize actions: τsntz ::= τin | sntz(id.Ev (v ), ρ,v,E, pc)
Downgraded actions: τdown ::= down(id.Ev (v ),τrls,τsntz,E, pc)
Nonmalleable actions: τnm ::= r(id, pc) | t(id, pc) | | r(id, eh, pc) | t(id, eh, pc)

C CONFIDENTIALITY
Secret inputs should not influence public outputs. A system which ensures that information does not flow down the confidentiality lattice is

secure. Equivalent traces T and T ′, written T ≈cl T
′
, have the same l-visible events for l ∈ Lc .

Knowledge. An l-observer’s knowledge is what they believe the inputs might have been after observing the l-visible outputs of a trace.

K (T , Σ0,R,S,P, l ) = {τ | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈cl T

′ ∧ τ = in(T ′)}

in(T ) is the sequence of input events provided to the system resulting in trace T , which includes both user interactions with the system

(id.Ev (v )) and dynamically-generated page elements (new(id, pcsrc )). We consider dynamically-generated page inputs in order to model an

active attacker, who may control some of the code running on the webpage.

Confidentiality Security. An attacker at l ∈ Lc should not be able to refine their knowledge of the secret inputs by watching the system

run.

K (T , Σ0,R,S,P, l ) ⊆⪯ K (P,D, E ⊢ T =⇒ K , Σ0,R,S,P, l )
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pcsrc,dd ,de ⊢ Σ,σ , c
α
−→pc Σ

′,σ ′, c ′,E

JeKpcσ ,Σ = v

pcsrc,dd ,de ⊢ Σ,σ , output ch e
ch (v )
−→ pc Σ,σ , skip, ·

output

JeKpcσ ,Σ = v

pcsrc,dd ,de ⊢ Σ,σ , trigger id.Ev (e )
•
−→pc Σ,σ , skip, (id.Ev (v ), pc)

event-trigger

JeKpcσ ,Σ = v
Σ(pc) = (σд ,σEH ) id < σEH σEH ′ = σEH

[id 7→ (v, ·, pcsrc )] Σ′ = Σ[pc 7→ (σд ,σEH ′ )] α = new(id, pcsrc )

pcsrc,dd ,de ⊢ Σ,σ , new(id, e )
α
−→pc Σ

′,σ , skip, ·
new

Σ(pc) = (σд ,σEH ) eh = onEv (x ){c}
σEH (id) = (v,M, pcid ) M (Ev) = EHEv

M ′ = M[Ev 7→ EHEv ∪ {(eh, pcsrc )}]
σEH ′ = σEH

[id 7→ (v,M ′, pcid )] Σ′ = Σ[pc 7→ (σд ,σEH ′ )] α = newEH(id, eh, pcid , pcsrc )

pcsrc,dd ,de ⊢ Σ,σ , addEh(id, eh)
α
−→pc Σ

′,σ , skip, ·
add-eh

read(dd , ι) = v

pcsrc,dd ,de ⊢ Σ,σ ,x := declassify(ι, e )
•
−→pc Σ,x := v, skip, ·

declassify

read(de , ι) = v

pcsrc,dd ,de ⊢ Σ,σ ,x := endorse(ι, e )
•
−→pc Σ,x := v, skip, ·

endorse

Figure 23: Operational Semantics for Local Evaluation Continued

pcsrc,dd ,de ⊢ Σ,κ
α
−→pc Σ

′, ks

pcsrc,dd ,de ⊢ Σ,σ , skip, P , ·
•
−→pc Σ, ((σ , skip,C, ·), pcsrc, pc)

PtoC

E = (id.Ev (v ), pc) :: E ′ Σ,E { ks

pcsrc,dd ,de ⊢ Σ,σ , skip, P,E
•
−→pc Σ, ((σ , skip,C, ·), pcsrc, pc) :: ks

PtoLC

pcsrc,dd ,de ⊢ Σ,σ , c
α
−→pc Σ

′,σ ′, c ′,E ′

pcsrc,dd ,de ⊢ Σ,σ , c, P ,E
(α,pc)
−→ pc Σ

′, ((σ ′, c ′, P , (E,E ′)), pcsrc, pc)
P

Figure 24: Operational Semantic Rules for Single Execution

Progress-Insensitive (PI) Knowledge. At attacker at l ∈ Lc should not be able to refine their knowledge of the secret inputs, besides what is

leaked by observing that the system makes progress.

Kp (T , Σ0,R,S,P, l ) = {τi | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈cl T

′ ∧ τi = in(T ′) ∧ prog(T ′)}

prog(T ) holds if the trace T eventually returns to the consumer state to process another user event.

prog(T ) iffT = P,D, E ⊢ K0 =⇒
∗ K ∧ ∃KC s.t.P,D, E ⊢ K

τ
=⇒∗ KC ∧ consumer(KC ) ∧ ∀αl ∈ τ , output(αl )

consumer(K ) holds if there are no pending event handlers in the event handler queue (i.e., K = R,S; Σ; ·)

PI Release Knowledge.
Krp (T , Σ0, R, S, P, αl , l ) = {τi | ∃T ′ ∈ runs(Σ0, R, S, P), T ≈cl T

′ ∧ τi = in(T ′)∧

prog(T ′) ∧ τr = (P, D, E ⊢ last(T )
αl
=⇒ K )) ↓cl ∧releaseT(T

′, τr , l )) }
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where release(T ,τ , l ) holds if the trace T will eventually produce the same release event(s), τ , at level l . Note: we use τ here because a

downgraded event may appear different to different security levels, so a downgraded event may result in multiple events.

releaseT(P,D, E ⊢ K0 =⇒
∗ K ,τ , l ) iff ∃T ,KC ,K ′ s.t., consumer(KC )∧

T = P,D, E ⊢ K =⇒∗ KC =⇒ K ′ with (P,D, E ⊢ K =⇒∗ KC ) ↓
c
l = ·

and...

T ↓cl =



τ when τ = rls(_)

down(id.Ev (v ),τrls, _,E, pc) when τ = down(id.Ev (v ),τrls,τsntz,E, pc)

PI Transparent Knowledge. Secure downgrading involves both confidentiality and integrity. In order to securely endorse an event, the

source should have enough privilege to see the event. When we define equivalent traces, we need to also consdier the confidentiality level of

the source of events (even those in executions that the attacker does not have enough privilege to see). We define transparent knowledge

to measure the amount of information leaked to an attacker when a transparent endorsement originates in an exeuction they don’t have

privilege to see (i.e., they learn that there is an element on that copy of the page which the principal generating the event has enough

privilege to see).

Ktp (T , Σ0,R,S,P,αl , l ) = {τi | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈cl T

′ ∧ τi = in(T ′)∧

prog(T ′) ∧ τ = (P,D, E ⊢ last(T )
αl
=⇒ K )) ↓cl ∧transparentT(T

′,τ , l ))}

where transparentT(T ,τ , l ) holds if the trace T will eventually produce the same elements capable of transparent endorsement, given by τ .
We also need to consider the case where T does not produce any elements capable of transparent endorsement. In this case, T has reached a

new input event and an equivalent trace should be able to get to a consumer state without producing any visible events (like t(_)). This is
why input events are also consdiered transparent actions, in addition to t(_). For a similar reason, we need to consider outputs made in

executions that are visible to the attacker. A single event may trigger event handlers in several executions, not all of which are visible to the

attacker. If an event handler is running in an execution that is visible to the attacker (i.e., the trace is producing ch(_) or • events), then we

know an equivalent trace running an event handler in an execution that is not visible to the attacker should not produce any visible events

(like t(_)).

transparentT(P, D, E ⊢ K0 =⇒
∗ K, τ , l ) iff ∃T , K ′, τ s.t. T = P, D, E ⊢ K

τ
=⇒∗ K ′

and...
T ↓cl = τ when τ = t(_)
consumer(K ′) ∧T ↓cl = · when τ ∈ {(id .Ev (v ), _), sntz(_) }
lowEH(K ′) ∧ ∀(α, pc) ∈ τ ′, α ∈ {ch(_), •} ∧ pc ↓c@ l when τ ∈ {ch(_), •}

where lowEH(K ) holds if the current event handler running in K is running with pc ↓c⊑ l

Confidentiality Security (with Declassification).

Definition 5 (Knowledge-based PINI with Transparent Endorsement). A system satisfies progress-insensitive noninterference with transparent
endorsement against observers at l ∈ Lc iff given any initial global store Σ0 and downgrade policy R,S,P, it is the case that for all traces T ,

actions αl , and configurations K s.t. (P,D, E ⊢ T
αl
=⇒ K ) ∈ runs(Σ0,R,S,P), then, the following holds

• If rlsA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

K (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Krp (T , Σ0,R,S,P,αl , l )

• If trnsprntA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

K (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Ktp (T , Σ0,R,S,P,αl , l )

• Otherwise:
K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Kp (T , Σ0,R,S,P, l )

where rlsA(P,D, E ⊢ T
αl
=⇒ K , l ) iffT ↓cl ∈ {rls(_), down(_)} trnsprntA(P,D, E ⊢ T =⇒ K , l ) iffT ↓cl ∈ {t(_), (id.Ev (v ), _), sntz(_), ch(_), •}

D INTEGRITY
Untrusted inputs should not influence the trusted operations of a system. A system which ensures that information does not flow down the

integrity lattice (i.e., in the direction ofU to T ) is secure. ≈il traces have the same l-trusted actions for l ∈ Li .

Influence. We can protect l-trusted components of a system by measuing the possible untrusted inputs which might have produced the

given l-trusted trace (for l ∈ Li ).

I (T , Σ0,R,S,P, l ) = {τ | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈il T

′ ∧ τ = in(T ′)}
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in(T ) is the sequence of input events provided to the system resulting in trace T , which includes both user interactions with the system

(id.Ev (v )) and dynamically-generated page elements (new(id, pcsrc )).

Integrity Security. The possible inputs (including new page elements) supplied by an untrusted attacker should not be refined as more

l-trusted actions are taken by the system; if they are, it means the attacker must have influence something trusted.

I (T , Σ0,R,S,P, l ) ⊆⪯ I (P,D, E ⊢ T =⇒ K , Σ0,R,S,P, l )

Progress-Insensitive (PI) Influence. If a loop condition depends on an untrustred value, untrusted parties would be in control of whether

any trusted operations following the loop occur. We permit this influence, so we only consider the traces which return to consumer states

(i.e., the ones which make progress).

The possible inputs supplied by an attacker at should not be refined as more l-trusted actions are taken by the system, outside of what

influence they have over whether the system makes progress.

Ip (T , Σ0,R,S,P, l ) = {τi | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈il T

′ ∧ τi = in(T ′) ∧ prog(T ′)}

PI Sanitization Influence.

Iep (T , Σ0,R,S,P,αl , l ) = {τi | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈il T

′ ∧ τi = in(T ′)∧

prog(T ′) ∧ τs = (P,D, E ⊢ last(T )
αl
=⇒ K )) ↓il , sanitizeT(T

′,τs , l ))}

where sanitize(T ,τ , l ) holds if the trace T will eventually produce the same endorsement(s), τ , at level l .

sanitizeT(P,D, E ⊢ K0 =⇒
∗ K ,τ , l ) iff ∃T ,KC ,K ′ s.t., consumer(KC )∧

T = P,D, E ⊢ K =⇒∗ KC =⇒ K ′ with (P,D, E ⊢ K =⇒∗ KC ) ↓
i
l= ·

and...

T ↓il=



τ when τ = sntz(_)

down(id.Ev (v ), _,τsntz,E, pc) when τ = down(id.Ev (v ),τrls,τsntz,E, pc)

PI Robust Influence. Secure downgrading involves both confidentiality and integrity. In order to securely declassify an event, the principal

triggering the event should trust the source of the event handler. When we define equivalent traces, we need to also consider the integrity

level of the source of events (even those in executions that the attacker has direct influence over). We define robust influence to measure the

amount of influence the attacker has over robust page elements (i.e., we allow their influence to be refined by the existence of robust page

elements that they must not have had influence over).

Irp (T , Σ0,R,S,P,αl , l ) = {τi | ∃T
′ ∈ runs(Σ0,R,S,P),T ≈il T

′ ∧ τi = in(T ′)∧

prog(T ′) ∧ τ = (P,D, E ⊢ last(T )
αl
=⇒ K )) ↓cl ∧robustT(T

′,τ , l ))}

where robustT(T ,τ , l ) holds if the trace T will eventually produce the same elements capable of robust declassification, given by τ . We also

need to consider the case where T does not produce any elements capable of robust declassification. In this case, T has reached a new input

event and an equivalent trace should be able to get to a consumer state without producing any visible events (like r(_)). This is why input

events are also consdiered robust actions, in addition to r(_). For a similar reason, we need to consider outputs made in executions that

are not under the influence of the attacker. A single event may trigger event handlers in several executions, not all of which are under the

attacker’s influence. If an event handler is running in an execution that is not under the attacker’s influence (i.e., the trace is producing ch(_)
or • events), then we know an equivalent trace running an event handler in an execution that is under the attacker’s influence should not

produce any visible events (like r(_)).

robustT(P,D, E ⊢ K0 =⇒
∗ K ,τ , l ) iff ∃T ,K ′,τ s.t. T = P,D, E ⊢ K

τ
=⇒∗ K ′

and...
T ↓il= τ when τ = r(_)
consumer(K ′) ∧T ↓il= · when τ ∈ {(id.Ev (v ), _), rls(_)}
lowEH(K ′) ∧ ∀(α , pc) ∈ τ ,α ∈ {ch(_), •} ∧ pc ↓i@ l when τ ∈ {ch(_), •}

where lowEH(K ) holds if the current event handler running in K is running with pc ↓i⊑ l

Integrity Security (with Endorsement).

Definition 6 (Influence-based PINI with Endorsement and Robust Declassification). A system satisfies progress-insensitive noninterference with
endorsement and robust declassification for behaviors at l ∈ Li iff given any initial global store Σ0 and downgrade policy R,S,P, it is the case

that for all traces T , actions αl , and configurations K s.t. (P,D, E ⊢ T
αl
=⇒ K ) ∈ runs(Σ0,R,S,P), then, the following holds
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• If sntzA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

I (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Iep (T , Σ0,R,S,P,αl , l )

• If rbstA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

I (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Irp (T , Σ0,R,S,P,αl , l )

• Otherwise:
I (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Ip (T , Σ0,R,S,P, l )

where sntzA(P,D, E ⊢ T
αl
=⇒ K , l ) iff T ↓il ∈ {sntz(_), down(_)} rbstA(P,D, E ⊢ T =⇒ K , l ) iff T ↓il ∈ {r(_), (id.Ev (v ), _), rls(_), ch(_), •}

E ROBUST DECLASSIFICATION
Only trusted data should be declassified. The attacker should not be in control of what is declassified or when declassification happens.

Since declassifications should only be triggered by trusted parties, we can treat declassification as a trusted event itself. Then, we can

ensure declassification is transparent (i.e., only depends on trusted values) if the attacker’s influence is not refined by the declassification.

Robust declassification follows from integrity security.

F TRANSPARENT ENDORSEMENT
Information should be sufficiently public to be endorsed. Attacker inputs should be chosen without knowledge of secret information.

Otherwise, the attacker could affect flows of the endorser’s secret information into trusted information.

Since endorsements should only involve public information, we can treat endorsement as a public event itself. Then, we can ensure

endorsements are transparent (i.e., only depends on public values) if the attacker’s knowledge is not refined by the endorsement. Transparent

endorsement follows from confidentiality security.

G EQUIVALENCE DEFINITIONS
G.1 Operations on labels
pc ↓p

(lc , li ) ↓
c= lc (lc , li ) ↓

i= li

G.2 Configuration equivalence

K ≈
p
l K ′

R1 = R2 S1 = S2 Σ1 ≈
p
l Σ2 ks1 ≈

p
l ks2

(R1,S1, Σ1, ks1) ≈
p
l (R2,S2, Σ2, ks2)

Store equivalence.

Σ ≈
p
l Σ′

Σ1 ↓
p
l = Σ2 ↓

p
l

Σ1 ≈
p
l Σ2

Σ ↓
p
l = Σ′

Σ = pc 7→ σGpc, Σ
′ pc ↓p⊑ l

Σ ↓
p
l = pc 7→ σGpc, Σ

′ ↓
p
l

Σ = pc 7→ (_,σEH ) pc ↓p@ l

Σ ↓
p
l = pc 7→ (·,σEH ↓

p
l ), Σ

′ ↓
p
l · ↓

p
l = ·

σEH ↓
p
l = σEH ′

pc ↓p⊑ l

(id 7→ (v,M, pc),σEH ) ↓
p
l = (id 7→ (dv,M ↓pl , pc)),σ

EH ↓
p
l

pc ↓p@ l

(id 7→ (v,M, pc),σEH ) ↓
p
l = σEH ↓

p
l · ↓

p
l = ·

M ↓
p
l = M ′

(Ev 7→ EH ,M ) ↓
p
l = (Ev 7→ EH ↓pl ),M ↓

p
l · ↓

p
l = ·
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EH ↓pl = EH ′

pc ↓p⊑ l

({(eh, pc)} ∪ EH ) ↓
p
l = {(eh, pc)} ∪ EH ↓pl

pc ↓p@ l

({(eh, pc)} ∪ EH ) ↓
p
l = EH ↓pl · ↓

p
l = ·

Configuration stack equivalence.

ks ≈pl ks′

ks1 ↓
p
l = ks2 ↓

p
l

ks1 ≈
p
l ks2

ks ↓pl = ks′

ks = (κ, pcsrc, pc) :: ks
′ pc ↓p⊑ l

ks ↓pl = (κ, pcsrc, pc) :: ks
′ ↓

p
l

ks = (κ, pcsrc, pc) :: ks
′ pc ↓p@ l

ks ↓pl = ks′ ↓pl · ↓
p
l = ·

G.3 Trace Equivalence

T ≈
p
l T ′

T ≈
p
l T ′ iffT ↓pl = T

′ ↓
p
l
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T ↓
p
l = τ

P ⊢ K ↓
p
l = ·

TP-Base

pc ↓p⊑ l α < {id.Ev (v ), ch(v )}

(P,D, E ⊢ K
(α,pc)
=⇒ T ′) ↓

p
l = α :: T ′ ↓

p
l

TP-Out1

pc ↓p⊑ l ∨ P (ch) ↓p⊑ l

(P,D, E ⊢ K
(ch(v ),pc)
=⇒ T ′) ↓

p
l = ch(v ) :: T ′ ↓pl

TP-Out2

pc ↓p@ l ↓p P (ch) ↓p@ l

(P,D, E ⊢ K
(ch(v ),pc)
=⇒ T ′) ↓

p
l = T

′ ↓
p
l

TP-Out-Silent

α < {id.Ev (v ), ch(v ), new(_)} pc ↓p@ l

(P,D, E ⊢ K
(α,pc)
=⇒ T ′) ↓

p
l = T

′ ↓
p
l

TP-Out-Silent2

α ∈ {new(id, pcsrc ), newEH(id, eh, pcid , pcsrc )} pc ↓c@ l
τ = t(id, pc) if α = new(...) ∧ pcsrc ↓

c⊑ pc ↓c

τ = t(id, eh, pc) if α = newEH(...) ∧ pcsrc ↓
c⊑ pc ↓c ∧pcid ↓

c⊑ pc ↓c τ = · otherwise

(P,D, E ⊢ K
(α,pc)
=⇒ T ′) ↓cl = τ :: T ′ ↓cl

TP-NewC

α ∈ {new(id, pcsrc ), newEH(id, eh, pcid , pcsrc )} pc ↓i@ l

τ = r(id, pc) if α = new(...) ∧ pcsrc ↓
i⊑ pc ↓i

τ = r(id, eh, pc) if α = newEH(...) ∧ pcsrc ↓
i⊑ pc ↓i ∧pcid ↓

i⊑ pc ↓i τ = · otherwise

(P,D, E ⊢ K
(α,pc)
=⇒ T ′) ↓il= τ :: T ′ ↓il

TP-NewI

P (id.Ev (v )) = pc′ K = _, _; Σ; _ Σ(pc) = (_,σEH )

σEH (id) ↓i@ pc ↓i σEH (id) ↓c@ pc ↓c

τ = trInput(pc′, pc, id.Ev (v ), l ,p)

(P,D, E ⊢ K
(id .Ev (v ),pc)
=⇒ T ′) ↓

p
l = τ :: T ′ ↓

p
l

TP-In

P (id.Ev (v )) = pc′ K = _, _; Σ; _ Σ(pc) = (_,σEH )

σEH (id) ↓i⊑ pc ↓i σEH (id) ↓c@ pc ↓c

τ = trRobust((P,D, E ⊢ K
(id .Ev (v ),pc)
=⇒ T ′), l ,p)

(P,D, E ⊢ K
(id .Ev (v ),pc)
=⇒ T ′) ↓

p
l = τ :: T ′ ↓

p
l

TP-In-R

P (id.Ev (v )) = pc′ K = _, _; Σ; _ Σ(pc) = (_,σEH )

σEH (id) ↓i@ pc ↓i σEH (id) ↓c⊑ pc ↓c

τ = trTransparent((P,D, E ⊢ K
(id .Ev (v ),pc)
=⇒ T ′), l ,p)

(P,D, E ⊢ K
(id .Ev (v ),pc)
=⇒ T ′) ↓

p
l = τ :: T ′ ↓

p
l

TP-In-T

P (id.Ev (v )) = pc′ K = _, _; Σ; _ Σ(pc) = (_,σEH )

σEH (id) ↓i⊑ pc ↓i σEH (id) ↓c⊑ pc ↓c

τ = trRobustTransparent((P,D, E ⊢ K
(id .Ev (v ),pc)
=⇒ T ′), l ,p)

(P,D, E ⊢ K
(id .ev (v ),pc)
=⇒ T ′) ↓

p
l = τ :: T ′ ↓

p
l

TP-In-RT

Figure 25: Trace projection rules
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trInput(pc, pc′, id.Ev (v ), l ,p) = τ

pcsrc ↓
p ⊔pcP ↓

p⊑ l

trInput(pcP , pcsrc, id.Ev (v ), l ,p) = (id.Ev (v ), pcsrc )
input

pcsrc ↓
p ⊔pcP ↓

p@ l

trInput(pc′, pc, id.Ev (v ), l ,p) = ·
noInput

trRobust(T , l ,p) = τ

P (id.Ev (v )) = pc′

R = (ρ,d ) E = ((id.ev (v ), (lc , li )) | pc′ ↓c⊑ lc ⊏ pc ↓c ∧li = pc ↓i ⊔pc′ ↓i ) D ((id.ev (v ), pc), pc′, ρ) = (ρ ′,v,Ed )
E ′ = robust(Σ,E :: Ed , pc) pc, r ⊢ Σ,E ′ { ks

τ ′ = rls(id.Ev (v ), ρ ′,v,E ′ ↓cl , pc) if ρ , ρ ′ ∨v , none ∨ ks ↓cl , · τ ′ = trInput(pc′, pc, id.Ev (v ), l , c ) otherwise

trRobust((P,D, E ⊢ R, _; Σ; _
(id .Ev (v ),pc)
=⇒ T ′), l , c ) = τ ′

robust-C

P (id.Ev (v )) = pc′

R = (ρ,d ) E = ((id.ev (v ), (lc , li )) | pc′ ↓c⊑ lc ⊏ pc ↓c ∧li = pc ↓i ⊔pc′ ↓i ) D ((id.ev (v ), pc), pc′, ρ) = (ρ ′,v,Ed )
E ′ = robust(Σ,E :: Ed , pc) pc, r ⊢ Σ,E ′ { ks

τ ′ = rls(id.Ev (v ), ρ ′,v,E ′, pc) if pc ↓i⊑ l and ρ , ρ ′ ∨v , none ∨ ks , · τ ′ = trInput(pc′, pc, id.Ev (v ), l , i ) otherwise

trRobust((P,D, E ⊢ R, _; Σ; _
(id .Ev (v ),pc)
=⇒ T ′), l , i ) = τ ′

robust-I

trTransparent(T , l ,p) = τ

P (id.Ev (v )) = pc′

S = (ρ,d ) E = ((id.Ev (v ), (lc , li )) | pc′ ↓i⊑ li ⊏ pc ↓i ∧lc = pc ↓c ⊔pc′ ↓c ) E ((id.ev (v ), pc), pc′, ρ) = (ρ ′,v,Es )
E ′ = transparent(Σ,E :: Es , pc) pc, t ⊢ Σ,E ′ { ks

τ ′ = sntz(id.Ev (v ), ρ ′,v,E ′ ↓il , pc) if ρ
′ , ρ ∨v , none ∨ ks ↓il, · τ ′ = trInput(pc′, pc, id.Ev (v ), l , i ) otherwise

trTransparent((P,D, E ⊢ _,S; _; Σ; _
(id .Ev (v ),pc)
=⇒ T ′), l , i ) = τ ′

transparent-I

P (id.Ev (v )) = pc′

S = (ρ,d ) E = ((id.ev (v ), (lc , li )) | pc′ ↓i⊑ li ⊏ pc ↓i ∧lc = pc ↓c ⊔pc′ ↓c ) E ((id.ev (v ), pc), pc′, ρ) = (ρ ′,v,Es )
E ′ = transparent(Σ,E :: Es , pc)

pc, t ⊢ Σ,E ′ { ks τ ′ = sntz(id.Ev (v ), ρ ′,v,E ′, pc) if pc ↓c⊑ l and ρ ′ , ρ ∨v , none ∨ ks , ·
τ ′ = trInput(pc′, pc, id.Ev (v ), l , c ) otherwise

trTransparent((P,D, E ⊢ _,S; _; Σ; _
(id .Ev (v ),pc)
=⇒ T ′), l , c ) = τ ′

transparent-C

trDowngrade(T , l ,p) = τ

K = R,S; Σ; _ αl = (id.Ev (v ), pc) P (id.Ev (v )) = pc′

τin = trInput(pc′, pc, id.Ev (v ), l ,p)

τd = trRobust((P,D, E ⊢ K
αl
=⇒ T ′), l ,p) τe = trTransparent((P,D, E ⊢ K

αl
=⇒ T ′), l ,p)

Ed,e = downgradeD,E (R,S, Σ,αl , pc
′) pc, rt ⊢ Σ,Ed,e { ks ks ↓pl = ·

τ = τin if τd , rls(_) ∧ τe , sntz(_) τ = τd if τd = rls(_) ∧ τe , sntz(_) τ = τe if τe = sntz(_) ∧ τd , rls(_)

trDowngrade((P,D, E ⊢ K
αl
=⇒ T ′), l ,p) = τ

rls-or-sntz

K = R,S; Σ; _ αl = (id.Ev (v ), pc) P (id.Ev (v )) = pc′

τd = trRobust((P,D, E ⊢ K
αl
=⇒ T ′), l ,p) τe = trTransparent((P,D, E ⊢ K

αl
=⇒ T ′), l ,p)

Ed,e = downgradeD,E (R,S, Σ,αl , pc
′) pc, rt ⊢ Σ,Ed,e { ks ks ↓pl , · or τd = rls(_) ∧ τe = sntz(_)

τ = down(id.Ev (v ),τd ,τe ,Ed,e , pc)

trDowngrade((P,D, E ⊢ K
αl
=⇒ T ′), l ,p) = τ

down

Figure 26: Helper functions for trace projection
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E ↓
p
l = E ′

pc ↓p⊑ l

((id.Ev (v ), pc) :: E ′) ↓pl = (id.Ev (v ), pc) :: E ′ ↓pl

pc ↓p@ l

((id.Ev (v ), pc) :: E ′) ↓pl = E ′ ↓
p
l

We show the rules for trace projection in Figure 25 with helper functions in Figure 26. Our trace projection definitions for inputs are

complex because we need to check whether potential declassifications (or endorsements) are robust (resp. transparent) to determine if they

should be included in the observation (resp. behavior) of the trace. Note that there are two rules for each of the helper functions, one for

confidentiality, one for integrity. Recall that to prove robust declassification, we want to treat all declassifications as trusted (or endorsements

as public). But we also consider an artibtrary lattice, so we also need to check that the declassifications come from trusted sources (we don’t

care if declassifications from untrusted sources are robust). We do something similar for endorsements.

H SECURITY PROOFS
H.1 Noninterference

Theorem 7 (Soundness - Confidentiality). For any downgrade policy R,S,P, SME state Σ0, and for traces, states, and actions T ,K ,αl s.t.

P,D, E ⊢ T
αl
=⇒ K ∈ runs(Σ0,R,S,P), then an attacker’s knowledge of events secret to l is not refined:

• If rlsA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

K (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Krp (T , Σ0,R,S,P,αl , l )

• If trnsprntA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

K (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Ktp (T , Σ0,R,S,P,αl , l )

• Otherwise:
K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Kp (T , Σ0,R,S,P, l )

Proof.

The proof is split between three cases depending on the action, shown below.

In each case, we want to show that

∃τ ′ ∈ K (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) s.t. τ ⪯ τ ′ for τ defined below

Case I: rlsA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

Let

(I.1) τ ∈ Krp (T , Σ0,R,S,P,αl , l )

(I.2) τr = (P,D, E ⊢ last(T )
αl
=⇒ K ) ↓cl

∃T1,K0,K1,K2 s.t.

(I.3) T1 = P,D, E ⊢ K0 =⇒
∗ K1 and

(I.4) τ = in(T1)
(I.5) T = P,D, E ⊢ K0 =⇒

∗ K2

From definition Krp (),
(I.6) T1 ≈

c
l T

(I.7) prog(T1)
(I.8) releaseT(T1,τr , l )

Subcase i: τr = rls(_)
By assumption and from (I.8), ∃K ′

1
s.t.

(i.1) P,D, E ⊢ T1 =⇒
∗ K ′

1
with

(i.2) (P,D, E ⊢ K1 =⇒
∗ K ′

1
) ↓cl = τr

From (I.6),

(i.3) T ↓cl = T1 ↓
c
l

From (I.2), (i.2), (i.3), and the definition of ≈cl ,

(i.4) (P,D, E ⊢ T
αl
=⇒ K ) ≈cl (P,D, E ⊢ T1 =⇒

∗ K ′
1
)

From (i.4) and the definition of K (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let
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(i.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (i.5), and (I.4),

τ ⪯ τ ′

Subcase ii: τr = down(τrls, _)
From (I.3), (I.5), (I.6), and Lemma 9,

(ii.1) K1 ≈
c
l K2

By assumption and from (ii.1), (I.2), (I.7), (I.8), and Lemma 30, ∃K ′
1
s.t.

(ii.2) P,D, E ⊢ K1 =⇒
∗ K ′

1
with

(ii.3) (P,D, E ⊢ K2 =⇒ K ) ≈cl (P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (I.6) and (ii.3),

(ii.4) (P,D, E ⊢ T =⇒ K ) ≈cl (P,D, E ⊢ T1 =⇒
∗ K ′

1
)

From (ii.4) and the definition of K (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(ii.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (ii.5) and (II.4),

τ ⪯ τ ′

Case II: trnsprntA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

Let

(II.1) τ ∈ Ktp (T , Σ0,R,S,P,αl , l )

(II.2) τt = (P,D, E ⊢ last(T )
αl
=⇒ K ) ↓cl

∃T1,K0,K1,K2 s.t.

(II.3) T1 = P,D, E ⊢ K0 =⇒
∗ K1 and

(II.4) τ = in(T1)
(II.5) T = P,D, E ⊢ K0 =⇒

∗ K2

From definition Ktp (),
(II.6) T1 ≈

c
l T

(II.7) prog(T1)
(II.8) transparentT(T1,τt , l )

Subcase i: τt = t(_)
By assumption and from (II.3), (II.8), ∃K ′

1
s.t.

(i.1) P,D, E ⊢ T1 =⇒
∗ K ′

1
with

(i.2) (P,D, E ⊢ K1 =⇒
∗ K ′

1
) ↓cl = τt

From (II.6),

(i.3) T ↓cl = T1 ↓
c
l

From (II.2), (i.2), (i.3), and the definition of ≈
p
l for T ,

(i.4) (P,D, E ⊢ T
αl
=⇒ K ) ≈cl (P,D, E ⊢ T1 =⇒

∗ K ′
1
)

From (i.4) and the definition of K (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(i.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (i.5) and (II.4),

τ ⪯ τ ′

Subcase ii: τt = {(id.Ev (v ), _), sntz(_), ch(_), •}
From (II.3), (II.5), (II.6), and Lemma 9,

(ii.1) K1 ≈
c
l K2

By assumption and form (II.3), (II.5), (ii.1), (II.2), (II.6)-(II.8), and Lemma 22, ∃K ′
1
s.t.

(ii.2) P,D, E ⊢ K1 =⇒
∗ K ′

1
with

(ii.3) (P,D, E ⊢ K2 =⇒ K ) ≈cl (P,D, E ⊢ K1 =⇒
∗ K ′

1
)
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From (II.6) and (ii.3),

(ii.4) (P,D, E ⊢ T1 =⇒
∗ K ′

1
) ≈cl (P,D, E ⊢ T =⇒ K )

From (ii.4) and the definition of K (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(ii.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (ii.5) and (I.4),

τ ⪯ τ ′

Case III: ¬rlsA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

and ¬trnsprntA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

Let

(III.1) τ ∈ Kp (T , Σ0,R,S,P,αl , l )
∃T1,K0,K1,K2 s.t.

(III.2) T1 = P,D, E ⊢ K0 =⇒
∗ K1 and

(III.3) τ = in(T1)
(III.4) T = P,D, E ⊢ K0 =⇒

∗ K2 and

(III.5) P,D, E ⊢ K2

αl
=⇒ K

From definition Krp (),
(III.6) T1 ≈

c
l T

(III.7) prog(T1)
From (III.6),

(III.8) T ↓cl = T1 ↓
c
l

By assumption and from the definition for rlsA and trnsprntA,
(III.9) (P,D, E ⊢ last(T ) =⇒ K ) ↓cl < {rls(_), down(_), sntz(_), t(_), (id.Ev (v ), _), ch(_), •}

From (III.9) and the definition of ↓cl for T ,

(III.10) (P,D, E ⊢ last(T )
αl
=⇒ K ) ↓cl = ·

From (III.10),

(III.11) T ≈cl (P,D, E ⊢ T
αl
=⇒ K )

From (III.4) and (III.11),

(III.12) T1 ≈
c
l (P,D, E ⊢ T

αl
=⇒ K )

Let

(III.13) τ ′ = in(T1)
From (III.12) and (III.13),

τ ′ ∈ K (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l )

From (III.3) and (III.13),

τ ⪯ τ ′

□

Theorem 8 (Soundness - Integrity). For any downgrade policy R,S,P, SME state Σ0, and for traces, states, and actions T ,K ,αl s.t. P,D, E ⊢

T
αl
=⇒ K ∈ runs(Σ0,R,S,P), then an attacker does not have influence over trusted behaviors at l :

• If sntzA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

I (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Iep (T , Σ0,R,S,P,αl , l )

• If rbstA(P,D, E ⊢ last(T )
αl
=⇒ K , l ):

I (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Irp (T , Σ0,R,S,P,αl , l )

• Otherwise:
I (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l ) ⊇⪯ Ip (T , Σ0,R,S,P, l )

Proof.

The proof is split between three cases depending on the action, shown below.

In each case, we want to show that

∃τ ′ ∈ I (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l ) s.t. τ ⪯ τ ′ for τ defined below
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Case I: sntzA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

Let

(I.1) τ ∈ Iep (T , Σ0,R,S,P,αl , l )

(I.2) τs = (P,D, E ⊢ last(T )
αl
=⇒ K ) ↓il

∃T1,K0,K1 s.t.

(I.3) T1 = P,D, E ⊢ K0 =⇒
∗ K1 and

(I.4) τ = in(T1)
(I.5) T = P,D, E ⊢ K0 =⇒

∗ K2

From definition Iep (),
(I.6) T1 ≈

i
l T

(I.7) prog(T1)
(I.8) sanitizeT(T1,α ′, l )

Subcase i: τs = sntz(_)
From (I.8), ∃K ′

1
,αl,1 s.t.

(i.1) P,D, E ⊢ T1 =⇒
∗ K ′

1
with

(i.2) (P,D, E ⊢ K1 =⇒
∗ K ′

1
) ↓il= τr

From (I.6),

(i.3) T ↓il= T1 ↓
i
l

From (I.2), (i.2), (i.3), and the definition of ≈il ,

(i.4) (P,D, E ⊢ T
αl
=⇒ K ) ≈il (P,D, E ⊢ T1 =⇒

∗ K ′
1
)

From (i.4) and the definition of I (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ I (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(i.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (i.5), and (I.4),

τ ⪯ τ ′

Subcase ii: τs = down(_)
From (I.3), (I.5), (I.6), and Lemma 9,

(ii.1) K1 ≈
i
l K2

By assumption and from (ii.1), (I.2), (I.7), (I.8), and Lemma 30, ∃K ′
1
s.t.

(ii.2) P,D, E ⊢ K1 =⇒
∗ K ′

1
with

(ii.3) (P,D, E ⊢ K2 =⇒ K ) ≈il (P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (I.6) and (ii.3),

(ii.4) (P,D, E ⊢ T =⇒ K ) ≈il (P,D, E ⊢ T1 =⇒
∗ K ′

1
)

From (ii.4) and the definition of I (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ I (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(ii.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (ii.5) and (I.4),

τ ⪯ τ ′

Case II: rbstA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

Let

(II.1) τ ∈ Irp (T , Σ0,R,S,P,αl , l )

(II.2) τr = (P,D, E ⊢ last(T )
αl
=⇒ K ) ↓il

∃T1,K0,K1,K2 s.t.

(II.3) T1 = P,D, E ⊢ K0 =⇒
∗ K1 and

(II.4) τ = in(T1)
(II.5) T = P,D, E ⊢ K0 =⇒

∗ K2
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From definition Irp (),
(II.6) T1 ≈

i
l T

(II.7) prog(T1)
(II.8) robustT(T1,τr , l )

Subcase i: τr = r
By assumption and from (II.3), (II.8), ∃K ′

1
s.t.

(i.1) P,D, E ⊢ T1 =⇒
∗ K ′

1
with

(i.2) (P,D, E ⊢ K1 =⇒
∗ K ′

1
) ↓il= τr

From (II.6),

(i.3) T ↓il= T1 ↓
i
l

From (II.2), (i.2), (i.3), and the definition of ≈
p
l for T ,

(i.4) (P,D, E ⊢ T
αl
=⇒ K ) ≈il (P,D, E ⊢ T1 =⇒

∗ K ′
1
)

From (i.4) and the definition of I (),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ I (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(i.5) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (i.5) and (II.4),

τ ⪯ τ ′

Subcase ii: τr = {(id.Ev (v ), _), rls(_), ch(_), •}
From (II.3), (II.5), (II.6), and Lemma 9,

(ii.1) K1 ≈
i
l K2

By assumption and from (II.3), (II.5), (ii.1), (II.2), (II.6)-(II.8), and Lemma 22, ∃K ′
1
s.t.

(ii.2) P,D, E ⊢ K1 =⇒
∗ K ′

1
with

(ii.3) (P,D, E ⊢ K2 =⇒ K ) ≈il (P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (II.6) and (ii.3),

(ii.4) (P,D, E ⊢ T1 =⇒
∗ K ′

1
) ≈il (P,D, E ⊢ T

K
=⇒)

From (ii.4) and the definition of I (),

(ii.5) in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ K (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

From (ii.5),

in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
) ∈ I (P,D, E ⊢ T

αl
=⇒ K , Σ0,R,S,P, l )

Let

(ii.6) τ ′ = in(T1) :: in(P,D, E ⊢ K1 =⇒
∗ K ′

1
)

From (ii.6) and (II.4),

τ ⪯ τ ′

Case III: ¬sntzA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

and ¬rbstA(P,D, E ⊢ last(T )
αl
=⇒ K , l )

Let

(III.1) τ ∈ Ip (T , Σ0,R,S,P,αl , l )
∃T1,K0,K1,K2 s.t.

(III.2) T1 = P,D, E ⊢ K0 =⇒
∗ K1 and

(III.3) τ = in(T1)
(III.4) T = P,D, E ⊢ K0 =⇒

∗ K2 and

(III.5) P,D, E ⊢ K2

αl
=⇒ K

From definition Iep (),
(III.6) T1 ≈

i
l T

(III.7) prog(T1)
From (III.6),

(III.8) T ↓il= T1 ↓
i
l

By assumption and from the definition for sntzA and rbstA,
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(III.9) (P,D, E ⊢ last(T ) =⇒ K ) ↓il< {rls(_), down(_), sntz(_), t(_), (id.Ev (v ), _), ch(_), •}
From (III.9) and the definition of ↓il for T ,

(III.10) (P,D, E ⊢ last(T )
αl
=⇒ K ) ↓il= ·

From (III.10)

(III.11) T ≈il (P,D, E ⊢ T
αl
=⇒ K )

From (III.4) and (III.11),

(III.12) T1 ≈
i
l (P,D, E ⊢ T

αl
=⇒ K )

Let

(III.13) τ ′ = in(T1)
From (III.12) and (III.13),

τ ′ ∈ I (P,D, E ⊢ T
αl
=⇒ K , Σ0,R,S,P, l )

From (III.3) and (III.13),

τ ⪯ τ ′

□

H.2 Supporting Lemmas
Lemma 9 (Equivalent Trace, Equivalent State). If T1 = P,D, E ⊢ K1 =⇒

∗ K ′
1
and T2 = P,D, E ⊢ K2 =⇒

∗ K ′
2
with K1 ≈

p
l K2 and T1 ≈

p
l T2,

then K ′
1
≈
p
l K ′

2

Proof.

By induction on len(T1) and len(T2)
By assumption,

(1) T1 = P,D, E ⊢ K1 =⇒
∗ K ′

1

(2) T2 = P,D, E ⊢ K2 =⇒
∗ K ′

2

(3) K1 ≈
p
l K2

(4) T1 ≈
p
l T2

Base Case I: len(T1) = 0 and len(T2) = n
By assumption and from (1),

(I.1) T1 = K1

(I.2) K1 = K ′
1

From (I.1),

(I.3) T1 ↓
p
l = ·

From (4) and (I.3),

(I.4) T2 ↓
p
l = ·

From (I.4) and Lemma 10,

(I.5) K2 ≈
p
l K ′

2

From (3), (I.2), and (I.5),

K ′
1
≈
p
l K ′

2

Base Case II: len(T1) = n and len(T2) = 0

The proof is similar to Base Case I

Inductive Case III: len(T1) = n + 1 and len(T2) =m + 1
We assume the conclusion holds for len(T1) ≤ n and len(T2) ≤ m
By assumption and from (1) and (2),

(III.1) T1 = P,D, E ⊢ K1 =⇒
∗ K ′′

1
=⇒ K ′

1
with

(III.2) len(P,D, E ⊢ K1 =⇒
∗ K ′′

1
) = n

(III.3) T2 = P,D, E ⊢ K2 =⇒
∗ K ′′

2
=⇒ K ′

2
with

(III.4) len(P,D, E ⊢ K2 =⇒
∗ K ′′

2
) =m

Subcase i: (P,D, E ⊢ K ′′
1
=⇒ K ′

1
) ↓

p
l = ·

By assumption and from (III.1),
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(i.1) T1 ↓
p
l = (P,D, E ⊢ K1 =⇒

∗ K ′′
1
) ↓

p
l

From (i.1),

(i.2) T1 ≈
p
l (P,D, E ⊢ K1 =⇒

∗ K ′′
1
)

From (4) and (i.2),

(i.3) T2 ≈
p
l (P,D, E ⊢ K1 =⇒

∗ K ′′
1
)

From (3), (III.2), and (i.3),

The IH may be applied on (P,D, E ⊢ K1 =⇒
∗ K ′′

1
) and T2

IH on (P,D, E ⊢ K1 =⇒
∗ K ′′

1
) and T2 gives

(i.4) K ′′
1
≈
p
l K ′

2

By assumption and from Lemma 10,

(i.5) K ′′
1
≈
p
l K ′

1

From (i.4) and (i.5),

K ′
1
≈
p
l K ′

2

Subcase ii: (P,D, E ⊢ K ′′
2
=⇒ K ′

2
) ↓

p
l = ·

The proof is similar to Subcase i

Subcase iii: (P,D, E ⊢ K ′′
1
=⇒ K ′

1
) ↓

p
l , · and

(P,D, E ⊢ K ′′
2
=⇒ K ′

2
) ↓

p
l , ·

By assumption and from (4),

(iii.1) (P,D, E ⊢ K1 =⇒
∗ K ′′

1
) ≈

p
l (P ⊢ K2 =⇒

∗ K ′′
2
) and

(iii.2) (P,D, E ⊢ K ′′
1
=⇒ K ′

1
) ≈

p
l (P ⊢ K ′′

2
=⇒ K ′

2
)

From (3), (III.2), (III.4), and (iii.1),

The IH may be applied to (P,D, E ⊢ K1 =⇒
∗ K ′′

1
) and

(P,D, E ⊢ K2 =⇒
∗ K ′′

2
)

IH on (P,D, E ⊢ K1 =⇒
∗ K ′′

1
) and (P,D, E ⊢ K2 =⇒

∗ K ′′
2
) gives,

(iii.3) K ′′
1
≈
p
l K ′′

2

By assumption and from (iii.2), (iii.3), and Lemma 15,

K ′
1
≈
p
l K ′

2

□

Lemma 10 (Empty Traces, Equivalent States). If T = P,D, E ⊢ K =⇒∗ K ′ and T ↓pl = ·, then K ≈
p
l K ′

Proof.

By induction on the length of T .
By assumption,

(1) T = P,D, E ⊢ K =⇒∗ K ′

(2) T ↓
p
l = ·

Base Case I: len(T ) = 0

By assumption and from (1),

(I.1) T = K and

(I.2) K ′ = K
From (I.2),

K ≈
p
l K ′

Inductive Case II: len(T ) = n + 1
By assumption and from (1),

(II.1) T = P,D, E ⊢ K =⇒∗ K1 =⇒ K2

Want to show K ≈
p
l K2

From (2) and (II.1),

(II.2) (P,D, E ⊢ K =⇒∗ K1) ↓
p
l = ·

From (II.2),

The IH may be applied on (P,D, E ⊢ K =⇒∗ K1)
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IH on (P,D, E ⊢ K =⇒∗ K1) gives

(II.3) K ≈
p
l K1

Let T ′ = P,D, E ⊢ K1

αl
=⇒ K2

From (1),

(II.4) T ′ ↓
p
l = ·

Therefore, from (II.3), want to show K1 ≈
p
l K2

From (II.4) and the definition of T ↓
p
l ,

(II.5) pc ↓p@ l
From (II.4), when αl = new(id, pcsrc ), pc), then
(II.6) pc ↓p@ l with pcsrc @ pc

From (II.4), when αl = newEH(id, eh, pcid , pcsrc ), then
(II.7) pc ↓p@ l with pcsrc @ pc or pcid @ pc

From (II.5) - (II.7),

(II.8) pc ↓p@ l and αl ∈ {(new(id, pcsrc ), pc), newEH(id, eh, pcid , pceh)} implies pcsrc ↓
p@ l and/or pcid ↓

p@ l

Subcase i: T ′ ends in In

By assumption,

(i.1) Σ1 = Σ2
(i.2) ks1 = ·
(i.3) P (id.Ev (v )) = pc′

(i.4) E = ((id.Ev (v ), pc′′) | pc ⊔ pc′ ⊑ pc′′)
(i.5) Σ,E { ks2
(i.6) R1 = R2
(i.7) S1 = S2

From (II.4) and the definition of T ↓
p
l ,

(i.8) pc ↓p ⊔pc′ ↓p@ l
From (i.3), (i.4), and (i.8),

(i.9) ∀(id.Ev (v ), pc′′) ∈ E, pc′′ ↓p@ l
From (i.9),

(i.10) E ↓p= ·
From (i.5), (i.10) and Lemma 13,

(i.11) ks2 ≈l ·
From (i.2) and (i.11),

(i.12) ks1 ≈
p
l ks2

From (i.1), (i.6), (i.7) and (i.12),

K1 ≈
p
l K2

Subcase ii: T ′ ends in In-D

By assumption,

(ii.1) Σ1 = Σ2 = (_,σEH )
(ii.2) S1 = S2
(ii.3) ks1 = ·
(ii.4) P (id.Ev (v )) = pc′

(ii.5) E = ((id.Ev (v ), pc′′) | pc ⊔ pc′ ⊑ pc′′)
(ii.6) downgradeD (R1, Σ1, (id.Ev (v ), pc), pc′) = (R2,E

′)
(ii.7) Σ,E { ks
(ii.8) pc, r ⊢ Σ,E ′ { ks′

(ii.9) ks2 = ks :: ks′

(ii.10) σEH (id) ↓i⊑ pc ↓i

(ii.11) σEH (id) ↓c@ pc ↓c

From (ii.6) and the definition of downgradeD
(ii.12) Ed = ((id.Ev (v ), (lc , li )) | pc′ ↓c⊑ lc ⊏ pc ↓c ∧li = pc ↓i ⊔pc′ ↓i )
(ii.13) R1 = (ρ1,d1)
(ii.14) D ((id.Ev (v ), pc), pc′, ρ1) = (ρ2,vd ,E

′
d )
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(ii.15) d2 = update(d1,vd )
(ii.16) R2 = (ρ2,d2)
(ii.17) E ′ = robust(Σ1,Ed :: E ′d , pc)

From (ii.10) and (ii.11),

(ii.18) T ′ ↓
p
l = trRobust(...)

From (ii.18), (II.4) and the definition of trInput,
(ii.19) pc ↓p ⊔pc′ ↓p@ l

From (ii.19) and (ii.5),

(ii.20) E ↓
p
l = ·

From (ii.20), (ii.7) and Lemma 13,

(ii.21) ks ≈pl ·
From (ii.18) and the definition of trRobust,

(ii.22) D ((id.Ev (v ), pc), pc′, ρ1) = (ρ1, none,E ′d )
(ii.23) ks′ ↓pl = ·

From (ii.23), (ii.21), (ii.3), and (ii.9),

(ii.24) ks1 ≈
p
l ks2

From (ii.15), (ii.14), and (ii.22),

(ii.25) d2 = d1
From (ii.16), (ii.14), (ii.22), (ii.25), and (ii.13),

(ii.26) R1 = R2
From (ii.26), (ii.2), (ii.1), and (a.5),

K1 ≈
p
l K2

Subcase iii: T ′ ends in In-E or In-DE

The proofs for these cases are similar to Subcase ii

Subcase iv: T ′ ends in Out

By assumption,

(iv.1) R1 = R2
(iv.2) S1 = S2
(iv.3) ks1 = (κ, pcsrc, pc) :: ks
(iv.4) F :: pcsrc,dd ,de ⊢ Σ1,κ −→pc Σ2, ks′

(iv.5) ks2 = ks′ :: ks
(iv.6) α = ch(v )

By assumption and from (II.4), (iv.6), and the definition of T ↓
p
l ,

(iv.7) pc ↓p@ l
From (iv.4), (iv.7), (II.8), and Lemma 11,

(iv.8) Σ1 ≈
p
l Σ2

(iv.9) (κ, pcsrc, pc) ≈
p
l ks′

From (iv.7) and (iv.9),

(iv.10) ks′ ↓pl = ·
(iv.11) (κ, pcsrc, pc) ↓

p
l = ·

From (iv.1), (iv.2), (iv.8), (iv.10), (iv.11), (iv.3), and (iv.5)

K1 ≈
p
l K2

Subcase v: T ′ ends in Out-Skip or Out-Silent

The proofs for these cases are similar to Subcase iv

Subcase vi: T ′ ends in Out-Next

By assumption,

(vi.1) R1 = R2
(vi.2) S1 = S2
(vi.3) Σ1 = Σ2
(vi.4) ks1 = (κ, pcsrc, pc) :: ks2

By assumption and from (II.4), (iv.6), and the definition of T ↓
p
l ,
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(vi.5) pc ↓p@ l
From (vi.5),

(vi.6) (κ, pcsrc, pc) ↓
p
l = ·

From (vi.4) and (vi.6),

(vi.7) ks1 ≈
p
l ks2

From (vi.1)-(vi.3), and (vi.7),

K1 ≈
p
l K2

□

Lemma 11. If pcsrc,dd ,de ⊢ Σ1,κ
α
−→pc Σ2, ks with pc ↓p@ l and α ∈ {new(id, pcsrc ), newEH(id, eh, pcsrc )} implies pcsrc ↓

p@ l and/or
pcid ↓

p@ l , then Σ1 ≈
p
l Σ2 and (κ, pcsrc, pc) ≈

p
l ks

Proof.

We examine each case of F :: pcsrc,dd ,de ⊢ Σ1,κ −→pc Σ2, ks
By assumption,

(1) pc ↓p@ l
(2) α ∈ {new(id, pcsrc ), newEH(id, eh, pcsrc )} implies pcsrc ↓

p@ l and/or pcid ↓
p@ l

Case I: F ends in PtoC

By assumption,

(I.1) ks = (σ , skip, P , ·), pcsrc, pc
(I.2) Σ1 = Σ2

From (2),

(I.3) (κ, pcsrc, pc) ↓
p
l = ·

From (I.1) and (1),

(I.4) ks ↓pl = ·
From (I.3) and (I.4),

(κ, pcsrc, pc) ≈
p
l ks

From (I.2),

Σ1 ≈
p
l Σ2

Case II: F ends in PtoLC

By assumption,

(II.1) Σ1,E { ks′

(II.2) ks = ((σ , skip,C, ·), pcsrc, pc) :: ks
′

(II.3) Σ1 = Σ2
Since event-trigger is the only rule to add to E,

(II.4) ∀(id ′.Ev′(v ′), pc′) ∈ E, pc′ = pc
From (1) and (II.4),

(II.5) E ↓
p
l = ·

From (II.5), (II.1), and Lemma 13,

(II.6) ks′ ≈pl ·
From (1),

(II.7) (κ, pcsrc, pc) ↓
p
l = ·

From (1), (II.6), and (II.2),

(II.8) ks ↓pl = ·
From (II.7) and (II.8),

(κ, pcsrc, pc) ≈
p
l ks

From (II.3),

Σ1 ≈
p
l Σ2

Case III: F ends in P

The proof for this case follows from (1), (2), and Lemma 12

□
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Lemma 12. If pcsrc,dd ,de ⊢ Σ1,σ1, c1
α
−→pc Σ2,σ2, c2,E with pc ↓p@ l and α ∈ {new(id, pcsrc ), newEH(id, eh, pcsrc )} implies pcsrc ↓

p@ l

and/or pcid ↓
p@ l , then Σ1 ≈

p
l Σ2

Proof.

By induction on the structure of

F :: pcsrc,dd ,de ⊢ Σ1,σ1, c1 −→pc Σ2,σ2, c2,E
By assumption,

(1) pc ↓p@ l
(2) α ∈ {new(id, pcsrc ), newEH(id, eh, pcsrc )} implies pcsrc ↓

p@ l and/or
pcid ↓

p@ l

Case I: F ends in a rule which does not modify Σ
In these cases, the conclusion follows from Σ2 = Σ1

Case II: F ends in seq

By assumption,

∃G :: pcsrc,dd ,de ⊢ Σ1,σ , c1 −→pc Σ2,σ2, c
′
1
,E

The proof follows from the induction hypothesis on G

Case III: F ends in assign-g

By assumption,

(III.1) Σ2 = Σ1[pc 7→ (σ
д
2
,σEH )]

From (1) and (III.1),

Σ1 ≈
p
l Σ2

Case IV: F ends in update

The proof for this cases is similar to Case III

Case V: F ends in new

By assumption and from (2) and Σ1 (pc) = (σд ,σEH )

(V.1) id < σEH

(V.2) σEH ′ = σEH
[id 7→ (v, ·, pcsrc )]

(V.3) Σ2 = Σ1[pc 7→ (σд ,σEH ′ )]
(V.4) α = new(id, pcsrc )

From (2), (V.4), (V.1), (V.2), and the definition of ≈
p
l for σEH

,

(V.5) σEH ≈
p
l σEH ′

From (V.3), (V.5), and the definition of ≈
p
l for Σ,

Σ1 ≈
p
l Σ2

Case VI: F ends in add-eh

By assumption and from (2) and Σ1 (pc) = (σд ,σEH )

(VI.1) σEH (id) = (v,M, pcid ) withM (Ev) = EH
(VI.2)M ′ = M[Ev 7→ EH ∪ {(eh, pcsrc )}]
(VI.3) σEH ′ = σEH

[id 7→ (v,M ′, pcid )]
(VI.4) Σ2 = Σ1[pc 7→ (σд ,σEH ′ )]
(VI.5) α = newEH(id, eh, pcid , pcsrc )

From (2), (VI.5), (VI.1)-(VI.3), and the definition of ≈
p
l for σEH

,

(VI.6) σEH ≈
p
l σEH ′

From (VI.4), (VI.6), and the definition of ≈
p
l for Σ,

Σ1 ≈
p
l Σ2

□

Lemma 13 (Secret EH Lookups are Not Observable). If Σ,E { ks with E ↓
p
l = · then ks ≈pl ·

Proof.

By induction on the structure of F :: Σ,E { ks
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By assumption,

(1) E ↓p= ·

Case I: F ends in lookup

By assumption,

(I.1) E = (id.Ev (v ), pc) :: E ′

(I.2) Σ(pc) = (_,σEH ) and σEH (id) = (_,M, pcid )
(I.3) ∃G :: pc, pcid ,v ⊢ M (Ev) { ks1
(I.4) ∃G′ :: Σ,E ′ { ks2
(I.5) ks = ks1 :: ks2

From (1) and (I.1),

(I.6) pc ↓p@ l

(I.7) E ′ ↓
p
l = ·

From (I.6), (I.3) and Lemma 14,

(I.8) ks1 ≈
p
l ·

From (I.4), (I.7) and IH on G,

(I.9) ks2 ≈
p
l ·

From (I.5), (I.8), and (I.9),

ks ≈pl ·

Case II: F ends in lookup-missing

By assumption,

(II.1) E = (id.Ev (v ), pc) :: E ′

(II.2) ∃G :: Σ,E ′ { ks
From (1) and (II.1),

(II.3) E ′ ↓
p
l = ·

From (II.3), (II.2) and IH on G,

ks ≈pl ·

Case III: F ends in lookup-empty

By assumption, ks = ·
□

Lemma 14. If pc, pcid ,v ⊢ EH { ks with pc ↓p@ l , then ks ≈pl ·

Proof.

By induction on the structure of F :: pc, pcid ,v ⊢ EH { ks

By assumption,

(1) pc ↓p@ l

Case I: F ends in lookupEH

By assumption,

(I.1) EH = {(EH , pceh)} ∪ EH ′

(I.2) ks1 = ((·, eh(v ), P , ·), pcid ⊔ pceh, pc)
(I.3) ∃G :: pc, pcid ,v ⊢ EH

′ { ks2
(I.4) ks = ks1 :: ks2

From (1) and (I.2),

(I.5) ks1 ≈
p
l ·

From (1), (I.3) and IH on G,

(I.6) ks2 ≈
p
l ·

From (I.4)-(I.6),

ks ≈pl ·

Case II: F ends in lookupEH-emp
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By assumption, ks = ·
□

Lemma 15 (Weak One-Step). IfT1 = P,D, E ⊢ K1

αl,1
=⇒ K ′

1
andT2 = P,D, E ⊢ K2

αl,2
=⇒ K ′

2
, withT1 ≈

p
l T2, K1 ≈

p
l K2,T1 ↓

p
l , ·, andT2 ↓

p
l , ·,

then K ′
1
≈
p
l K ′

2

Proof.

We examine each case of F :: P,D, E ⊢ K1

αl,1
=⇒ K ′

1

Denote G :: P,D, E ⊢ K2

αl,2
=⇒ K ′

2

By assumption,

(1) K1 ≈
p
l K2

(2) T1 ≈
p
l T2

(3) T1 ↓
p
l , ·

(4) T2 ↓
p
l , ·

From (1),

(5) R1 = R2
(6) S1 = S2

(7) Σ1 ≈
p
l Σ2

(8) ks1 ≈
p
l ks2

Case I: F ends in In

By assumption and from Σ1 (pc1) = (_,σEH
1

),
(I.1) R1 = R

′
1

(I.2) S1 = S
′
1

(I.3) Σ1 = Σ′
1

(I.4) αl,1 = (id.Ev (v ), pc
1
)

(I.5) P (id.Ev (v )) = pc′
1

(I.6) E1 = ((id.Ev (v ), pc′′
1
) | pc

1
⊔ pc′

1
⊑ pc′′

1
)

(I.7) σEH
1

(id) ↓i@ pc
1
↓i

(I.8) σEH
1

(id) ↓c@ pc
1
↓c

(I.9) Σ1,E1 { ks′
1

From (3), (I.4), (I.5), (I.5), (I.7), (I.8), and the definition of T ↓
p
l ,

(I.10) T1 ↓
p
l = (id.Ev (v ), pc

1
)

From (I.10) and (3),

(I.11) pc
1
↓p ⊔pc′

1
↓p⊑ l

From (I.10) and (2),

(I.12) T2 ↓
p
l = (id.Ev (v ), pc

1
)

From (I.12) and (4),

(I.13) αl,2 = (id.Ev (v ), pc
2
)

(I.14) P (id.Ev (v )) = pc′
2

From (I.5) and (I.14),

(I.15) pc′
1
= pc′

2

From (I.12) and (I.13),

(I.16) pc
1
= pc

2

Subcase i: G ends in In

By assumption,

(i.1) R2 = R
′
2

(i.2) S2 = S
′
2

(i.3) Σ2 = Σ′
2

(i.4) E2 = ((id.Ev (v ), pc′′
2
) | pc

2
⊔ pc′

2
⊑ pc′′

2
)

(i.5) Σ2,E2 { ks′
2

From (I.15), (I.16), (I.6), and (i.4),

(i.6) E1 ≈
p
l E2

From (7), (I.9), (i.5), (i.6) and Lemma 19,
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(i.7) ks1 ≈
p
l ks2

From (5)-(7), (I.1)-(I.3) and (i.1)-(i.3),

(i.8) R ′
1
= R ′

2

(i.9) S′
1
= S′

2

(i.10) Σ′
1
↓p= Σ′

2
↓p

From (i.7)-(i.10),

K ′
1
≈
p
l K ′

2

Subcase ii: G ends in In-D

By assumption and from Σ2 (pc2) = (_,σEH
2

),

(ii.1) σEH
2

(id) ↓i⊑ pc
2
↓i

(ii.2) σEH
2

(id) ↓c@ pc
2
↓c

From (7) and (I.16),

(ii.3) If pc
1
↓p⊑ l , then σEH

1
= σEH

2

From (ii.3), (I.7), and (ii.1),

(ii.4) pc
1
↓p@ l

But (ii.4) contradicts (I.11), so this case holds vacuously

Subcase iii: G ends in In-E or In-DE

The proofs for these cases are similar to Subcase ii

Case II: F ends in In-D

By assumption and from Σ1 (pc1) = (_,σEH
1

),
(II.1) S1 = S

′
1

(II.2) Σ1 = Σ′
1

(II.3) P (id.Ev (v )) = pc′
1

(II.4) E1 = ((id.Ev (v ), pc′′
1
) | pc

1
⊔ pc′

1
⊑ pc′′

1
)

(II.5) σEH
1

(id) ↓i⊑ pc
1
↓i

(II.6) σEH
1

(id) ↓c@ pc
1
↓c

(II.7) (R ′
1
,E ′

1
) = downgradeD (R1, Σ1, (id.Ev (v ), pc1), pc

′
1
)

(II.8) Σ1,E1 { ks′′
1

(II.9) pc
1
, r ⊢ Σ1,E ′

1
{ ks′′′

1

(II.10) ks′
1
= ks′′

1
:: ks′′′

1

From (II.7) and the definition of downgradeD ,
(II.11) Ed,1 = ((id.Ev (v ), (lc , li )) | pc′

1
↓c⊑ lc ⊏ pc

1
↓c ∧li = pc

1
↓i ⊔pc′

1
↓i )

(II.12) R1 = (ρ1,d1)
(II.13) D ((id.Ev (v ), pc

1
), pc′

1
, ρ1) = (ρ ′

1
,v1,E

′
d,1)

(II.14) d ′
1
= update(d1,v1)

(II.15) R ′
1
= (ρ ′

1
,d ′

1
)

(II.16) E ′
1
= robust(Σ1,Ed,1 :: E

′
d,1, pc1)

From (3), (II.5), (II.6), and the definition of T ↓
p
l ,

(II.17) T1 ↓
p
l = (id.Ev (v ), pc

1
) or

(II.18) T1 ↓
p
l = rls(id.Ev (v ), ρ ′

1
,v1,E

′′
1
)

Subcase i: T1 ↓
p
l = (id.Ev (v ), pc

1
)

From (II.17) and (II.9),

(i.1) D ((id.Ev (v ), pc
1
), pc′

1
, ρ1) = (ρ1, none,E ′d,1)

(i.2) ks′′′
1
↓
p
l = · if p = c and ks′′′

1
= · if p = i

From (II.17) and (2),

(i.3) T2 ↓
p
l = (id.Ev (v ), pc

1
)

From (II.17) and (i.3),

(i.4) pc
1
↓p ⊔pc′

1
↓p@ l

(i.5) pc
2
↓p ⊔pc′

2
↓p@ l

(i.6) pc
1
= pc

2

From (i.4)-(i.6),
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(i.7) pc
1
↓p⊑ l

(i.8) pc
2
↓p⊑ l

From (7) and (i.6)-(i.8),

(i.9) σEH
1
= σEH

2

From (i.9), (II.5), and (II.6),

(i.10) σEH
2

(id) ↓i⊑ pc
2
↓i

(i.11) σEH
2

(id) ↓c@ pc
2
↓c

From (i.11) and (i.12),

(i.12) G must end in In-D

From (i.12),

(i.13) S2 = S
′
2

(i.14) Σ2 = Σ′
2

(i.15) P (id.Ev (v )) = pc′
2

(i.16) E2 = ((id.Ev (v ), pc′′
2
) | pc

2
⊔ pc′

2
⊑ pc′′

2
)

(i.17) σEH
2

(id) ↓i⊑ pc
2
↓i

(i.18) σEH
2

(id) ↓c@ pc
2
↓c

(i.19) (R ′
2
,E ′

2
) = downgradeD (R2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(i.20) Σ2,E2 { ks′′
2

(i.21) pc
2
, r ⊢ Σ2,E ′

2
{ ks′′′

2

(i.22) ks′
2
= ks′′

2
:: ks′′′

2

From (i.19) and the definition of downgradeD ,
(i.23) Ed,2 = ((id.Ev (v ), (lc , li )) | pc′

2
↓c⊑ lc ⊏ pc

2
↓c ∧li = pc

2
↓i ⊔pc′

2
↓i )

(i.24) R2 = (ρ2,d2)
(i.25) D ((id.Ev (v ), pc

2
), pc′

2
, ρ2) = (ρ ′

2
,v2,E

′
d,2)

(i.26) d ′
2
= update(d2,v2)

(i.27) R ′
2
= (ρ ′

2
,d ′

2
)

(i.28) E ′
2
= robust(Σ2,Ed,2 :: E

′
d,2, pc1)

From (i.3) and (i.21),

(i.29) D ((id.Ev (v ), pc
2
), pc′

2
, ρ2) = (ρ2, none,E ′d,2)

(i.30) ks′′′
2
↓
p
l = · if p = c or ks

′′′
2
= · if p = i

From (II.13), (i.1), and (II.14),

(i.31) d ′
1
= d1

From (II.13), (i.1), (i.31), (II.12), and (II.15),

(i.32) R ′
1
= R1

From (i.25), (i.29), and (i.26),

(i.33) d ′
2
= d2

From (i.25), (i.29), (i.33), (i.24), and (i.27),

(i.34) R ′
2
= R2

From (5), (i.32), and (i.34),

(i.35) R ′
1
= R ′

2

From (6), (II.1), and (i.14),

(i.36) S′
1
= S′

2

From (7), (II.2), and (i.14),

(i.37) Σ′
1
≈
p
l Σ′

2

From (II.3) and (i.15),

(i.38) pc′
1
= pc′

2

From (i.6), (i.38), (II.4), and (i.16),

(i.39) E1 = E2
From (i.39), (7), and from Lemma 19,

(i.40) ks′′
1
≈
p
l ks′′

2

From (II.10), (i.22), (i.40), (i.2), and (i.30),

(i.41) ks′
1
≈
p
l ks′

2

From (i.35)-(i.37) and (i.41),

K ′
1
≈
p
l K ′

2
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Subcase ii: T1 ↓
p
l = rls(id.Ev (v ), ρ ′

1
,v1,E

′′
1
, pc

1
)

From (II.18) and (2),

(ii.1) T2 ↓
p
l = rls(id.Ev (v ), ρ ′

1
,v1,E

′′
1
, pc

1
) where E ′′

1
= E ′

1
↓
p
l if p = c and E ′′

1
= E ′

1
if p = i

From (ii.1),

(ii.2) pc
1
= pc

2

From (ii.1) and the definition of T ↓
p
l ,

(ii.3) G ends in In-D or

(ii.4) G ends in In-DE

Subsubcase a: G ends in In-D

From (ii.3),

(a.1) S2 = S
′
2

(a.2) Σ2 = Σ′
2

(a.3) P (id.Ev (v )) = pc′
2

(a.4) E2 = ((id.Ev (v ), pc′′
2
) | pc

2
⊔ pc′

2
⊑ pc′′

2
)

(a.5) (R ′
2
,E ′

2
) = downgradeD (R2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(a.6) Σ2,E2 { ks′′
2

(a.7) pc
2
, r ⊢ Σ2,E ′

2
{ ks′′′

2

(a.8) ks′
2
= ks′′

2
:: ks′′′

2

From (a.5) and the definition of downgradeD ,
(a.9) Ed,2 = ((id.Ev (v ), (lc , li )) | pc′

2
↓c⊑ lc ⊏ pc

2
↓c ∧li = pc

2
↓i ⊔pc′

2
↓i )

(a.10) R2 = (ρ2,d2)
(a.11) D ((id.Ev (v ), pc

2
), pc′

2
, ρ2) = (ρ ′

2
,v2,E

′
d,2)

(a.12) d ′
2
= update(d2,v2)

(a.13) R ′
2
= (ρ ′

2
,d ′

2
)

(a.14) E ′
2
= robust(Σ2,Ed,2 :: E

′
d,2, pc2)

From (ii.1),

(a.15) D ((id.Ev (v ), pc
2
), pc′

2
, ρ2) = (ρ ′

1
,v1,E

′
d,2)

(a.16) E ′
1
↓
p
l = E ′

2
↓
p
l if p = c or E ′

1
= E ′

2
if p = i

From (a.11) and (a.15),

(a.17) ρ ′
1
= ρ ′

2

(a.18) v1 = v2
From (II.14), (a.12), and (a.18),

(a.19) d ′
1
= d ′

2

From (5), (II.15), (a.13), (a.11), (a.15), and (a.19),

(a.20) R ′
1
= R ′

2

From (6), (II.1), and (a.1),

(a.21) S′
1
= S′

2

From (7), (II.2), and (a.2),

(a.22) Σ′
1
= Σ′

2

From (II.3) and (a.3),

(a.23) pc′
1
= pc′

2

From (ii.2), (a.23), (II.4), and (a.4),

(a.24) E1 = E2
From (7), (a.24), (II.8), (a.6), and Lemma 19,

(a.25) ks′′
1
≈
p
l ks′′

2

From (7), (ii.4), (a.16), (II.9), (a.7), and Lemma 20,

(a.26) ks′′′
1
≈
p
l ks′′′

2

From (II.10), (a.8), (a.25), and (a.26),

(a.27) ks′
1
≈
p
l ks′

2

From (a.20)-(a.22) and (a.27),

K ′
1
≈
p
l K ′

2

Subsubcase b: G ends in In-DE

From (ii.4),
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(b.1) Σ2 = Σ′
2

(b.2) P (id.Ev (v )) = pc′
2

(b.3) E2 = ((id.Ev (v ), pc′′
2
) | pc

2
⊔ pc′

2
⊑ pc′′

2
)

(b.4) (R ′
2
,E ′′d,2) = downgradeD (R2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(b.5) (S′
2
,E ′′e,2) = downgradeE (S2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(b.6) E ′
2
= downgradeD,E (R2,S2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(b.7) Σ2,E2 { ks′′
2

(b.8) pc
2
, r ⊢ Σ2,E ′′d,2 { ksd,2

(b.9) pc
2
, t ⊢ Σ2,E ′′e,2 { kse,2

(b.10) pc
2
, rt ⊢ Σ2,E ′

2
{ ks′′′

2

(b.11) ks′
2
= ks′′

2
:: ksd,2 :: kse,2 :: ks

′′′
2

From (b.4) and the definition of downgradeD ,
(b.12) Ed,2 = ((id.Ev (v ), (lc , li )) | pc′

2
↓c⊑ lc ⊏ pc

2
↓c ∧li = pc

2
↓i ⊔pc′

2
↓i )

(b.13) R2 = (ρd,2,dd,2)
(b.14) D ((id.Ev (v ), pc

2
), pc′

2
, ρd,2) = (ρ ′d,2,vd,2,E

′
d,2)

(b.15) d ′d,2 = update(dd,2,vd,2)
(b.16) R ′

2
= (ρ ′d,2,d

′
d,2)

(b.17) E ′′d,2 = robust(Σ2,Ed,2 :: E
′
d,2, pc2)

From (b.5) and the definition of downgradeE ,
(b.18) Ee,2 = ((id.Ev (v ), (lc , li )) | lc = pc

2
↓c ⊔pc′

2
↓c ∧pc′

2
↓i⊑ li ⊏ pc

2
↓i )

(b.19) S2 = (ρe,2,de,2)
(b.20) D ((id.Ev (v ), pc

2
), pc′

2
, ρe,2) = (ρ ′e,2,ve,2,E

′
e,2)

(b.21) d ′e,2 = update(de,2,ve,2)
(b.22) S′

2
= (ρ ′e,2,d

′
e,2)

(b.23) E ′′e,2 = transparent(Σ2,Ee,2 :: E ′e,2, pc2)
From (b.6) and the definition of downgradeD,E

(b.24) Ed,e = mergeEvents(Ed,2 :: E
′
d,2,Ee,2 :: E

′
e,2)

(b.25) E ′
2
= robustTransparent(Σ2,Ed,e , pc2)

From (ii.1),

(b.26) D ((id.Ev (v ), pc
2
), pc′

2
, ρd,2) = (ρ ′

1
,v1,E

′
d,2)

(b.27) E ′
1
↓
p
l = E ′′d,2 ↓

p
l if p = c and E ′

1
= E ′′d,2 if p = i

(b.28) ρ ′e,2 = ρe,2
(b.29) ve,2 = none
(b.30) kse,2 = · if p = c and kse,2 ↓

p
l = · if p = i

(b.31) ks′′′
2
↓p= ·

From (b.14) and (b.26),

(b.32) ρ ′
1
= ρ ′d,2

(b.33) v1 = vd,2
From (II.14), (b.15), and (b.33),

(b.34) d ′
1
= d ′d,2

From (5), (II.15), (b.16), (b.14), (b.26), and (b.34),

(b.35) R ′
1
= R ′

2

From (b.21) and (b.29),

(b.36) de,2 = d
′
e,2

From (b.19), (b.22), (b.28), and (b.36),

(b.37) S′
1
= S′

2

From (7), (II.2), and (b.1),

(b.38) Σ′
1
= Σ′

2

From (II.3) and (b.2),

(b.39) pc′
1
= pc′

2

From (ii.2), (b.39), (II.4), and (b.3),

(b.40) E1 = E2
From (7), (b.49), (II.8), (b.7), and Lemma 19,

(b.41) ks′′
1
≈
p
l ks′′

2
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From (7), (ii.4), (b.27), (II.9), (b.8), and Lemma 20,

(b.42) ks′′′
1
≈
p
l ksd,2

From (II.10), (b.11), (b.41), (b.42), (b.30), and (b.31),

(b.43) ks′
1
≈
p
l ks′

2

From (b.35), (b.37), (b.38), and (b.43)

K ′
1
≈
p
l K ′

2

Case III: F ends in In-E

The proofs for these cases are similar to the one for Case II

Case IV: F ends in In-DE

By assumption and from Σ1 (pc1) = (_,σEH
1

),
(IV.1) Σ1 = Σ′

1

(IV.2) P (id.Ev (v )) = pc′
1

(IV.3) E1 = ((id.Ev (v ), pc′′
1
) | pc

1
⊔ pc′

1
⊑ pc′′

1
)

(IV.4) σEH
1

(id) ↓i⊑ pc
1
↓i

(IV.5) σEH
1

(id) ↓c⊑ pc
1
↓c

(IV.6) (R ′
1
,E ′

1
) = downgradeD (R1, Σ1, (id.Ev (v ), pc1), pc

′
1
)

(IV.7) (S′
1
,E ′′

1
) = downgradeE (S1, Σ1, (id.Ev (v ), pc1), pc

′
1
)

(IV.8) E ′′′
1
= downgradeD,E (R1,S1, Σ1, (id.Ev (v ), pc1), pc

′
1
)

(IV.9) Σ1,E1 { ks′′
1

(IV.10) pc
1
, r ⊢ Σ1,E ′

1
{ ksd,1

(IV.11) pc
1
, t ⊢ Σ1,E ′′

1
{ kse,1

(IV.12) pc
1
, rt ⊢ Σ1,E ′′′

1
{ ksm,1

(IV.13) ks′
1
= ks′′

1
:: ksd,1 :: kse,1 :: ksm,1

From (IV.6) and the definition of downgradeD ,
(IV.14) Ed,1 = ((id.Ev (v ), (lc , li )) | pc′

1
↓c⊑ lc ⊏ pc

1
↓c ∧li = pc

1
↓i ⊔pc′

1
↓i )

(IV.15) R1 = (ρd,1,dd,1)
(IV.16) D ((id.Ev (v ), pc

1
), pc′

1
, ρd,1) = (ρ ′d,1,vd,1,E

′
d,1)

(IV.17) d ′d,1 = update(dd,1,vd,1)
(IV.18) R ′

1
= (ρ ′d,1,d

′
d,1)

(IV.19) E ′
1
= robust(Σ1,Ed,1 :: E

′
d,1, pc1)

From (IV.7) and the definition of downgradeE ,
(IV.20) Ee,1 = ((id.Ev (v ), (lc , li )) | pc′

1
↓i⊑ li ⊏ pc

1
↓i ∧lc = pc

1
↓c ⊔pc′

1
↓c )

(IV.21) S1 = (ρe,1,de,1)
(IV.22) E ((id.Ev (v ), pc

1
), pc′

1
, ρe,1) = (ρ ′e,1,ve,1,E

′
e,1)

(IV.23) d ′e,1 = update(de,1,ve,1)
(IV.24) S′

1
= (ρ ′e,1,d

′
e,1)

(IV.25) E ′′
1
= transparent(Σ1,Ee,1 :: E ′e,1, pc1)

From (IV.8) and the definition of downgradeD,E ,
(IV.26) Em,1 = mergeEvents(Ed,1 :: E

′
d,1,Ee,1 :: E

′
e,1)

(IV.27) E ′′′
1
= robustTransparent(Σ1,Em,1, pc1)

Subcase i: T1 ↓
p
l = (id.Ev (v ), pc

1
)

By assumption, pc
1
= pc

2
and pc

1
↓
p
l ⊑ l

Then, for Σ2 (pc2) = (_,σEH
2

), σEH
1

(pc
1
) = σEH

2
(pc

2
)

From this, the rest of the proof is straightforward.

Subcase ii: T1 ↓
p
l = rls(...)

The proof for this case is similar to Subsubcase II.ii.b

Subcase iii: T1 ↓
p
l = sntz(...)

The proof for this case is similar to Subcase ii
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Subcase iv: T1 ↓
p
l = down(id.Ev (v ),τd ,τe ,E ′′′1 , pc1)

By assumption and from (2),

(iv.1) T2 ↓
p
l = down(id.Ev (v ),τd ,τe ,E ′′′1 , pc1)

From (iv.1),

(iv.2) pc
1
= pc

2

From (iv.1) and the definition of T ↓
p
l ,

(iv.3) G must end in In-DE

(iv.4) Σ2 = Σ′
2

(iv.5) P (id.Ev (v )) = pc′
2

(iv.6) E2 = ((id.Ev (v ), pc′′
2
) | pc

2
⊔ pc′

2
⊑ pc′′

2
)

(iv.7) (R ′
2
,E ′

2
) = downgradeD (R2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(iv.8) (S′
2
,E ′′

2
) = downgradeE (S2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(iv.9) E ′′′
2
= downgradeD,E (R2,S2, Σ2, (id.Ev (v ), pc2), pc

′
2
)

(iv.10) Σ2,E2 { ks′′
2

(iv.11) pc
2
, r ⊢ Σ2,E ′

2
{ ksd,2

(iv.12) pc
2
, t ⊢ Σ2,E ′′

2
{ kse,2

(iv.13) pc
2
, rt ⊢ Σ2,E ′′′

2
{ ksm,2

(iv.14) ks′
2
= ks′′

2
:: ksd,2 :: kse,2 :: ksm,2

From (iv.7) and the definition of downgradeD ,
(iv.15) Ed,2 = ((id.Ev (v ), (lc , li )) | pc′

2
↓c⊑ lc ⊏ pc

2
↓c ∧li = pc

2
↓i ⊔pc′

2
↓i )

(iv.16) R2 = (ρd,2,dd,2)
(iv.17) D ((id.Ev (v ), pc

2
), pc′

2
, ρd,2) = (ρ ′d,2,vd,2,E

′
d,2)

(iv.18) d ′d,2 = update(dd,2,vd,2)
(iv.19) R ′

2
= (ρ ′d,2,d

′
d,2)

(iv.20) E ′
2
= robust(Σ2,Ed,2 :: E

′
d,2, pc2)

From (iv.8) and the definition of downgradeE ,
(iv.21) Ee,2 = ((id.Ev (v ), (lc , li )) | pc′

2
↓i⊑ li ⊏ pc

2
↓i ∧lc = pc

2
↓c ⊔pc′

2
↓c )

(iv.22) S2 = (ρe,2,de,2)
(iv.23) E ((id.Ev (v ), pc

2
), pc′

2
, ρe,2) = (ρ ′e,2,ve,2,E

′
e,2)

(iv.24) d ′e,2 = update(de,2,ve,2)
(iv.25) S′

2
= (ρ ′e,2,d

′
e,2)

(iv.26) E ′′
2
= transparent(Σ2,Ee,2 :: E ′e,2, pc2)

From (iv.9) and the definition of downgradeD,E ,
(iv.27) Em,2 = mergeEvents(Ed,2 :: E

′
d,2,Ee,2 :: E

′
e,2)

(iv.28) E ′′′
2
= robustTransparent(Σ2,Em,2, pc2)

From (IV.2) and (iv.5),

(iv.29) pc′
1
= pc′

2

From (5), (6), (IV.15), (IV.21), (iv.16), and (iv.22),

(iv.30) ρd,1 = ρd,2
(iv.31) dd,1 = dd,2
(iv.32) ρe,1 = ρe,2
(iv.33) de,1 = de,2

From (IV.16), (IV.22), (iv.17), (iv.23), (iv.2), (iv.29), (iv.30), and (iv.32),

(iv.34) ρ ′d,1 = ρ ′d,2
(iv.35) vd,1 = vd,2
(iv.36) E ′d,1 = E ′d,2
(iv.37) ρ ′e,1 = ρ ′e,2
(iv.38) ve,1 = ve,2
(iv.39) E ′e,1 = E ′e,2

From (IV.17), (IV.23), (iv.18), (iv.24), (iv.31), (iv.33), (iv.35), and (iv.38),

(iv.40) d ′d,1 = d
′
d,2

(iv.41) d ′e,1 = d
′
e,2

From (IV.18), (IV.24), (iv.19), (iv.25), (iv.34), (iv.37), (iv.40), and (iv.41),

(iv.42) R ′
1
= R ′

2
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(iv.43) S′
1
= S′

2

From (7), (IV.1), and (iv.4),

(iv.44) Σ′
1
≈
p
l Σ′

2

From (iv.2), (iv.29), (IV.3), and (iv.6),

(iv.45) E1 = E2
From (7), (iv.45), (IV.9), (iv.10), and Lemma 19,

(iv.46) ks′′
1
≈
p
l ks′′

2

From (iv.2), (iv.29), (IV.14), (IV.20), (iv.15), and (iv.21),

(iv.47) Ed,1 = Ed,2
(iv.48) Ee,1 = Ee,2

From (7), (iv.47), (iv.36), (iv.48), (iv.39), (IV.10), (iv.11), (IV.11), (iv.12), and Lemma 20,

(iv.49) ksd,1 ≈
p
l ksd,2

(iv.50) kse,1 ≈
p
l kse,2

From (iv.1), (IV.27), (iv.28), and the definition of trDowngrade,
(iv.51) E ′′′

1
= E ′′′

2

From (5), (iv.51), (IV.12), (iv.13), and Lemma 20,

(iv.52) ksm,1 ≈
p
l ksm,2

From (IV.13), (iv.14), (iv.46), (iv.49), (iv.50), and (iv.52),

(iv.53) ks′
1
≈
p
l ks′

2

From (iv.42)-(iv.44) and (iv.53),

K ′
1
≈
p
l K ′

2

Case V: F ends in Out

By assumption,

(V.1) αl,1 = (ch(v ), pc
1
)

(V.2) ks1 = (κ1, pcsrc,1, pc1) :: ks
′′
1

(V.3) P (ch) = pc
1

(V.4) ∃F ′ :: pcsrc,1,dd,1,de,1 ⊢ Σ1,κ1
ch(v )
−→ Σ′

1
,κ ′′′

1

(V.5) ks′
1
= ks′′′

1
:: ks′′

1

(V.6) R ′
1
= R1

(V.7) S′
1
= S1

From (3), (V.1), and (V.3),

(V.8) T1 ↓
p
l = ch(v ) with

(V.9) pc
1
↓p⊑ l ∨ P (ch) ↓p⊑ l

From (V.3) and (V.9),

(V.10) pc
1
↓p⊑ l

From (2) and (V.8),

(V.11) T2 ↓
p
l = ch(v )

From (V.11), and the definition of T ↓
p
l ,

(V.12) αl,2 = (ch(v ), pc
2
) with

(V.13) pc
2
↓p⊑ l ∨ P (ch) ↓p⊑ l

From (V.12) and the output rules,

(V.14) G ends in Out

From (V.14),

(V.15) P (ch) = pc
2

(V.16) ks2 = (κ2, pcsrc,2, pc2) :: ks
′′
2

(V.17) ∃G′ :: pcsrc,2,dd,2,de,2, ⊢ Σ2,κ2,
ch(v )
−→ Σ′

2
,κ ′′′

2

(V.18) ks′
2
= ks′′′

2
:: ks′′

2

(V.19) R ′
2
= R2

(V.20) S′
2
= S2

From (V.15) and (V.3),

(V.21) pc
1
= pc

2

From (V.10), (V.21), (V.2), (V.16), and (8),

(V.22) (κ1, pcsrc,1, pc1) = (κ2, pcsrc,2, pc2)
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(V.23) ks′′
1
≈
p
l ks′′

2

From (5) and (6),

(V.24) dd,1 = dd,2
(V.25) de,1 = de,2

From (V.4), (V.17), (V.22), (V.24), (V.25), (7), (V.10), (V.21), and

Lemma 16

(V.26) Σ′
1
≈
p
l Σ′

2

(V.27) ks′′′
1
≈
p
l ks′′′

2

From (V.23), (V.27), (V.5), and (V.18),

(V.28) ks′
1
≈
p
l ks′

2

From (5), (6), (V.6), (V.7), (V.19), (V.20), (V.26), and (V.28),

K ′
1
≈
p
l K ′

2

Case VI: F ends in Out-Skip

By assumption,

(VI.1) αl,1 = (•, pc
1
)

(VI.2) ks1 = (κ1, pcsrc,1, pc1) :: ks
′′
1

(VI.3) producer(κ1)
(VI.4) P (ch) , pc

1

(VI.5) ∃F ′ :: pcsrc,1,dd,1,de,1 ⊢ Σ1,κ1
ch(v )
−→ Σ′

1
,κ ′′′

1

(VI.6) ks′
1
= ks′′′

1
:: ks′′

1

(VI.7) R ′
1
= R1

(VI.8) S′
1
= S1

From (3), (VI.1), and (VI.3),

(VI.9) T1 ↓
p
l = • with

(VI.10) pc
1
↓p⊑ l

From (2) and (VI.9),

(VI.11) T2 ↓
p
l = •

From (VI.11), and the definition of T ↓
p
l ,

(VI.12) αl,2 = (•, pc
2
) with

(VI.13) pc
2
↓p⊑ l

From (8), (VI.10), and (VI.13),

(VI.14) ks2 = (κ2, pcsrc,2, pc2) :: ks
′′
2
with

(VI.15) (κ1, pcsrc,1, pc1) = (κ2, pcsrc,2, pc2) with
(VI.16) pc

1
= pc

2

(VI.17) ks′′
1
≈
p
l ks′′

2

From (VI.15) and (VI.3),

(VI.18) producer(κ2)
From (VI.12), (VI.18), and the output rules,

(VI.19) G ends in Out-Skip or Out-Silent

From (VI.19),

(VI.20) ∃G′ :: pcsrc,2,dd,2,de,2, ⊢ Σ2,κ2,
α
−→ Σ′

2
,κ ′′′

2

(VI.21) ks′
2
= ks′′′

2
:: ks′′

2

(VI.22) R ′
2
= R2

(VI.23) S′
2
= S2

From (5) and (6),

(VI.24) dd,1 = dd,2
(VI.25) de,1 = de,2

From (VI.5), (VI.20), (VI.15), (VI.24), (VI.25), (7), (VI.10), (VI.16), and Lemma 16,

(VI.26) Σ′
1
≈
p
l Σ′

2

(VI.27) ks′′′
1
≈
p
l ks′′′

2

From (VI.17), (VI.27), (VI.6), and (VI.21),

(VI.28) ks′
1
≈
p
l ks′

2

From (5), (6), (VI.7), (VI.8), (VI.22), (VI.23), (VI.26), and (VI.28),
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K ′
1
≈
p
l K ′

2

Case VII: F ends in Out-Silent and T1 ↓
p
l < {t(_), r(_)}

The proof for this case is similar to Case V

Case VIII: F ends in Out-Silent and T1 ↓
p
l =∈ {t(_), r(_)}

Without loss of generality, assume T1 ↓
p
l = r(id, pc

1
). The proof for the

other cases are similar. The most important difference is that when

T1 ↓
p
l = r(id, eh, pc

1
), then we also have pcid,1 ↓

i⊑ pc
1
↓i and pcid,2 ↓

i⊑ pc
1
↓i

In general:

pcsrc,1 ↓
p⊑ pc

1
↓p

pcsrc,2 ↓
p⊑ pc

2
↓p and

pcid,1 ↓
p⊑ pc

1
↓p

pcid,2 ↓
p⊑ pc

2
↓p

(which is the premise for Lemma 18)

By assumption,

(VIII.1) αl,1 = (new(id, pcsrc,1), pc1)
(VIII.2) ks1 = (κ1, pcsrc,1, pc1) :: ks

′′
1

(VIII.3) producer(κ1)

(VIII.4) ∃F ′ :: pcsrc,1,dd,1,de,1 ⊢ Σ1,κ1
new(id,pcsrc,1 )
−→ Σ′

1
,κ ′′′

1

(VIII.5) ks′
1
= ks′′′

1
:: ks′′

1

(VIII.6) R ′
1
= R1

(VI II.7) S′
1
= S1

By assumption and from (3) and (VIII.1),

(VIII.8) pc
1
↓c@ l

(VIII.9) pcsrc,1 ↓
i⊑ pc

1
↓i

By assumption and from (2),

(VIII.10) T2 ↓
c= r(id, pc

2
)

(VIII.11) pc
1
= pc

2

From (VIII.10), (VIII.11), and the definition of T ↓p ,
(VIII.12) αl,2 = (new(id, pcsrc,2), pc2) with
(VIII.13) pc

2
↓c@ l

(VIII.14) pcsrc,2 ↓
i⊑ pc

2
↓i

Since new is the only rule to produce α = new(_),
(VIII.15) ks2 = (κ2, pcsrc,2, pc2) :: ks

′′
2

(VIII.16) κ1 = (_, new(id, e1), _, _)
(VIII.17) κ2 = (_, new(id, e2), _, _)
(VIII.18) ks′′

1
≈
p
l ks′′

2

From (VIII.17),

(VIII.19) producer(κ2)
From (VIII.12), (VIII.19), and the output rules,

(VIII.20) G ends in Out-Silent

From (VIII.20),

(VIII.21) ∃G′ :: pcsrc,2,dd,2,de,2, ⊢ Σ2,κ2,
new(id,pcsrc,2 )
−→ Σ′

2
,κ ′′′

2

(VIII.22) ks′
2
= ks′′′

2
:: ks′′

2

(VIII.23) R ′
2
= R2

(VIII.24) S′
2
= S2

From (VIII.4), (VIII.21), (VIII.16), (VIII.17), (7), (VIII.8), (VIII.9), (VIII.13), (VIII.14), (VIII.11), and Lemma 18,

(VIII.25) Σ′
1
≈
p
l Σ′

2

(VIII.26) ks′′′
1
≈
p
l ks′′′

2

From (VIII.18), (VIII.26), (VIII.5), and (VIII.22),

(VIII.27) ks′
1
≈
p
l ks′

2

From (5), (6), (VIII.6), (VIII.7), (VIII.23)-(VIII.25), and (VIII.27)
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K ′
1
≈
p
l K ′

2

Case IX: F ends in Out-Next

By assumption,

(IX.1) αl,1 = (•, pc
1
)

(IX.2) ks1 = (κ1, pcsrc,1, pc1) :: ks
′
1

(IX.3) consumer(κ1)
(IX.4) R ′

1
= R1

(IX.5) S′
1
= S1

(IX.6) Σ′
1
= Σ1

From (3) and (IX.1),

(IX.7) T1 ↓
p
l = • with

(IX.8) pc
1
↓p⊑ l

From (2) and (IX.7),

(IX.9) T2 ↓
p
l = •

From (IX.9), and the definition of T ↓
p
l ,

(IX.10) αl,2 = (•, pc
2
) with

(IX.11) pc
2
↓p⊑ l

From (8), (IX.8), and (IX.11),

(IX.12) ks2 = (κ2, pcsrc,2, pc2) :: ks
′′
2
with

(IX.13) (κ1, pcsrc,1, pc1) = (κ2, pcsrc,2, pc2) with
(IX.14) pc

1
= pc

2

(IX.15) ks′
1
≈
p
l ks′′

2

From (IX.13) and (IX.3),

(IX.16) consumer(κ2)
From (IX.12), (IX.16), and the output rules,

(IX.17) G ends in Out-Next

From (IX.17),

(IX.18) R ′
2
= R2

(IX.19) S′
2
= S2

(IX.20) Σ′
2
= Σ2

(IX.21) ks′
2
= ks′′

2

From (IX.15) and (IX.21),

(IX.22) ks′
1
≈
p
l ks′

2

From (5)-(7), (IX.4)-(IX.6), (IX.18)-(IX.20), and (IX.22),

K ′
1
≈
p
l K ′

2

□

Lemma 16. If pcsrc,dd ,de ⊢ Σ1,κ
α1

−→pc Σ′
1
, ks1 and pcsrc,dd ,de ⊢ Σ2,κ

α2

−→pc Σ′
2
, ks2, with Σ1 ≈

p
l Σ2 and pc ↓p⊑ l , then Σ′

1
≈
p
l Σ′

2
and

ks1 ≈
p
l ks2

Proof.

We examine each case of F :: pcsrc,dd ,de ⊢ Σ1,κ
α1

−→pc Σ
′
1
, ks1

Denote G :: pcsrc,dd ,de ⊢ Σ2,κ
α2

−→pc Σ
′
2
, ks2

By assumption,

(1) Σ1 ≈
p
l Σ2

(2) pc ↓p@ l

Case I: F ends in PtoC

By assumption,

(I.1) κ = σ , skip, P , ·
(I.2) ks1 = ((σ , skip,C, ·), pcsrc, pc)
(I.3) Σ′

1
= Σ1

From (I.1),

(I.4) G ends in PtoC
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From (I.4),

(I.5) ks2 = ((σ , skip,C, ·), pcsrc, pc)
(I.6) Σ′

2
= Σ2

From (I.2) and (I.5),

ks1 ≈
p
l ks2

From (1), (I.3), and (I.6),

Σ′
1
≈
p
l Σ′

2

Case II: F ends in PtoLC

By assumption,

(II.1) κ = σ , skip, P ,E with

(II.2) E , ·
(II.3) Σ1,E { ks′

1

(II.4) ks1 = ((σ , skip,C, ·), pcsrc, pc) :: ks
′
1

(II.5) Σ′
1
= Σ1

From (II.1) and (II.2),

(II.6) G ends in PtoC

From (II.6),

(II.7) Σ2,E { ks′
2

(II.8) ks2 = ((σ , skip,C, ·), pcsrc, pc) :: ks
′
2

(II.9) Σ′
2
= Σ2

From (1), (II.3), (II.7), and Lemma 19,

(II.10) ks′
1
≈
p
l ks′

2

From (II.4), (II.5), and (II.10),

ks1 ≈
p
l ks2

From (1), (II.5), and (II.9),

Σ′
1
≈
p
l Σ′

2

Case III: F ends in P

By assumption,

(III.1) κ = σ , c, P ,E

(III.2) ∃F ′ :: pcsrc,dd ,de ⊢ Σ1,σ , c
α1

−→pc Σ
′
1
,σ1, c1,E1

(III.3) ks1 = ((σ1, c1, P ,E :: E1), pcsrc, pc)
From (III.2) and our operational semantics for commands,

(III.4) c , skip
From (III.4),

(III.5) ∃F ′ :: pcsrc,dd ,de ⊢ Σ2,σ , c
α2

−→pc Σ
′
2
,σ2, c2,E2

From (III.5),

(III.6) G ends in P

From (III.6),

(III.7) ks2 = ((σ2, c2, P ,E :: E2), pcsrc, pc)
From (1), (2), (III.2), (III.5), and Lemma 17

(III.8) σ1 = σ2
(III.9) c1 = c2
(III.10) E1 = E2
Σ′
1
≈
p
l Σ′

2

From (III.3), (III.7), and (III.8)-(III.10),

ks1 ≈
p
l ks2

□

Lemma 17. If pcsrc,dd ,de ⊢ Σ1,σ , c
α1

−→pc Σ
′
1
,σ1, c1,E1 and pcsrc,dd ,de ⊢ Σ2,σ , c

α2

−→pc Σ
′
2
,σ2, c2,E2, with Σ1 ≈

p
l Σ2 and pc ↓p⊑ l , then

Σ′
1
≈
p
l Σ′

2
, σ1 = σ2, c1 = c2, and E1 = E2

Proof.

By induction on the structure of F :: pcsrc,dd ,de ⊢ Σ1,σ , c
α1

−→pc Σ
′
1
,σ1, c1,E1
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and G :: pcsrc,dd ,de ⊢ Σ2,σ , c
α2

−→pc Σ
′
2
,σ2, c2,E2

By assumption,

(1) Σ1 ≈
p
l Σ2

(2) pc ↓p@ l

Case I: F ends in skip

By assumption,

(I.1) c = skip; c ′

(I.2) c1 = c
′

(I.3) Σ′
1
= Σ1

(I.4) σ1 = σ
(I.5) E1 = ·

From (I.1),

(I.6) G ends in skip

From (I.6),

(I.7) c2 = c
′

(I.8) Σ′
2
= Σ2

(I.9) σ2 = σ
(I.10) E2 = ·

From (1), (I.2)-(I.5), and (I.7)-(I.10),

c1 = c2, Σ
′
1
≈
p
l Σ′

2
, σ1 = σ2, and E1 = E2

Case II: F ends in seq

By assumption,

(II.1) c = c ′
1
; c ′
2

(II.2) ∃F ′ :: pcsrc,dd ,de ⊢ Σ1,σ , c
′
1

α1

−→pc Σ
′
1
,σ1, c

′′
1
,E1

(II.3) c1 = c
′′
1
; c ′
2

From (II.1),

(II.4) ∃G′ :: pcsrc,dd ,de ⊢ Σ2,σ , c
′
1

α2

−→pc Σ
′
2
,σ2, c

′′
2
,E2

(II.5) c2 = c
′′
2
; c ′
2

By IH on F ′ and G′,

(II.6) c ′′
1
= c ′′

2

Σ′
1
≈
p
l Σ′

2
, σ1 = σ2, and E1 = E2

From (II.3), (II.5), and (II.6),

c1 = c2

Case III: F ends in assign-l or assign-g

We assume F ends in assign-g; the proof for the other case is similar

By assumption and for Σ1 (pc) = (σ
д
1
, _),

(III.1) c = x := e

(III.2) x < σ
д
1

(III.3) JeKpcσ ,Σ1 = v1
(III.4) c1 = skip
(III.5) Σ′

1
= Σ1

(III.6) σ1 = σ [x 7→ v1]
(III.7) E1 = ·

From (1) and (2),

(III.8) Σ1 (pc) = Σ2 (pc)
From (III.2), (III.8), and for Σ2 (pc) = (σ

д
2
, _),

(III.9) x < σ
д
2

From (III.1) and (III.9),

(III.10) G ends in assign-l

From (III.10),

(III.11) c2 = skip
(III.12) JeKpcσ ,Σ2 = v2
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(III.13) Σ′
2
= Σ2

(III.14) σ2 = σ [x 7→ v2]
(III.15) E2 = ·

From (III.8), (III.3), and (III.12),

(III.16) v1 = v2
From (1), (III.5), and (III.13),

Σ′
1
≈
p
l Σ′

2

From (III.6), (III.14), and (III.16),

σ1 = σ2
From (III.4), (III.7), (III.11), and (III.15),

c1 = c2 and E1 = E2

Case IV: F ends in update

By assumption,

(IV.1) c = id := e

(IV.2) JeKpcσ ,Σ1 = v1
(IV.3) c1 = skip
(IV.4) σ1 = σ

(IV.5) Σ1 (pc) = (σд ,σEH )

(IV.6) σEH (id) = (v,M, pcid )
(IV.7) σEH

1
= σEH

[id 7→ (v1,M, pcid )]
(IV.8) Σ′

1
= Σ1[pc 7→ (σд ,σEH

1
)]

(IV.9) E1 = ·
From (IV.1),

(IV.10) G ends in update

From (1) and (2),

(IV.11) Σ1 (pc) = Σ2 (pc)
From (IV.11) and (IV.5),

(IV.12) Σ2 (pc) = (σд ,σEH )
From (IV.10) and (IV.12),

(IV.13) JeKpcσ ,Σ2 = v2
(IV.14) c2 = skip
(IV.15) σ2 = σ

(IV.16) σEH
2
= σEH

[id 7→ (v2,M, pcid )]
(IV.17) Σ′

2
= Σ2[pc 7→ (σд ,σEH

2
)]

(IV.18) E2 = ·
From (IV.11), (IV.2), and (IV.13),

(IV.19) v1 = v2
From (IV.19), (IV.7), and (IV.16),

(IV.20) σEH
1
= σEH

2

From (IV.8), (IV.17), and (IV.20),

Σ′
1
≈
p
l Σ′

2

From (IV.4), (IV.15), (IV.3), (IV.14), (IV.9), and (IV.18),

σ1 = σ2, c1 = c2, and E1 = E2

Case V: F ends in if-true, if-false, while-true, or while-false

We assume F ends in if-true; the proofs for the other cases are similar

By assumption,

(V.1) c = if e thenc ′
1
else c ′

2

(V.2) JeKpcσ ,Σ1 = true
(V.3) c1 = c

′
1

(V.4) Σ′
1
= Σ1

(V.5) σ1 = σ
(V.6) E1 = ·

From (1) and (2),
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(V.7) Σ1 (pc) = Σ2 (pc)
From (V.2) and (V.7),

(V.8) JeKpcσ ,Σ2 = true
From (V.1) and (V.8),

(V.9) G ends in if-true

From (V.9),

(V.10) c2 = c
′
1

(V.11) Σ′
2
= Σ2

(V.12) σ2 = σ
(V.13) E2 = ·

From (1), (V.4), (V.11), (V.3), (V.10), (V.5), (V.12), (V.6), and (V.13),

Σ′
1
≈
p
l Σ′

2
, σ1 = σ2, c1 = c2, and E1 = E2

Case VI: F ends in event-trigger

By assumption,

(VI.1) c = triggger(id.Ev (e ))
(VI.2) JeKpcσ ,Σ1 = v1
(VI.3) c1 = skip
(VI.4) Σ′

1
= Σ1

(VI.5) σ1 = σ
(VI.6) E1 = (id.Ev (v1), pc)

From (VI.1),

(VI.7) G ends in event-trigger

From (VI.7),

(VI.8) JeKpcσ ,Σ2 = v2
(VI.9) c2 = skip
(VI.10) Σ′

2
= Σ2

(VI.11) σ2 = σ
(VI.12) E2 = (id.Ev (v2), pc)

From (1) and (2),

(VI.13) Σ1 (pc) = Σ2 (pc)
From (VI.2), (VI.8), and (VI.13),

(VI.14) v1 = v2
From (1), (VI.4), (VI.10), (VI.3), (VI.9), (VI.5), (VI.11), (VI.6), (VI.12), and (VI.14),

Σ′
1
≈
p
l Σ′

2
, σ1 = σ2, c1 = c2, and E1 = E2

Case VII: F ends in new or add-eh

We assume F ends in new; the proof for the other case is similar

By assumption,

(VII.1) c = new(id, e )
(VII.2) JeKpcσ ,Σ1 = v1
(VII.3) c1 = skip
(VII.4) σ1 = σ

(VII.5) Σ1 (pc) = (σд ,σEH )

(VII.6) σEH
1
= σEH

[id 7→ (v, ·, pcsrc )]
(VII.7) Σ′

1
= Σ1[pc 7→ (σд ,σEH

1
)]

(VII.8) E1 = ·
From (VII.1),

(VII.9) G ends in new

From (1) and (2),

(VII.10) Σ1 (pc) = Σ2 (pc)
From (VII.10) and (VII.5),

(VII.11) Σ2 (pc) = (σд ,σEH )
From (VII.9) and (VII.11),

(VII.12) JeKpcσ ,Σ2 = v2
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(VII.13) c2 = skip
(VII.14) σ2 = σ

(VII.15) σEH
2
= σEH

[id 7→ (v2, ·, pcsrc )]
(VII.16) Σ′

2
= Σ2[pc 7→ (σд ,σEH

2
)]

(VII.17) E2 = ·
From (VII.10), (VII.2), and (VII.12),

(VII.18) v1 = v2
From (VII.18), (VII.6), and (VII.15),

(VII.19) σEH
1
= σEH

2

From (VII.7), (VII.16), and (VII.19),

Σ′
1
≈
p
l Σ′

2

From (VII.4), (VII.14), (VII.3), (VII.13), (VII.8), and (VII.17),

σ1 = σ2, c1 = c2, and E1 = E2

Case VIII: F ends in declassify or endorse

We assume F ends in declassify; the proof for the other case is similar

By assumption,

(VIII.1) c = x := declassify(ι, e )
(VIII.2) read(d, ι) = v
(VIII.3) c1 = x := v
(VIII.4) σ1 = σ
(VIII.5) Σ′

1
= Σ1

(VIII.6) E1 = ·
From (VIII.1),

(VIII.7) G ends in new

From (VIII.7) and (VIII.2),

(VIII.8) c2 = x := v
(VIII.9) σ2 = σ
(VIII.10) Σ′

2
= Σ2

(VIII.11) E2 = ·
From (1), (VIII.5), (VIII.10), (VIII.4), (VIII.9), (VIII.3), (VIII.8), (VIII.6), and (VIII.11),

Σ′
1
≈
p
l Σ′

2
, σ1 = σ2, c1 = c2, and E1 = E2

□

Lemma 18. If pcsrc,1,dd,1,de,1 ⊢ Σ1,κ1
α1

−→pc Σ′
1
, ks′

1
and pcsrc,2,dd,2,de,2 ⊢ Σ2,κ2

α2

−→pc Σ′
2
, ks′

2
, with α1 = new(id, pcsrc,1) and

α2 = new(id, pcsrc,2), or α1 = newEH(id, eh, pcid,1, pcsrc,1) and α2 = newEH(id, eh, pcid,2, pcsrc,2) Σ1 ≈
p
l Σ2, pc ↓p@ l , and pcsrc,1 ↓

p⊑ pc
1
↓p

pcsrc,2 ↓
p⊑ pc

2
↓p and pcid,1 ↓

p⊑ pc
1
↓p pcid,2 ↓

p⊑ pc
2
↓p , then Σ′

1
≈
p
l Σ′

2
and ks′

1
≈
p
l ks′

2

Proof.

We examine each case of F :: pcsrc,1,dd,1,de,1 ⊢ Σ1,κ1
α1

−→pc Σ
′
1
, ks′

1

Denote G :: pcsrc,2,dd,2,de,2 ⊢ Σ2,κ2
α2

−→pc Σ
′
2
, ks′

2

By assumption,

(1) Σ1 ≈
p
l Σ2

(2) pc ↓p@ l
(3) α1 = new(id, pcsrc,1) and α2 = new(id, pcsrc,2) or
(4) α1 = newEH(id, eh, pcid,1, pcsrc,1) and α2 = newEH(id, eh, pcid,2, pcsrc,2)
(5) pcsrc,1 ↓

p⊑ pc
1
↓p and pcsrc,2 ↓

p⊑ pc
2
↓p

(6) pcid,1 ↓
p⊑ pc

1
↓p and pcid,2 ↓

p⊑ pc
2
↓p

From (3) and (4) and since only P could produce new(_) or newEH(_),
(7) F and G must end in P

From (7),

(8) ∃F ′ :: pcsrc,1,dd,1,de,1 ⊢ Σ1,σ1, c1
α1

−→pc Σ
′
1
,σ ′

1
, c ′
1
,E1

(9) c1 ∈ {new(id, e1), addEH(id, eh)}
(10) ks′

1
= ((σ ′

1
, c ′
1
, P ,E :: E1), pcsrc,1, pc)

(11) ∃G′ :: pcsrc,2,dd,2,de,2 ⊢ Σ2,σ2, c2
α2

−→pc Σ
′
2
,σ ′

2
, c ′
2
,E2
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(12) c2 ∈ {new(id, e2), addEH(id, eh)}
(13) ks′

2
= ((σ ′

2
, c2, P ,E :: E2), pcsrc,2, pc)

From (2), (10), and (13),

ks′
1
≈
p
l ks′

2

From (8), (9), (11), (12),

(14) F ′ and G′ end in new or add-eh

Case I: F ′ and G′ end in new

By assumption and from Σ1 (pc) = (_,σEH
1

) and Σ2 (pc) = (_,σEH
2

),

(I.1) σEH ′
1
= σEH

1
[id 7→ (_, ·, pcsrc,1)]

(I.2) σEH ′
2
= σEH

2
[id 7→ (_, ·, pcsrc,2)]

(I.3) Σ′
1
= Σ1[pc 7→ (_,σEH ′

1
)]

(I.4) Σ′
2
= Σ2[pc 7→ (_,σEH ′

2
)]

From (1) and (2),

(I.5) Σ1 ≈
p
l Σ2

(I.6) σEH
1
≈
p
l σEH

2

From (I.6), (I.1), (I.2), and (5),

(I.7) σEH ′
1
≈
p
l σEH ′

2

From (I.5), (I.3), (I.4), (2), and (I.7),

Σ′
1
≈
p
l Σ′

2

Case II: F ′ and G′ end in add-eh

By assumption and from Σ1 (pc) = (_,σEH
1

), Σ2 (pc) = (_,σEH
2

), and eh = onEv (x ){c}
(II.1) σEH

1
(id) = (_,M1, pcid,1)

(II.2)M1 (Ev) = EH1

(II.3)M ′
1
= M1[Ev 7→ EH1 ∪ {eh, pcsrc,1}]

(II.4) σEH ′
1
= σEH

1
[id 7→ (_,M ′

1
, pcid,1)]

(II.5) Σ′
1
= Σ1[pc 7→ (_,σEH ′

1
)]

(II.6) σEH
2

(id) = (_,M2, pcid,2)
(II.7)M2 (Ev) = EH2

(II.8)M ′
2
= M2[Ev 7→ EH2 ∪ {eh, pcsrc,2}]

(II.9) σEH ′
2
= σEH

2
[id 7→ (_,M ′

2
, pcid,2)]

(II.10) Σ′
2
= Σ2[pc 7→ (_,σEH ′

2
)]

From (1) and (2),

(II.11) Σ1 ≈
p
l Σ2

(II.12) σEH
1
≈
p
l σEH

2

From (II.12), (II.1), (II.2), (II.6), (II.7), and (6),

(II.13)M1 ↓
p
l = M2 ↓

p
l

(II.14) EH1 ↓
p
l = EH2 ↓

p
l

From (II.13), (II.14), (II.3), (III.8), and (5),

(II.15)M ′
1
↓
p
l = M ′

2
↓
p
l

From (II.15), (II.4), (II.9), and (6),

(II.16) σEH ′
1
≈
p
l σEH ′

2

From (II.11), (II.5), (II.10), (2), and (II.16),

Σ′
1
≈
p
l Σ′

2

□

Lemma 19 (Equivalent State, Equivalent Event Handlers). If Σ1 ≈
p
l Σ2 and E1 ≈

p
l E2, with Σ1,E1 { ks1, Σ2,E2 { ks2 then ks1 ≈

p
l ks2

Proof.

By induction on F :: Σ1,E1 { ks1 and G :: Σ2,E2 { ks2
By assumption,

(1) Σ1 ≈
p
l Σ2

(2) E1 ≈
p
l E2
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Case I: F ends in lookup

By assumption,

(I.1) E1 = (id.Ev (v ), pc) :: E ′
1

(I.2) Σ1 (pc) = _,σEH

(I.3) σEH (id) = (_,M, pcid )
(I.4) pc, pcid ,v ⊢ M (Ev) { ks′

1

(I.5) ∃F ′ :: Σ1,E
′
1
{ ks′′

1

(I.6) ks1 = ks′
1
:: ks′′

1

Subcase i: pc ↓p⊑ l

By assumption and from (2) and the definition of ≈
p
l for E,

(i.1) E2 = (id.Ev (v ), pc) :: E ′
2
with

(i.2) E ′
1
≈
p
l E ′

2

By assumption and from (1),

(i.3) Σ1 (pc) = Σ2 (pc)
By assumption and from (i.3), (I.3), and (I.4),

(i.4) G ends in lookup

From (I.2) and (i.3),

(i.5) Σ2 (pc) = _,σEH

From (i.4), (i.5), and (I.3),

(i.6) pc, pcid ,v ⊢ M (Ev) { ks′
2

(i.7) ∃G′ :: Σ2,E
′
2
{ ks′′

2

(i.8) ks2 = ks′
2
:: ks′′

2

From (I.4) and (i.6),

(i.9) ks′
1
= ks′

2

From (i.2), (I.5), (i.7), and IH on F ′ and G′,

(i.10) ks′′
1
≈
p
l ks′′

2

From (I.6) and (i.8)-(i.10),

ks1 ≈
p
l ks2

Subcase ii: pc @ l
By assumption,

(ii.1) E1 ≈
p
l E ′

1

By assumption and from (I.4) and Lemma 14,

(ii.2) ks′
1
≈
p
l ·

From (2) and (ii.1),

(ii.3) E ′
1
≈
p
l E2

IH on F ′ and G gives

(ii.4) ks′′
1
≈
p
l ks2

From (ii.2), (ii.4), and (I.6),

ks1 ≈
p
l ks2

Case II: F ends in lookup-missing

By assumption,

(II.1) E1 = (id.Ev (v ), pc) :: E ′
1

(II.2) Σ1 (pc) = _,σEH

(II.3) id < σEH
or σEH (id) = (_,M, _) with Ev < M

(II.4) ∃F ′ :: Σ1,E
′
1
{ ks1

Subcase i: pc ↓p⊑ l

By assumption and from (2) and the definition of ≈
p
l for E,

(i.1) E2 = (id.Ev (v ), pc) :: E ′
2
with

(i.2) E ′
1
≈
p
l E ′

2

By assumption and from (1),
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(i.3) Σ1 (pc) = Σ2 (pc)
By assumption and from (II.3) and (i.3),

(i.4) G ends in lookup-missing

From (i.4),

(i.5) ∃G′ :: Σ2,E
′
2
{ ks2

From (i.2) and IH on F ′ and G′,

ks1 ≈
p
l ks2

Subcase ii: pc ↓p@ l
By assumption,

(ii.1) E1 ≈
p
l E ′

1

From (2) and (ii.1),

(ii.2) E ′
1
≈
p
l E2

IH on F ′ and G gives

ks1 ≈
p
l ks2

Case II: F ends in lookup-empty

By assumption,

(II.1) E1 = ·
(II.2) ks1 = ·

From (II.1) and (2),

(II.3) E2 ↓
p
l = ·

From (II.3) and Lemma 13,

(II.4) ks2 ≈
p
l ·

From (II.2) and (II.4),

ks1 ≈
p
l ks2

□

Lemma 20. If Σ1 ≈
p
l Σ2 and E1 ≈

p
l E2, with pcEv , f ⊢ Σ1,E1 { ks1, pcEv , f ⊢ Σ2,E2 { ks2 and f ∈ {r, t, rt} then ks1 ≈

p
l ks2

Proof.

By induction on F :: pcEv , f ⊢ Σ1,E1 { ks1 and G :: pcEv , f ⊢ Σ2,E2 { ks2 for f ∈ {r, t, rt}
By assumption,

(1) Σ1 ≈
p
l Σ2

(2) E1 ≈
p
l E2

Case I: F ends in lookup-R

The proofs for lookup-T and lookup-RT are similar.

By assumption,

(I.1) E1 = (id.Ev (v ), pc) :: E ′
1

(I.2) Σ1 (pc) = _,σEH

(I.3) σEH (id) = (_,M, pcid )
(I.4)M (Ev) ↓il ′= EH , · for l ′ = pcEv ↓

i

(I.5) pc, pcid ,v ⊢ EH { ks′
1

(I.6) ∃F ′ :: pcEv , r ⊢ Σ1,E
′
1
{ ks′′

1

(I.7) ks1 = ks′
1
:: ks′′

1

Subcase i: pc ↓p⊑ l

By assumption and from (2) and the definition of ≈
p
l for E,

(i.1) E2 = (id.Ev (v ), pc) :: E ′
2
with

(i.2) E ′
1
≈
p
l E ′

2

By assumption and from (1),

(i.3) Σ1 (pc) = Σ2 (pc)
By assumption and from (i.3), (I.3), and (I.4),

(i.4) G ends in lookup

From (I.2) and (i.3),
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(i.5) Σ2 (pc) = _,σEH

From (i.4), (i.5), (I.3), and (I.4),

(i.6) pc, pcid ,v ⊢ EH { ks′
2

(i.7) ∃G′ :: pcEv , r ⊢ Σ2,E
′
2
{ ks′′

2

(i.8) ks2 = ks′
2
:: ks′′

2

From (I.5) and (i.6),

(i.9) ks′
1
= ks′

2

From (i.2), (I.6), (i.7), and IH on F ′ and G′,

(i.10) ks′′
1
≈
p
l ks′′

2

From (I.7) and (i.8)-(i.10),

ks1 ≈
p
l ks2

Subcase ii: pc @ l
By assumption,

(ii.1) E1 ≈
p
l E ′

1

By assumption and from (I.5) and Lemma 14,

(ii.2) ks′
1
≈
p
l ·

From (2) and (ii.1),

(ii.3) E ′
1
≈
p
l E2

IH on F ′ and G gives

(ii.4) ks′′
1
≈
p
l ks2

From (ii.2), (ii.4), and (I.7),

ks1 ≈
p
l ks2

Case II: F ends in lookup-notR

By assumption,

(II.1) E1 = (id.Ev (v ), pc) :: E ′
1

(II.2) Σ1 (pc) = _,σEH
and σEH (id) = (_,M, _)

(II.3) Ev < M orM (Ev) ↓il ′= · for l
′ = pcEv ↓

i

(II.4) ∃F ′ :: pcEv , r ⊢ Σ1,E
′
1
{ ks1

Subcase i: pc ↓p⊑ l

By assumption and from (2) and the definition of ≈
p
l for E,

(i.1) E2 = (id.Ev (v ), pc) :: E ′
2
with

(i.2) E ′
1
≈
p
l E ′

2

By assumption and from (1),

(i.3) Σ1 (pc) = Σ2 (pc) and σEH (id) = (_,M, _)
By assumption and from (II.3) and (i.3),

(i.4) G ends in lookup-notR

From (i.4),

(i.5) ∃G′ :: pcEv , r ⊢ Σ2,E
′
2
{ ks2

From (i.2) and IH on F ′ and G′,

ks1 ≈
p
l ks2

Subcase ii: pc ↓p@ l
By assumption,

(ii.1) E1 ≈
p
l E ′

1

From (2) and (ii.1),

(ii.2) E ′
1
≈
p
l E2

IH on F ′ and G gives

ks1 ≈
p
l ks2

Case II: F ends in lookup-R-emp

By assumption,
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(II.1) E1 = ·
(II.2) ks1 = ·

From (II.1) and (2),

(II.3) E2 ↓
p
l = ·

From (II.3) and Lemma 21,

(II.4) ks2 ≈
p
l ·

From (II.2) and (II.4),

ks1 ≈
p
l ks2

□

Lemma 21. If pc, f ⊢ Σ,E { ks with E ↓
p
l = · and f ∈ {r, t, rt}, then ks ≈pl ·

Proof.

By induction on the structure of F :: pc, f ⊢ Σ,E { ks for f ∈ {r, t, rt}

By assumption,

(1) E ↓p= ·

Case I: F ends in lookup-R

The proofs for lookup-T and lookup-RT are similar to this case

By assumption,

(I.1) E = (id.Ev (v ), pc) :: E ′

(I.2) Σ(pc) = (_,σEH ) and σEH (id) = (_,M, pcid )
(I.3) lEv = pcEv ↓

i
andM (Ev) ↓ilEv= EH , ·

(I.4) ∃G :: pc, pcid ,v ⊢ EH { ks1
(I.5) ∃G′ :: pcEv , r ⊢ Σ,E

′ { ks2
(I.6) ks = ks1 :: ks2

From (1) and (I.1),

(I.6) pc ↓p@ l

(I.7) E ′ ↓
p
l = ·

From (I.6), (I.3) and Lemma 14,

(I.8) ks1 ≈
p
l ·

From (I.4), (I.7) and IH on G,

(I.9) ks2 ≈
p
l ·

From (I.5), (I.8), and (I.9),

ks ≈pl ·

Case II: F ends in lookup-notR

The proofs for lookup-notR and lookup-notRT are similar to this case

By assumption,

(II.1) E = (id.Ev (v ), pc) :: E ′

(II.2) ∃G :: pcEv , r ⊢ Σ,E
′ { ks

From (1) and (II.1),

(II.3) E ′ ↓
p
l = ·

From (II.3), (II.2) and IH on G,

ks ≈pl ·

Case III: F ends in lookup-R-emp

The proofs for lookup-T-emp and lookup-RT-emp are similar to this case

By assumption, ks = ·
□

Lemma 22 (Strong One-step). If K1 ≈
p
l K2, T1 = P,D, E ⊢ K1

αl,1
=⇒ K ′

1
with T1 ↓

p
l = τ , · and prog(K2), with

¬rlsA(T1), trnsprntA(T1, l ), transparentT(K2,τ , l ) if p = c , ¬sntzA(T1), rbstA(T1, l ), robustT(K2,τ , l ) if p = i , and T1 ↓
p
l < {t(_), r(_)}, then

∃K ′
2
,T2 s.t. T2 = P,D, E ⊢ K2 =⇒

∗ K ′
2
with T1 ≈

p
l T2 and K ′

1
≈
p
l K ′

2
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Proof.

We examine each case of F :: T1 = P,D, E ⊢ K1

αl,1
=⇒ K ′

1

By assumption,

(1) T1 ↓
p
l = τ , ·

(2) K1 ≈
p
l K2

(3) prog(K2)
(4) ¬rlsA(T1), trnsprntA(T1, l ), transparentT(K2,τ , l ) if p = c
(5) ¬sntzA(T1), rbstA(T1, l ), robustT(K2,τ , l ) if p = i

(6) T1 ↓
p
l < {t(_), r(_)}

Case I: F ends in In

By assumption and from (4) and (5),

(I.1) P,D, E ⊢ K2 =⇒
∗ KC with

(I.2) consumer(KC )
(I.3) (P,D, E ⊢ K2 =⇒

∗ KC ) ↓
p
l = ·

From (I.2),

(I.4) ksC = ·
From (I.1), (I.4), and Lemma 10,

(I.5) K2 ≈
p
l KC

From (2) and (I.5),

(I.6) K1 ≈
p
l KC

From (I.6),

(I.7) R1 = RC
(I.8) S1 = SC
(I.9) Σ1 ≈

p
l ΣC

By assumption,

(I.10) R ′
1
= R1

(I.11) S′
1
= S1

(I.12) Σ′
1
= Σ1

(I.13) α1 = (id.Ev (v ), pc)
(I.14) P (id.Ev (v )) = pc′

(I.15) Σ1 (pc) = (_,σEH
1

)

(I.16) σEH
1

(id) ↓i@ pc ↓i

(I.17) σEH
1

(id) ↓c@ pc ↓c

(I.18) E1 = ((id.Ev (v ), pc′′) | (pc ⊔ pc′ ⊑ pc′′))
(I.19) Σ1,E1 { ks′

1

From (1), (I.13)-(I.17), and the definition of T ↓
p
l ,

(I.20) T1 ↓
p
l = (id.Ev (v ), pc) and

(I.21) pc ↓p ⊔pc′ ↓p⊑ l
From (I.21),

(I.22) pc ↓p⊑ l
(I.23) pc′ ↓p⊑ l

From (I.9), (I.22), and (I.15)-(I.17),

(I.24) ΣC (pc) = (_,σEH
C )

(I.25) σEH
C (id) ↓i@ pc ↓i

(I.26) σEH
C (id) ↓c@ pc ↓c

From (I.4) and (I.24)-(I.26),

(I.27) In may be applied to RC ,SC ; ΣC ; ksC with input (id.Ev (v ), pc)
From (I.27),

(I.28) ∃K ′
2
s.t. G :: T2 = P,D, E ⊢ K2 =⇒

∗ KC
(id .Ev (v ),pc)
=⇒ K ′

2

(I.29) R ′
2
= RC

(I.30) S′
2
= SC

(I.31) Σ′
2
= ΣC

(I.32) E2 = ((id.Ev (v ), pc′′) | (pc ⊔ pc′ ⊑ pc′′))
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(I.33) ΣC ,E2 { ks′
2

From (I.18), and (I.32),

(I.34) E1 = E2
From (I.9), (I.34), (I.19), (I.33), and Lemma 19,

(I.35) ks′
1
≈
p
l ks′

2

From (I.13), (I.28), (I.20), (I.21), and the definition of T ↓p ,

(I.36) T2 ↓
p
l = (id.Ev (v ), pc)

From (I.20) and (I.36),

T1 ≈
p
l T2

From (I.7)-(I.9), (I.10)-(I.12), and (I.29)-(I.31),

(I.37) R ′
1
= R ′

2
, S′

1
= S′

2
, and Σ′

1
≈
p
l Σ′

2

From (I.37) and (I.35),

K ′
1
≈
p
l K ′

2

Case II: F ends in In-D

By assumption and from (4) and (5),

(II.1) P,D, E ⊢ K2 =⇒
∗ KC with

(II.2) consumer(KC )
(II.3) (P,D, E ⊢ K2 =⇒

∗ KC ) ↓
p
l = ·

From (II.2),

(II.4) ksC = ·
From (II.1), (II.4), and Lemma 10,

(II.5) K2 ≈
p
l KC

From (2) and (II.5),

(II.6) K1 ≈
p
l KC

From (II.6),

(II.7) R1 = RC
(II.8) S1 = SC
(II.9) Σ1 ≈

p
l ΣC

By assumption,

(II.10) S′
1
= S1

(II.11) Σ′
1
= Σ1

(II.12) α1 = (id.Ev (v ), pc)
(II.13) P (id.Ev (v )) = pc′

(II.14) Σ1 (pc) = (_,σEH
1

)

(II.15) σEH
1

(id) ↓i⊑ pc ↓i

(II.16) σEH
1

(id) ↓c@ pc ↓c

(II.17) E1 = ((id.Ev (v ), pc′′) | (pc ⊔ pc′ ⊑ pc′′))
(II.18) downgradeD (R1, Σ1, (id.Ev (v ), pc), pc′) = (R ′

1
,E ′

1
)

(II.19) Σ1,E1 { ks′′
1

(II.20) pc, r ⊢ Σ1,E ′
1
{ ks′′′

1

(II.21) ks′
1
= ks′′

1
:: ks′′′

1

From (II.18) and the definition of downgradeD ,
(II.22) R1 = (ρ1,d1)
(II.23) D (id.Ev (v ), pc, ρ1) = (ρ ′

1
,v1,E

′
d,1)

(II.24) d ′
1
= update(d1,v1)

(II.25) R ′
1
= (ρ ′

1
,d ′

1
)

(II.26) Ed,1 = ((id.Ev (v ), (lc , li )) | pc′ ↓c⊑ lc ⊏ pc ↓c ∧li = pc ↓i ⊔pc′ ↓i )
(II.27) E ′

1
= robust(Σ1,Ed,1 :: E

′
d,1, pc)

From (1), (II.13)-(II.16), and the definition of T ↓
p
l ,

(II.28) T1 ↓
p
l = (id.Ev (v ), pc) or

(II.29) T1 ↓
p
l = rls(id.Ev (v ), ρ ′

1
,v1,E

′′
1
, pc)

Subcase i: T1 ↓
p
l = (id.Ev (v ), pc)
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From (II.28), (II.20), and (II.27),

(i.1) pc ↓pl ⊑ l

(i.2) D (id.Ev (v ), pc′, ρ1) = (ρ1, none,E ′d,1)

(i.3) ks′′′
1
↓
p
l = · if p = c and ks′′′

1
= · if p = i

From (II.24) and (i.2),

(i.4), d ′
1
= d1

From (II.23), (i.2), (i.6), and (II.25),

(i.5) R ′
1
= R1

From (II.9), (i.1), and (II.14)-(II.16),

(i.6) ΣC (pc) = (_,σEH
C )

(i.7) σEH
C (id) ↓i⊑ pc ↓i

(i.8) σEH
C (id) ↓c@ pc ↓c

From (II.4) and (i.6)-(i.8),

(i.9) In-D may be applied to RC ,SC ; ΣC ; ksC with input (id.Ev (v ), pc)
From (i.9),

(i.10) ∃K ′
2
s.t. G :: T2 = P,D, E ⊢ K2 =⇒

∗ KC
(id .Ev (v ),pc)
=⇒ K ′

2

(i.11) S′
2
= SC

(i.12) Σ′
2
= ΣC

(i.13) P (id.Ev (v )) = pc′
2

(i.14) E2 = ((id.Ev (v ), pc′′) | (pc ⊔ pc′ ⊑ pc′′))
(i.15) downgradeD (R2, Σ2, (id.Ev (v ), pc), pc′) = (R ′

2
,Ed,2)

(i.16) ΣC ,E2 { ks′′
2

(i.17) pc, r ⊢ Σ2,E ′
2
{ ks′′′

2

(i.18) ks′
2
= ks′′

2
:: ks′′′

2

From (i.16) and the definition of downgradeD ,
(i.19) RC = (ρC ,dC )
(i.20) D (id.Ev (v ), pc, ρC ) = (ρ ′

2
,v2,E

′
d,2)

(i.21) d ′
2
= update(dC ,v2)

(i.22) R ′
2
= (ρ ′

2
,d ′

2
)

(i.23) Ed,2 = ((id.Ev (v ), (lc , li )) | pc′ ↓c⊑ lc ⊏ pc ↓c ∧li = pc ↓i ⊔pc′ ↓i )
(i.24) E ′

2
= robust(ΣC ,Ed,2 :: E

′
d,2, pc)

From (II.7), (i.1), (II.22), and (i.19),

(i.25) R1 = RC = (ρ1,d1) = (ρC ,dC )
From (i.25), (i.2), and (i.20),

(i.26) D (id.Ev (v ), pc, ρC ) = (ρ1, none,E ′d,1)
From (i.25) and (i.26),

(i.27) D (id.Ev (v ), pc, ρC ) = (ρC , none,E ′d,1)
From (i.21), (i.27), and (i.20),

(i.28) d ′
2
= dC

From (II.26) and (i.23),

(i.29) Ed,1 = Ed,2
From (i.27) and (i.20),

(i.30) E ′d,1 = E ′d,2
From (i.1), (i.29), (i.30), (II.9), and Lemma 26,

(i.31) E ′
1
≈
p
l E ′

2
if p = c and E ′

1
= E ′

2
if p = i

From (II.9), (I.4), (i.31), (II.20), (i.17), and Lemma 20,

(i.32) ks′′′
1
≈
p
l ks′′′

2
if p = c

From (II.9), (i.1), (i.31), (II.20), (i.17), (II.27), (i.24), and Lemma 28,

(i.33) ks′′′
1
= ks′′′

2
if p = i

From (i.27), (i.28), (i.1), (i.3), (i.32), (i.33), (II.13), (i.10), and (i.6)-(i.8), and the definition of T ↓
p
l ,

(i.34) T2 ↓
p
l = (id.Ev (v ), pc)

From (II.28) and (i.34),

T1 ≈
p
l T2

From (i.22), (i.19), (i.27), and (i.28),
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(i.35) R ′
2
= RC

From (II.7), (i.5), and (i.35),

(i.36) R ′
1
= R ′

2

From (II.8), (II.10), and (i.11),

(i.37) S′
1
= S′

2

From (II.9), (II.11), and (i.12),

(i.38) Σ′
1
≈
p
l Σ′

2

From (II.17) and (i.14),

(i.39) E1 = E2
From (II.9), (i.39), (II.19), (i.16), and Lemma 19,

(i.40) ks′′
1
≈
p
l ks′′

2

From (II.21), (i.18), (i.40), (i.32), and (i.33),

(i.41) ks′
1
≈
p
l ks′

2

From (i.35)-(i.38) and (i.41),

K ′
1
≈
p
l K ′

2

Subcase ii: T1 ↓
p
l = rls(id.Ev (v ), ρ ′

1
,v1,E

′′
1
, pc)

From (II.29) and (4),

(ii.1) p = i
From (II.29) and (ii.1),

(ii.2) pc ↓p⊑ l

From (2), (ii.2), and Σ2 = (_,σEH
2

),

(ii.3) σEH
1
= σEH

2

The rest of the proof for this case is similar to Subcase i

Case III: F ends in In-E

The proof is similar to Case II. It uses Lemma 27 instead of Lemma 26 and Lemma 29 instead of Lemma 28.

Case IV: F ends in In-DE

By assumption and from (4) and (5),

(IV.1) P,D, E ⊢ K2 =⇒
∗ KC with

(IV.2) consumer(KC )
(IV.3) (P,D, E ⊢ K2 =⇒

∗ KC ) ↓
p
l = ·

From (IV.2),

(IV.4) ksC = ·
From (IV.1), (IV.4), and Lemma 10,

(IV.5) K2 ≈
p
l KC

From (2) and (IV.5),

(IV.6) K1 ≈
p
l KC

From (IV.6),

(IV.7) R1 = RC
(IV.8) S1 = SC
(IV.9) Σ1 ≈

p
l ΣC

By assumption,

(IV.10) Σ′
1
= Σ1

(IV.11) α1 = (id.Ev (v ), pc)
(IV.12) P (id.Ev (v )) = pc′

(IV.13) Σ1 (pc) = (_,σEH
1

)

(IV.14) σEH
1

(id) ↓i⊑ pc ↓i

(IV.15) σEH
1

(id) ↓c⊑ pc ↓c

(IV.16) E1 = ((id.Ev (v ), pc′′) | (pc ⊔ pc′ ⊑ pc′′))
(IV.17) downgradeD (R1, Σ1, (id.Ev (v ), pc), pc′) = (R ′

1
,E ′

1
)

(IV.18) downgradeE (S1, Σ1, (id.Ev (v ), pc), pc
′) = (S′

1
,E ′′

1
)

(IV.19) downgradeD,E (R1,S1, Σ1, (id.Ev (v ), pc), pc
′) = E ′′′

1

(IV.20) Σ1,E1 { ks′′
1

64



(IV.21) pc, r ⊢ Σ1,E ′
1
{ ksd,1

(IV.22) pc, t ⊢ Σ1,E ′′
1
{ kse,1

(IV.23) pc, rt ⊢ Σ1,E ′′′
1
{ ksm,1

(IV.24) ks′
1
= ks′′

1
:: ksd,1 :: kse,1 :: ksm,1

From (IV.17) and the definition of downgradeD ,
(IV.25) R1 = (ρd,1,dd,1)
(IV.26) D (id.Ev (v ), pc, ρd,1) = (ρ ′d,1,vd,1,E

′
d,1)

(IV.27) d ′d,1 = update(dd,1,vd,1)
(IV.28) R ′d,1 = (ρ ′d,1,d

′
d,1)

(IV.29) Ed,1 = ((id.Ev (v ), (lc , li )) | pc′ ↓c⊑ lc ⊏ pc ↓c ∧li = pc ↓i ⊔pc′ ↓i )
(IV.30) E ′

1
= robust(Σ1,Ed,1 :: E

′
d,1, pc)

From (IV.18) and the definition of downgradeE ,
(IV.31) S1 = (ρe,1,de,1)
(IV.32) E (id.Ev (v ), pc, ρe,1) = (ρ ′e,1,ve,1,E

′
e,1)

(IV.33) d ′e,1 = update(de,1,ve,1)
(IV.34) S′

1
= (ρ ′e,1,d

′
e,1)

(IV.35) Ee,1 = ((id.Ev (v ), (lc , li )) | pc′ ↓i⊑ li ⊏ pc ↓i ∧lc = pc ↓c ⊔pc′ ↓c )
(IV.36) E ′

1
= transparent(Σ1,Ee,1 :: E ′e,1, pc)

From (IV.19) and the definition of downgradeD,E ,
(IV.37) Em,1 = mergeEvents(Ed,1 :: E

′
d,1,Ee,1 :: E

′
e,1)

(IV.38) E ′′′
1
= robustTransparent(Σ1,Em,1, pc)

Subcase i: T1 ↓
p
l = (id.Ev (v ), pc)

By assumption and from the definition of trInput,
(i.1) pc ↓pl ⊔pc

′ ↓
p
l ⊑ l

From (i.1),

(i.2) pc ↓p⊑ l
(i.3) pc′ ↓p⊑ l

From (2), (i.2), (i.3), and Σ2 = (_,σEH
2

),

(i.4) σEH
1
= σEH

2

The rest of the proof for this case is similar to Subcase II.i

Subcase ii: T1 ↓
p
l = rls(...)

If pc ↓p⊑ l , then the proof is similar to Subcase II.ii

Subcase iii: T1 ↓
p
l = sntz(...)

The proof for this case is similar to Subcase ii

Subcase iv: T1 ↓
p
l = down(...)

By assumption,

(iv.1) T1 ↓
p
l = down(...)

But (iv.1) contradicts (4) when p = c and (iv.1) contradicts (5) when p = i , so this case holds vacuously

Case V: F ends in Out

By assumption and from (4) and (5),

(V.1) P,D, E ⊢ K2

τ ′
=⇒∗ Kl with

(V.2) lowEH(Kl )
(V.3) ∀(α , pc) ∈ τ ′,α ∈ {ch(_), •} ∧ pc ↓p@ l

From (V.2),

(V.4) ksl = (κl , pcsrc,l , pcl ) :: ks
′
l with

(V.5) pcl ↓
p⊑ l

From (V.1)-(V.3) and Lemma 25,

(V.6) (P,D, E ⊢ K2

τ
=⇒∗ Kl ) ↓

p
l = ·
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From (V.1), (V.6), and Lemma 10,

(V.7) K2 ≈
p
l Kl

From (2) and (V.7),

(V.8) K1 ≈
p
l Kl

From (V.8),

(V.9) R1 = Rl
(V.10) S1 = Sl
(V.11) Σ1 ≈

p
l Σl

(V.12) ks1 ≈
p
l ksl

By assumption,

(V.13) R ′
1
= R1

(V.14) S′
1
= S1

(V.15) αl,1 = (ch(v ), pc
1
)

(V.16) P (ch) = pc
1

(V.17) R1 = (ρd,1,dd,1)
(V.18) S1 = (ρe,1,de,1)
(V.19) ks1 = (κ1, pcsrc,1, pc1) :: ks

′′
1

(V.20) producer(κ1)

(V.21) ∃F ′ :: pcsrc,1,dd,1,de,1 ⊢ Σ1,κ1
ch(v )
−→ pc

1

Σ′
1
, ks′′′

1

(V.22) ks′
1
= ks′′′

1
:: ks′′

1

From (1), (V.15), and the definition of ↓
p
l for T ,

(V.23) pc
1
↓p⊑ l

From (V.23), (V.19), (V.5), (V.4), (V.12), and the definition of ≈
p
l for ks,

(V.24) pc
1
= pcl

(V.25) (κ1, pcsrc,1, pc1) = (κl , pcsrc,l , pcl )
From (V.24), (V.23), (V.5), (V.9), (V.10), (V.17), and (V.18),

(V.27) Rl = (ρd,l ,dd,l )
(V.28) Sl = (ρe,l ,de,l ) with
(V.29) dd,1 = dd,l
(V.30) de,1 = de,l

From (V.21), (V.25), (V.29), (V.30), (V.11), (V.24), (V.23), (V.5), and Lemma 23

(V.31) ∃G′ :: pcsrc,l ,dd,l ,de,l ⊢ Σl ,κl
ch(v )
−→ pcl Σ

′
2
, ks′′

2

(V.32) Σ′
1
≈
p
l Σ′

2

(V.33) ks′′′
1
≈
p
l ks′′

2

From (V.20) and (V.25),

(V.34) producer(κ2)
From (V.31), (V.34), (V.16), and (V.24),

(V.35) Out may be applied to Rl ,Sl ; Σl ; ksl , producing output (ch(v ), pcl )
From (V.35),

(V.36) G :: T2 = P,D, E ⊢ K2 =⇒
∗ Kl

(ch(v ),pcl )
=⇒ K ′

2

(V.37) R ′
2
= Rl

(V.38) S′
2
= Sl

(V.39) ks′
2
= ks′′

2
:: ks′l

From (V.23), (V.15), and (V.16),

(V.40) T1 ↓
p
l = ch(v )

From (V.36), (V.6), (V.5) (V.24), and (V.16),

(V.41) T2 ↓
p
l = ch(v )

From (V.40) and (V.41),

T1 ≈
p
l T2

From (V.22), (V.39), (V.33), (V.12), (V.19), (V.4), and (V.25),

(V.42) ks′
1
≈
p
l ks′

2

From (V.9), (V.13), (V.37), (V.10), (V.14), (V.38), (V.32), and (V.42),

K ′
1
≈
p
l K ′

2
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Case VI: F ends in Out-Skip or Out-Silent

The proofs for theses cases are similar to Case V

Case VIi: F ends in Out-Next

By assumption and from (4) and (5),

(VII.1) P,D, E ⊢ K2

τ ′
=⇒∗ Kl with

(VII.2) lowEH(Kl )
(VII.3) ∀(α , pc) ∈ τ ′,α ∈ {ch(_), •} ∧ pc ↓p@ l

From (VII.2),

(VII.4) ksl = (κl , pcsrc,l , pcl ) :: ks
′
l with

(VII.5) pcl ↓
p⊑ l

From (VII.1)-(VII.3) and Lemma 25,

(VII.6) (P,D, E ⊢ K2

τ
=⇒∗ Kl ) ↓

p
l = ·

From (VII.1), (VII.6), and Lemma 10,

(VII.7) K2 ≈
p
l Kl

From (2) and (VII.7),

(VII.8) K1 ≈
p
l Kl

From (VII.8),

(VII.9) R1 = Rl
(VII.10) S1 = Sl
(VII.11) Σ1 ≈

p
l Σl

(VII.12) ks1 ≈
p
l ksl

By assumption,

(VII.13) R ′
1
= R1

(VII.14) S′
1
= S1

(VII.15) Σ′
1
= Σ1

(VII.16) αl,1 = (•, pc
1
)

(VII.17) ks1 = (κ1, pcsrc,1, pc1) :: ks
′
1

(VII.18) consumer(κ1)
From (1), (VII.16), and the definition of ↓

p
l for T ,

(VII.19) pc
1
↓p⊑ l

From (VII.19), (VII.17), (VII.5), (VII.4), (VII.12), and the definition of ≈
p
l for ks,

(VII.20) pc
1
= pc

2

(VII.21) (κ1, pcsrc,1, pc1) = (κl , pcsrc,l , pcl )
From (VII.18) and (VII.21),

(VII.22) consumer(κ2)
From (VII.22),

(VII.23) Out-Next may be applied to Rl ,Sl ; Σl ; ksl , producing output (•, pcl )
From (VII.23),

(VII.24) G :: T2 = P,D, E ⊢ K2 =⇒
∗ Kl

(•,pcl )
=⇒ K ′

2
and

(VII.25) R ′
2
= Rl

(VII.26) S′
2
= Sl

(VII.27) Σ′
2
= Σl

(VII.28) ks′
2
= ks′l

From (VII.19) and (VII.16),

(VII.29) T1 ↓
p
l = •

From (VII.24), (VII.5), and (VII.6),

(VII.30) T2 ↓
p
l = •

From (VII.29) and (VII.30),

T1 ≈
p
l T2

From (VII.17), (VII.12), (VII.4), (VII.21), and (VII.28),

(VII.31) ks′
1
≈
p
l ks′

2
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From (VII.9), (VII.13), (VII.25), (VII.10), (VII.14), (VII.26), (VII.11), (VII.15), (VII.27), and (VII.31),

K ′
1
≈
p
l K ′

2

□

Lemma 23. If F :: pcsrc,dd ,de ⊢ Σ1,κ
α
−→pc Σ′

1
, ks1 with pc ↓p⊑ l and Σ1 ≈

p
l Σ2, then ∃G :: pcsrc,dd ,de ⊢ Σ2,κ

α
−→pc Σ′

2
, ks2 with

Σ′
1
≈
p
l Σ′

2
and ks1 ≈

p
l ks2

Proof.

We examine each case of F :: pcsrc,dd ,de ⊢ Σ1,κ
α
−→pc Σ

′
1
, ks1

By assumption,

(1) pc ↓p⊑ l

(2) Σ1 ≈
p
l Σ2

Case I F ends in PtoC

By assumption,

(I.1) κ = σ , skip, P , ·
(I.2) α = •
(I.3) Σ′

1
= Σ1

(I.4) ks1 = ((σ , skip,C, ·), pcsrc, pc)
From (I.1),

(I.5) PtoC may be applied to Σ2 and κ
From (I.5),

(I.6) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , skip, P , ·
•
−→pc Σ2, ((σ , skip,C, ·), pcsrc, pc)

From (I.6),

(I.7) Σ′
2
= Σ2

(I.8) ks2 = ((σ , skip,C, ·), pcsrc, pc)
Form (2), (I.3), and (I.7),

Σ′
1
≈
p
l Σ′

2

From (1), (I.4), and (I.8),

ks1 ≈
p
l ks2

Case II: F ends in PtoLC

By assumption,

(II.1) κ = σ , skip, P ,E
(II.2) E , ·
(II.3) Σ1,E { ks′

1

(II.5) α = •
(II.6) Σ′

1
= Σ1

(II.7) ks1 = ((σ , skip,C, ·), pcsrc, pc) :: ks
′
1

From (II.1) and (II.2),

(II.8) PtoLC may be applied to Σ2 and κ
From (II.8),

(II.9) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , skip, P ,E
•
−→pc Σ2, ((σ , skip,C, ·), pcsrc, pc) :: ks

′
2
for

(II.10) Σ2,E { ks′
2

From (II.9),

(II.11) Σ′
2
= Σ2

(II.12) ks2 = ((σ , skip,C, ·), pcsrc, pc) :: ks
′
2

From (2), (II.6), and (II.11),

Σ′
1
≈
p
l Σ′

2

From (2), (II.3), (II.10), and Lemma 19,

(II.13) ks′
1
≈
p
l ks′

2

From (II.7), (II.12), and (II.13),

ks1 ≈
p
l ks2

Case III: F ends in P
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By assumption,

(III.1) κ = σ , c, P ,E

(III.2) ∃F ′ :: pcsrc,dd ,de ⊢ Σ1,σ , c
α
−→pc Σ

′
1
,σ1, c1,E1

(III.3) ks1 = ((σ1, c1, P ,E :: E1), pcsrc, pc)
From (1), (2), (III.2), and Lemma 24,

(III.4) ∃G′ :: pcsrc,dd ,de ⊢ Σ2,σ , c
α
−→pc Σ

′′
2
,σ2, c2,E2 with

(III.5) Σ′
1
≈
p
l Σ′′

2

(III.6) σ1 = σ2
(III.7) c1 = c2
(III.8) E1 = E2

From (III.4),

(III.9) P may be applied to Σ2 and κ
From (III.9),

(III.10) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c, P ,E
•
−→pc Σ

′′
2
, ((σ2, c2, P ,E :: E2), pcsrc, pc)

From (III.10),

(III.11) Σ′
2
= Σ′′

2

(III.12) ks2 = ((σ2, c2, P ,E :: E2), pcsrc, pc)
From (III.5) and (III.11),

Σ′
1
≈
p
l Σ′

2

From (III.3), (III.12), (III.6), (III.7), and (III.8),

ks1 ≈
p
l ks2

□

Lemma 24. If F :: pcsrc,dd ,de ⊢ Σ1,σ , c
α
−→pc Σ′

1
,σ1, c1,E1 with pc ↓p⊑ l and Σ1 ≈

p
l Σ2, then ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c

α
−→pc

Σ′
2
,σ2, c2,E2 with Σ′

1
≈
p
l Σ′

2
, σ1 = σ2, c1 = c2, and E1 = E2

Proof.

By induction on the structure of F :: pcsrc,dd ,de ⊢ Σ1,σ , c
α
−→pc Σ

′
1
,σ1, c1,E1

By assumption,

(1) pc ↓p⊑ l

(2) Σ1 ≈
p
l Σ2

Case I: F ends in skip, declassify, or endorse

The proofs for these cases are straightforward

Case II: F ends in seq

The proof for this case follows from the IH

Case III: F ends in assign-l

By assumption,

(III.1) c = x := e
(III.2) Σ1 (pc) = (σд , _)
(III.3) x < σд

(III.4) Σ′
1
= Σ1

(III.5) JeKpcσ ,Σ1 = v
(III.6) σ1 = σ [x 7→ v]
(III.7) c1 = skip
(III.8) E1 = ·

From (1) and (2),

(III.9) Σ1 (pc) = Σ2 (pc)
From (III.9) and (III.1)-(III.3),

(III.10) assign-l may be applied to Σ2,σ , c
From (III.10),

(III.11) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
•
−→pc Σ2,σ [x 7→ v ′], skip, · for

(III.12) JeKpcσ ,Σ2 = v
′
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From (1), (2), (III.5), and (III.12),

(III.13) v = v ′

From (III.11),

(III.14) Σ′
2
= Σ2

(III.15) σ2 = σ [x 7→ v ′]
(III.16) c2 = skip
(III.17) E2 = ·

From (2), (III.4), and (III.14),

Σ′
1
≈
p
l Σ′

2

From (III.6), (III.15), and (III.13),

σ1 = σ2
From (III.7) and (III.16),

c1 = c2
From (III.8) and (III.17),

E1 = E2

Case IV: F ends in assign-g

By assumption,

(IV.1) c = x := e

(IV.2) Σ1 (pc) = (σд ,σEH )
(IV.3) x ∈ σд

(IV.4) JeKpcσ ,Σ1 = v
(IV.5) σ

д
1
= σд[x 7→ v]

(IV.6) Σ′
1
= Σ1[pc 7→ (σ

д
1
,σEH )

(IV.7) σ1 = σ
(IV.8) c1 = skip
(IV.9) E1 = ·

From (1) and (2),

(IV.10) Σ1 (pc) = Σ2 (pc)
From (IV.10) and (IV.1)-(IV.3),

(IV.11) assign-g may be applied to Σ2,σ , c
From (IV.11) and (IV.10),

(IV.12) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
•
−→pc Σ

′′
2
,σ , skip, · for

(IV.13) JeKpcσ ,Σ2 = v
′

(IV.14) Σ′′
2
= Σ2[pc 7→ (σ

д
2
,σEH )]

(IV.15) σ
д
2
= σд[x 7→ v ′]

From (1), (2), (IV.4), and (IV.13),

(IV.16) v = v ′

From (IV.12),

(IV.17) Σ′
2
= Σ′′

2

(IV.18) σ2 = σ
(IV.19) c2 = skip
(IV.20) E2 = ·

From (2), (IV.6), (IV.17), (IV.14), (IV.5), (IV.15), and (IV.16),

Σ′
1
≈
p
l Σ′

2

From (IV.7) and (IV.18),

σ1 = σ2
From (IV.8) and (IV.19),

c1 = c2
From (IV.9) and (IV.20),

E1 = E2

Case V: F ends in update

The proof for this case is similar to Case IV
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Case VI: F ends in if-true

By assumption,

(VI.1) c = if e then c ′
1
else c ′

2

(VI.2) JeKpcσ ,Σ1 = true
(VI.3) c1 = c

′
1

(VI.4) Σ′
1
= Σ1

(VI.5) σ1 = σ
(VI.6) E1 = ·

From (1), (2), and (VI.2),

(VI.7) JeKpcσ ,Σ2 = true
From (VI.7) and (VI.1),

(VI.8) if-true may be applied to Σ2,σ , c
From (VI.8),

(VI.9) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
•
−→pc Σ2,σ , c

′
1
, · for

From (VI.9),

(VI.10) Σ′
2
= Σ2

(VI.11) σ2 = σ
(VI.12) c2 = c

′
1

(VI.13) E2 = ·
From (2), (VI.4), and (VI.10),

Σ′
1
≈
p
l Σ′

2

From (VI.5) and (VI.11),

σ1 = σ2
From (VI.3) and (VI.12),

c1 = c2
From (VI.6) and (VI.13),

E1 = E2

Case VII: F ends in if-false, while-true, or while-false

The proofs for these cases are similar to Case VI

Case VIII: F ends in output

By assumption,

(VIII.1) c = output ch e
(VIII.2) JeKpcσ ,Σ1 = v
(VIII.3) c1 = skip
(VIII.4) Σ′

1
= Σ1

(VIII.5) σ1 = σ
(VIII.6) E1 = ·

From (1), (2), and (VIII.2),

(VIII.7) JeKpcσ ,Σ2 = v
From (VIII.7) and (VIII.1),

(VIII.8) output may be applied to Σ2,σ , c producing output ch(v )
From (VIII.8),

(VIII.9) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
ch(v )
−→ pc Σ2,σ , c

′
1
, ·

From (VIII.9),

(VIII.10) Σ′
2
= Σ2

(VIII.11) σ2 = σ
(VIII.12) c2 = skip
(VIII.13) E2 = ·

From (2), (VIII.4), and (VIII.10),

Σ′
1
≈
p
l Σ′

2

From (VIII.5) and (VIII.11),

σ1 = σ2
From (VIII.3) and (VIII.12),
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c1 = c2
From (VIII.6) and (VIII.13),

E1 = E2

Case IX: F ends in event-trigger

By assumption,

(IX.1) c = trigger id.Ev (e )
(IX.2) JeKpcσ ,Σ1 = v
(IX.3) c1 = skip
(IX.4) Σ′

1
= Σ1

(IX.5) σ1 = σ
(IX.6) E1 = (id.Ev (v ), pc)

From (IX.1),

(IX.7) event-trigger may be applied to Σ2,σ , c
From (IX.7),

(IX.8) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
•
−→pc Σ2,σ , skip, (id.Ev (v ′), pc) for

(IX.9) JeKpcσ ,Σ2 = v
′

From (1), (2), (IX.2), and (IX.9),

(IX.10) v = v ′

From (IX.9),

(IX.11) Σ′
2
= Σ2

(IX.12) σ2 = σ
(IX.13) c2 = skip
(IX.14) E2 = (id.Ev (v ′), pc)

From (2), (IX.4), and (IX.11),

Σ′
1
≈
p
l Σ′

2

From (IX.5) and (IX.12),

σ1 = σ2
From (IX.3) and (IX.13),

c1 = c2
From (IX.6), (IX.14), and (IX.10),

E1 = E2

Case X: F ends in new

By assumption,

(X.1) c = new(id, e )
(X.2) JeKpcσ ,Σ1 = v
(X.3) Σ1 (pc) = (σд ,σEH )

(X.4) id < σEH

(X.5) σEH
1
= σEH

[id 7→ (v, ·, pcsrc )]
(X.6) Σ′

1
= Σ1[pc 7→ (σд ,σEH

1
)]

(X.7) c1 = skip
(X.8) σ1 = σ
(X.9) E1 = ·

From (X.1),

(X.10) new may be applied to Σ2,σ , c producing output new(id, pcsrc )
From (1) and (2),

(X.11) Σ1 (pc) = Σ2 (pc)
From (X.10) and (X.11),

(X.12) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
•
−→pc Σ

′′
2
,σ , skip, · for

(X.13) JeKpcσ ,Σ2 = v
′

(X.14) Σ′′
2
= (σд ,σEH

2
)

(X.15) σEH
2
= σEH

[id 7→ (v ′, ·, pcsrc )]
From (1), (2), (X.2), and (X.13),

(X.16) v = v ′
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From (X.12),

(X.17) Σ′
2
= Σ′′

2

(X.18) σ2 = σ
(X.19) c2 = skip
(X.20) E2 = ·

From (2), (X.5), (X.6), (X.14), and (X.15),

Σ′
1
≈
p
l Σ′

2

From (X.8) and (X.18),

σ1 = σ2
From (X.7) and (X.19),

c1 = c2
From (X.9) and (X.20),

E1 = E2

Case XI: F ends in add-eh

By assumption,

(XI.1) c = addEH(id, eh)
(XI.2) Σ1 (pc) = (σд ,σEH ),

(XI.3) σEH (id) = (v,M, pcid )
(XI.4)M (Ev) = EHEv
(XI.5)M ′ = M[Ev 7→ EHEv ∪ {(eh, pcsrc )}]
(XI.6) σEH

1
= σEH

[id 7→ (v,M ′, pcid )]
(XI.7) Σ′

1
= Σ1[pc 7→ (σд ,σEH

1
)]

(XI.8) α = newEH(id, eh, pcid , pcsrc )
(XI.9) c1 = skip
(XI.10) σ1 = σ
(XI.11) E1 = ·

From (1) and (2),

(XI.12) Σ1 (pc) = Σ2 (pc)
From (XI.1), (XI.12), (XI.2), (XI.3), and (XI.8),

(XI.13) add-eh may be applied to Σ2,σ , c producing α
From (XI.12), (XI.2), (XI.3), (XI.5), and (XI.13),

(XI.14) ∃G :: pcsrc,dd ,de ⊢ Σ2,σ , c
α
−→pc Σ

′′
2
,σ , skip, · for

(XI.15) Σ′′
2
= (σд ,σEH

2

(XI.16) σEH
2
= σEH

[id 7→ (v,M ′, pcid )]
From (XI.14),

(XI.17) Σ′
2
= Σ′′

2

(XI.18) σ2 = σ
(XI.19) c2 = skip
(XI.20) E2 = ·

From (2), (XI.5)-(XI.7), and (XI.15)-(XI.17),

Σ′
1
≈
p
l Σ′

2

From (XI.10) and (XI.18),

σ1 = σ2
From (XI.9) and (XI.19),

c1 = c2
From (XI.11) and (XI.20),

E1 = E2
□

Lemma 25. If T = P,D, E ⊢ K
τ
=⇒∗ K ′ with ∀(α , pc) ∈ τ ,α ∈ {ch(_), •} ∧ pc ↓p@ l , then T ↓pl = ·

Proof.

By induction on the length of T
By assumption,

(1) ∀(α , pc) ∈ τ ,α ∈ {ch(_), •} ∧ pc ↓p@ l
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Base Case: len(T ) = 0

By assumption, T = K . Then, from the definition of ↓
p
l for T , T ↓

p
l = ·

Inductive Case: len(T ) = n + 1
By assumption,

(I.1) F :: T = P,D, E ⊢ K
τ ′
=⇒∗ K ′′

αl
=⇒ K ′

From (1) and (I.1),

(I.2) τ = τ ′ :: αl with
(I.3) ∀(α , pc) ∈ τ ′,α ∈ {ch(_), •} ∧ pc ↓p@ l
(I.4) αl = (α ′, pc′) with α ′ ∈ {ch(_), •} ∧ pc′ ↓p@ l

From (I.3),

(I.5) the IH may be applied on P,D, E ⊢ K
τ ′
=⇒∗ K ′′

From (I.5) and the IH,

(I.6) (P,D, E ⊢ K
τ ′
=⇒∗ K ′′) ↓

p
l = ·

From (I.4),

(I.7) F must end in an output rule

Subcase i: F ends in Out-Skip, Out-Silent or Out-Next,

By assumption and from (1) and (I.4),

(i.1) α ′ = •

From (i.1), (I.4) and the definition of ↓
p
l for T ,

(i.2) (P,D, E ⊢ K ′′
αl
=⇒ K ′) ↓

p
l = ·

From (I.1), (I.6), and (i.2),

T ↓
p
l = ·

Subcase ii: F ends in Out

By assumption,

(ii.1) α ′ = ch(v ) and
(ii.2) P (ch) = pc′

From (ii.1), (ii.2), (I.4), and the definition of ↓
p
l for T ,

(ii.3) (P,D, E ⊢ K ′′
αl
=⇒ K ′) ↓

p
l = ·

From (I.1), (I.6), and (ii.3),

T ↓
p
l = ·

□

Lemma 26. If Σ1 ≈
p
l Σ2 with pc ↓p⊑ l , with robust(Σ1,E, pc) = E1 and robust(Σ2,E, pc) = E2, then E1 ≈

p
l E2 if p = c and E1 = E2 if p = i

Proof.

By induction on the structure of F :: robust(Σ1,E, pc) = E1 and
G :: robust(Σ2,E, pc) = E2
By assumption,

(1) Σ1 ≈
p
l Σ2

(2) pc ↓p⊑ l

Case I: F ends in robust

By assumption,

(I.1) E = (id.Ev (v ), pc′) :: E ′

(I.2) Σ1 (pc′) = (_,σEH
1

)

(I.3) σEH
1

(id) ↓i⊑ pc ↓i

(I.4) ∃F ′ :: robust(Σ1,E ′, pc) = E ′
1

(I.5) E1 = (id.Ev (v ), pc′) :: E ′
1

From (I.1),

(I.6) G ends in robust or not-robust
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From (I.6),

(I.7) ∃G′ :: robust(Σ2,E ′, pc) = E ′
2

From (1), (I.4), and (I.7), IH may be applied on F ′ and G′,

(I.8) E ′
1
≈
p
l E ′

2
if p = c and E ′

1
= E ′

2
if p = i

Subcase i: pc′ ↓p⊑ l
By assumption and from (1),

(i.1) Σ1 (pc′) = Σ2 (pc′)
From (i.1) and (I.2),

(i.2) Σ2 (pc′) = (_,σEH
2

) = (_,σEH
1

)
From (i.2) and (I.3),

(i.3) σEH
2

(id) ↓i⊑ pc ↓i

From (i.3),

(i.4) G ends in robust

From (i.4),

(i.5) E2 = (id.Ev (v ), pc′) :: E ′
2

From (I.5), (i.5), and (I.8),

E1 ≈
p
l E2 if p = c and E1 = E2 if p = i

Subcase ii: pc′ ↓p@ l and p = c
By assumption and from (I.5),

(ii.1) E1 ≈
p
l E ′

1

If G ends in robust, then

(ii.2) E2 = (id.Ev (v ), pc′) :: E ′
2

By assumption and from (ii.2),

(ii.3) E2 ≈
p
l E ′

2

From (ii.1), (ii.3), and (I.8),

E1 ≈
p
l E2

Otherwise, G ends in not-robust and

(ii.4) E2 = E ′
2

From (ii.1), (ii.4), and (I.8),

E1 ≈
p
l E2

Subcase iii: pc′ ↓p@ l and p = i

By assumption and from (1), (I.2), and Σ2 (pc′) = (_,σEH
2

),

(iii.1) σEH
1
↓il= σEH

2
↓il

From (2) and (I.3),

(iii.2) σEH
1

(id) ↓i⊑ l
From (iii.1) and (iii.2),

(iii.3) σEH
2

(id) ↓i= σEH
1

(id) ↓i

From (iii.3) and (I.3),

(iii.4) σEH
2

(id) ↓i⊑ pc ↓i

From (iii.4),

(iii.5) G msut end in robust

From (iii.5),

(iii.6) E2 = (id.Ev (v ), pc′) :: E ′
2

From (I.5), (iii.6), and (I.8),

E1 = E2

Case II: F ends in not-robust

By assumption,

(II.1) E = (id.Ev (v ), pc′) :: E ′

(II.2) Σ1 (pc′) = (_,σEH
1

)

(II.3) id < σEH
1

or σEH
1

(id) ↓i@ pc ↓i

(II.4) ∃F ′ :: robust(Σ1,E ′, pc) = E ′
1
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From (II.4),

(II.5) E1 = E ′
1

From (II.1),

(II.6) G ends in robust or not-robust

From (II.6),

(II.7) ∃G′ :: robust(Σ2,E ′, pc) = E ′
2

From (1), (II.4), and (II.7), IH may be applied on F ′ and G′,

(II.8) E ′
1
≈
p
l E ′

2
if p = c and E ′

1
= E ′

2
if p = i

Subcase i: pc′ ↓p⊑ l
By assumption and from (1),

(i.1) Σ1 (pc′) = Σ2 (pc′)
From (i.1) and (II.2),

(i.2) Σ2 (pc′) = (_,σEH
2

) = (_,σEH
1

)
From (i.2) and (II.3),

(i.3) σEH
2

(id) ↓i@ pc ↓i

From (i.3),

(i.4) G ends in not-robust

From (i.4),

(i.5) E2 = E ′
2

From (II.5), (i.5), and (II.8),

E1 ≈
p
l E2 if p = c and E1 = E2 if p = i

Subcase ii: pc′ ↓p@ l and p = c
If G ends in robust, then

(ii.1) E2 = (id.Ev (v ), pc′) :: E ′
2

By assumption and from (ii.1),

(ii.2) E2 ≈
p
l E ′

2

From (II.8) and (ii.2),

E1 ≈
p
l E2

Otherwise, G ends in not-robust and

(ii.3) E2 = E ′
2

From (II.8) and (ii.3),

E1 ≈
p
l E2 if p = c and E1 = E2 if p = i

Subcase iii: pc′ ↓p@ l and p = i

By assumption and from (1), (II.2), and Σ2 (pc′) = (_,σEH
2

)

(iii.1) σEH
1
↓il= σEH

2
↓il

From (2) and (II.3),

(iii.2) σEH
1

(id) ↓i@ l
From (iii.1) and (iii.2),

(iii.3) σEH
2

(id) ↓i= σEH
1

(id) ↓i

From (iii.3) and (II.3),

(iii.4) σEH
2

(id) ↓i@ pc ↓i

From (iii.4),

(iii.5) G must end in not-robust

From (iii.5),

(iii.6) E2 = E ′
2

From (II.5), (iii.6), and (II.8),

E1 = E2

Case III: F ends in robust-emp

By assumption, E1 = E2 = ·
□
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Lemma 27. If Σ1 ≈
p
l Σ2 and pc ↓p⊑ l , with transparent(Σ1,E, pc) = E1 and transparent(Σ2,E, pc) = E2, then E1 ≈

p
l E2 if p = c and

E1 = E2 if p = i
Proof (sketch): The proof is by induction on the structure of

F :: transparent(Σ1,E, pc) = E1 and G :: transparent(Σ2,E, pc) = E2, similar to the one for Lemma 26. □

Lemma 28. If Σ1 ≈il Σ2, with pcEv , r ⊢ Σ1,E { ks1, pcEv , r ⊢ Σ2,E { ks2 and pcEv ↓
i⊑ l E = robust(Σ1, _, pc) = robust(Σ2, _, pc) then

ks1 = ks2

Proof.

By induction on the structure of F :: pcEv , f ⊢ Σ1,E { ks1 and
G :: pcEv , f ⊢ Σ2,E { ks2
By assumption,

(1) Σ1 ≈
i
l Σ2

(2) pcEv ↓
i⊑ l

(3) E = robust(Σ1, _, pc) = robust(Σ2, _, pc)

Case I: F ends in lookup-R

By assumption,

(I.1) E = (id.Ev (v ), pc′) :: E ′

(I.2) Σ1 (pc′) = (_,σEH
1

)

(I.3) σEH
1

(id) = (_,M1, pc′′)
(I.4) EH1 = M1 (Ev) ↓ilEv, · for lEv = pcEv ↓

i

(I.5) pc′, pc′′,v ⊢ EH1 { ks′
1

(I.6) F ′ :: pcEv , r ⊢ Σ1,E
′ { ks′′

1

(I.7) ks1 = ks′
1
:: ks′′

1

From (3) and (I.3),

(I.8) pc′′ ↓i⊑ pcEv ↓
i

From (2) and (I.8),

(I.9) pc′′ ↓i⊑ l

Subcase i: pc′ ↓i⊑ l
By assumption and from (1) and (I.2),

(i.1) Σ1 (pc′) = (_,σEH
1

) = (_,σEH
2

) = Σ2 (pc′)
From (i.1) and (I.3),

(i.2) σEH
2

(id) = σEH
1

(id) = (_,M1, pc′′)
From (i.2) and (I.4),

(i.3) G ends in lookup-R

From (i.2), (i.3), and (I.4),

(i.4) pc′, pc′′,v ⊢ EH1 { ks′
2

(i.5) G′ :: pcEv , r ⊢ Σ2,E
′ { ks′′

2

(i.6) ks2 = ks′
2
:: ks′′

2

From (I.5) and (i.4),

(i.7) ks′
1
= ks′

2

From (1), (I.6), and (i.5), and the IH on F ′ and G′,

(i.8) ks′′
1
= ks′′

2

From (I.7) and (i.6)-(i.8),

ks1 = ks2

Subcase ii: pc′ ↓i@ l

By assumption and from (1), (I.2), and Σ2 = (_,σEH
2

),

(ii.1) (_,σEH
1

) ↓il= (_,σEH
2

) ↓il
From (I.3), (I.9), and (ii.1),

(ii.2) σEH
2

(id) = (_,M2, pc′′) with
(ii.3)M1 ↓

i
l= M2 ↓

i
l

From (2), (I.4), and (ii.3),

(ii.4) EH2 = M2 (Ev) ↓ilEv= EH1 for lEv = pcEv ↓
i

From (I.4) and (ii.4),
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(ii.5) EH2 , ·
From (ii.2), (ii.4), and (ii.5),

(ii.6) G ends in lookup-R

From (ii.4) and (ii.6),

(ii.7) pc′, pc′′,v ⊢ EH2 { ks′
2

(ii.8) G′ :: pcEv , r ⊢ Σ2,E
′ { ks′′

2

(ii.9) ks2 = ks′
2
:: ks′′

2

From (I.5), (ii.7), and (ii.4)

(ii.10) ks′
1
= ks′

2

From (1), (I.6), and (ii.8), and the IH on F ′ and G′,

(ii.11) ks′′
1
= ks′′

2

From (I.7) and (ii.9)-(ii.11),

ks1 = ks2

Case II: F ends in lookup-notR

By assumption,

(II.1) E = (id.Ev (v ), pc′) :: E ′

(II.2) Σ1 (pc′) = (_,σEH
1

)

(II.3) σEH
1

(id) = (_,M1, pc′′)
(II.4) Ev < M1 orM1 (Ev) ↓ilEv= · for lEv = pcEv ↓

i

(II.5) F ′ :: pc, r ⊢ Σ1,E ′ { ks1
From (3) and (II.3),

(II.6) pc′′ ↓i⊑ pcEv ↓
i

From (2) and (II.6),

(II.7) pc′′ ↓i⊑ l

Subcase i: pc′ ↓i⊑ l
By assumption and from (1) and (II.2),

(i.1) Σ1 (pc′) = (_,σEH
1

) = (_,σEH
2

) = Σ2 (pc′)
From (i.1) and (II.3),

(i.2) σEH
2

(id) = σEH
1

(id) = (_,M1, pc′′)
From (i.2) and (II.4),

(i.3) G ends in lookup-notR

From (II.1) and (i.3),

(i.4) G′ :: pcEv , r ⊢ Σ2,E
′ { ks2

From (1), (II.5), and (i.4), and the IH on F ′ and G′,

ks1 = ks2

Subcase ii: pc′ ↓i@ l

By assumption and from (1), (II.2), and Σ2 = (_,σEH
2

),

(ii.1) (_,σEH
1

) ↓il= (_,σEH
2

) ↓il
From (II.3), (II.7), and (ii.1),

(ii.2) σEH
2

(id) = (_,M2, pc′′) with
(ii.3)M1 ↓

i
l= M2 ↓

i
l

From (2), (II.4), and (ii.3),

(ii.4) Ev < M2 orM2 (Ev) ↓ilEv= · for lEv = pcEv ↓
i

From (ii.2) and (ii.4),

(ii.5) G ends in lookup-notR

From (II.1) and (ii.5),

(ii.6) G′ :: pcEv , r ⊢ Σ2,E
′ { ks2

From (1), (II.5), and (ii.6), and the IH on F ′ and G′,

ks1 = ks2

Case III: F ends in lookup-R-emp

The proofs for lookup-T-emp and lookup-RT-emp are similar

By assumption, ks1 = ks2 = ·
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□

Lemma 29. If Σ1 ≈cl Σ2, with pcEv , t ⊢ Σ1,E { ks1, pcEv , t ⊢ Σ2,E { ks2 and pcEv ↓
c⊑ l E = transparent(Σ1, _, pc) = transparent(Σ2, _, pc)

then ks1 = ks2
Proof (sketch): The proof is by induction on the structure of F :: pcEv , t ⊢ Σ1,E { ks1 and G :: pcEv , t ⊢ Σ2,E { ks2, similar to Lemma 28.

□

Lemma 30 (Strong One-step – Downgrade). If K1 ≈
p
l K2, T1 = P,D, E ⊢ K1

αl,1
=⇒ K ′

1
with T1 ↓

p
l = τ = down(_) and prog(K2), with

releaseT(K2,τ , l ) if p = c , and sanitizeT(K2,τ , l ) if p = i , then ∃K ′
2
,T2 s.t. T2 = P,D, E ⊢ K2 =⇒

∗ K ′
2
with T1 ≈

p
l T2 and K ′

1
≈
p
l K ′

2

Proof.

Denote F :: P,D, E ⊢ K1

αl,1
=⇒ K ′

1

Without loss of generality, assume that p = c (the proof for p = i is similar)

By assumption,

(1) K1 ≈
p
l K2

(2) T1 ↓
p
l = τ = down(_)

(3) prog(K2)
(4) releaseT(K2,τ , l )

From (1),

(5) R1 = R2
(6) S1 = S2

(7) Σ1 ≈
p
l Σ2

From (2),

(8) F ends in In-DE

From (4), ∃KC ,K
′
2
s.t.

(9) T2 = P,D, E ⊢ K2 =⇒
∗ KC

αl,2
=⇒ K ′

2
with

(10) consumer(KC )
(11) (P,D, E ⊢ K2 =⇒

∗ KC ) ↓
p
l = ·

(12) T2 ↓
p
l = down(...)

From (11) and Lemma 10,

(13) K2 ≈
p
l KC

From (13) and (5)-(7),

(14) R1 = RC
(15) S1 = SC
(16) Σ1 ≈

p
l ΣC

From (2), (10), and (12),

(17) F ends in In-DE

From (17),

(18) αl,1 = (id.Ev (v ), pc)
(19) P (id.Ev (v )) = pc′

(20) Σ1 (pc) = (_,σEH )

(21) σEH (id) ↓i⊑ pc ↓i

(22) σEH (id) ↓c⊑ pc ↓c

(23) E1 = ((id.Ev (v ), pc′′) | pc ⊔ pc′ ⊑ pc′′)
(24) Σ1,E1 { ks′′

1

(25) downgradeD (R1, Σ1,αl,1, pc′) = (R ′
1
,Ed,1)

(26) pc, r ⊢ Σ1,Ed,1 { ksd,1
(27) downgradeE (S1, Σ1,αl,1, pc

′) = (S′
1
,Ee,1)

(28) pc, t ⊢ Σ1,Ee,1 { kse,1
(29) downgradeD,E (R1, Σ1,αl,1, pc

′) = Em,1

(30) pc, rt ⊢ Σ1,Em,1 { ksm,1

(31) Σ′
1
= Σ1

(32) ks′
1
= ks′′

1
:: ksd,1 :: kse,1 :: ksm,1

From (25) and the definition of downgradeD
(33) R1 = (ρd,1,dd,1)
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(34) E ′d,1 = ((id.Ev (v ), (lc , li )) | pc ↓c⊑ lc ⊏ pc′ ↓c ∧li = pc ↓i ⊔pc′ ↓i )
(35) D ((id.Ev (v ), pc), pc′, ρd,1) = (ρ ′d,1,vd,1,E

′′
d,1)

(36) d ′d,1 = update(dd,1,vd,1)
(37) R ′

1
= (ρ ′d,1,d

′
d,1)

(38) Ed,1 = robust(Σ1,E ′d,1 :: E
′′
d,1, pc)

From (27) and the definition of downgradeE
(39) S1 = (ρe,1,de,1)
(40) E ′e,1 = ((id.Ev (v ), (lc , li )) | pc ↓i⊑ li ⊏ pc′ ↓i ∧lc = pc ↓c ⊔pc′ ↓c )
(41) E ((id.Ev (v ), pc), pc′, ρe,1) = (ρ ′e,1,ve,1,E

′′
e,1)

(42) d ′e,1 = update(de,1,ve,1)
(43) S′

1
= (ρ ′e,1,d

′
e,1)

(44) Ee,1 = transparent(Σ1,E ′e,1 :: E
′′
e,1, pc)

From (29) and the definition of downgradeD,E ,
(45) Em,1 = mergeEvents(E ′d,1 :: E

′′
d,1,E

′
e,1 :: E

′′
e,1)

Denote G :: P, E, E ⊢ KC =⇒ K ′
2

From (2),

(46) τ = down(id.Ev (v ),τrls,τsntz,1,Em,1, pc)
From (46),

(47) G ends in In-DE with input αl,2 = id.Ev (v ), producing trace
T2 = P,D, E ⊢ K2 =⇒

∗ K ′
2

Want to show T1 ≈
p
l T2 and K

′
1
≈
p
l K ′

2

From (47) and (19),

(48) P (id.Ev (v )) = pc′

From (47) and (48),

(49) E2 = ((id.Ev (v ), pc′′) | pc ⊔ pc′ ⊑ pc′′)
(50) ΣC ,E2 { ks′′

2

(51) downgradeD (RC , ΣC ,αl,2, pc′) = (R ′
2
,Ed,2)

(52) pc, r ⊢ ΣC ,Ed,2 { ksd,2
(53) downgradeE (SC , ΣC ,αl,2, pc

′) = (S′
2
,Ee,2)

(54) pc, t ⊢ ΣC ,Ee,2 { kse,2
(55) downgradeD,E (RC , ΣC ,αl,2, pc

′) = Em,2

(56) pc, rt ⊢ ΣC ,Em,2 { ksm,2

(57) Σ′
2
= ΣC

(58) ks′
2
= ks′′

2
:: ksd,2 :: kse,2 :: ksm,2

From (51) and the definition of downgradeD ,
(59) RC = (ρd,C ,dd,C )
(60) E ′d,2 = ((id.Ev (v ), (lc , li )) | pc ↓c⊑ lc ⊏ pc′ ↓c ∧li = pc ↓i ⊔pc′ ↓i )
(61) D ((id.Ev (v ), pc), pc′, ρd,C ) = (ρ ′d,2,vd,2,E

′′
d,2)

(62) d ′d,2 = update(dd,C ,vd,2)
(63) R ′

2
= (ρ ′d,2,d

′
d,2)

(64) Ed,2 = robust(ΣC ,E ′d,2 :: E
′′
d,2, pc)

From (53) and the definition of downgradeE ,
(65) SC = (ρe,C ,de,C )
(66) E ′e,2 = ((id.Ev (v ), (lc , li )) | pc ↓i⊑ li ⊏ pc′ ↓i ∧lc = pc ↓c ⊔pc′ ↓c )
(67) E ((id.Ev (v ), pc), pc′, ρe,C ) = (ρ ′e,2,ve,2,E

′′
e,2)

(68) d ′e,2 = update(de,C ,ve,2)
(69) S′

2
= (ρ ′e,2,d

′
e,2)

(70) Ee,2 = transparent(ΣC ,E ′e,2 :: E
′′
e,2, pc)

From (55) and the definition of downgradeD,E ,
(71) Em,2 = mergeEvents(E ′d,2 :: E

′′
d,2,E

′
e,2 :: E

′′
e,2)

From (46), (4), and (12),

(72) T2 ↓
p
l = down(id.Ev (v ),τrls, _,Em,1, pc)

From (46) and the definition of trDowngrade,
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(73) pc ↓p⊑ l

(74) ksm,1 ↓
p
l , ·

From (14), (15), (33), (39), (59), and (65),

(75) (ρd,1,dd,1) = (ρd,C ,dd,C )
(76) (ρe,1,de,1) = (ρe,C ,de,C )

Case I: pc ↓p⊑ l
By assumption and from (16),

(I.1) Σ1 (pc) = ΣC (pc)
From (75), (35), and (61),

(I.2) (ρ ′d,1,vd,1,E
′′
d,1) = (ρ ′d,2,vd,2,E

′′
d,2)

From (75), (I.2), (36), and (62),

(I.3) d ′d,1 = d
′
d,2

From (I.2), (I.3), (37), and (63),

(I.4) R ′
1
= R ′

2

From (76), (41), and (67),

(I.5) (ρ ′e,1,ve,1,E
′′
e,1) = (ρ ′e,2,ve,2,E

′′
e,2)

From (76), (I.5), (42), and (68),

(I.6) d ′e,1 = d
′
e,2

From (I.5), (I.6), (43), and (69),

(I.7) S′
1
= S′

2

From (16), (31), and (57),

(I.8) Σ′
1
≈
p
l Σ′

2

From (23) and (49),

(I.9) E1 = E2
From (16), (I.9), (24), (50), and Lemma 19,

(I.10) ks′′
1
≈
p
l ks′′

2

From (46) and (72),

(I.11) Ed,1 ↓
p
l = Ed,2 ↓

p
l or ksd,1 ↓

p
l = ksd,2 ↓

p
l = ·

From (16), (I.11), (26), (52), and Lemma 20,

(I.12) ksd,1 ≈
p
l ksd,2

From (40) and (66),

(I.13) E ′e,1 = E ′e,2
From (I.1), (I.5), (I.13), (44), and (70),

(I.14) Ee,1 = Ee,2
From (I.1), (I.14), (28), and (54),

(I.15) kse,1 = kse,2
From (46) and (72),

(I.16) Em,1 ↓
p
l = Em,2 ↓

p
l

From (16), (I.16), (30), (56), and Lemma 20,

(I.17) ksm,1 ≈
p
l ksm,2

From (32), (58), (I.10), (I.12), (I.15), and (I.17),

(I.18) ks′
1
≈
p
l ks′

2

From (46), (72), (I.5), and (I.15),

T1 ≈
p
l T2

From (I.4), (I.7), (I.8), and (I.18),

K ′
1
≈
p
l K ′

2

Case II:pc ↓p@ l
From (75), (35), and (61),

(II.1) (ρ ′d,1,vd,1,E
′′
d,1) = (ρ ′d,2,vd,2,E

′′
d,2)

From (75), (II.1), (36), and (62),

(II.2) d ′d,1 = d
′
d,2

From (II.1), (II.2), (37), and (63),
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(II.3) R ′
1
= R ′

2

From (76), (41), and (67),

(II.4) (ρ ′e,1,ve,1,E
′′
e,1) = (ρ ′e,2,ve,2,E

′′
e,2)

From (76), (II.4), (42), and (68),

(II.5) d ′e,1 = d
′
e,2

From (II.4), (II.5), (43), and (69),

(II.6) S′
1
= S′

2

From (16), (31), and (57),

(II.7) Σ′
1
≈
p
l Σ′

2

From (23) and (49),

(II.8) E1 = E2
From (16), (II.8), (24), (50), and Lemma 19,

(II.9) ks′′
1
≈
p
l ks′′

2

From (46) and (72),

(II.10) Ed,1 ↓
p
l = Ed,2 ↓

p
l or ksd,1 ↓

p
l = ksd,2 ↓

p
l = ·

From (16), (II.10), (26), (52), and Lemma 20,

(II.11) ksd,1 ≈
p
l ksd,2

By assumption and from (41), (67), p = c , and since E will only change lc to be more secret,

(II.12) E ′′e,1 ↓
p
l = E ′′e,2 ↓

p
l = ·

By assumption and from (40), (66), and p = c ,

(II.13) Ee,1′ ↓
p
l = E ′e,2 ↓

p
l = ·

From (II.12), (II.13), (44), (70), and the definition of transparent,
(II.14) Ee,1 ↓

p
l = Ee,1 ↓

p
l = ·

From (28), (54), (II.14), and Lemma 21,

(II.15) kse,1 ↓
p
l = kse,2 ↓

p
l = ·

From (46) and (72),

(II.16) Em,1 ↓
p
l = Em,2 ↓

p
l

From (16), (II.16), (30), (56), and Lemma 20,

(II.17) ksm,1 ≈
p
l ksm,2

From (32), (58), (II.9), (II.11), (II.15), and (II.17),

(II.18) ks′
1
≈
p
l ks′

2

By assumption and from (46), (72), p = c , and the definition of trTransparent,
T1 ≈

p
l T2

From (II.3), (II.6), (II.9), and (II.18),

K ′
1
≈
p
l K ′

2

□
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