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Abstract. As Rust’s popularity increases, the need for ensuring cor-
rectness properties of software written in Rust also increases. In recent
years, much work has been done to develop tools to analyze Rust pro-
grams, including Property-Based Testing (PBT), model checking, and
verification tools. However, developers still need to specify the proper-
ties that need to be analyzed and write test harnesses to perform the
analysis. We observe that one kind of correctness properties that has
been overlooked is correctness invariants of Rust trait implementations;
for instance, implementations of the equality trait need to be reflexive,
symmetric, and transitive. In this paper, we develop a fully automated
tool that allows developers to analyze their implementations of a set of
built-in Rust traits. We encoded the test harnesses for the correctness
properties of these traits and use Kani to verify them. We evaluated
our tool over six open-source Rust libraries and identified three issues in
PROST!, a protocol buffer library with nearly 40 million downloads.
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1 Introduction

The Rust programming language [17] has been steadily increasing in popularity
for projects requiring a high level of precision and performance. Rust is used in
the Linux Kernel [10,25], Dropbox’s file-syncing engine [13], Discord [12], several
Amazon Web Services (AWS) projects including S3, EC2, and Lambda [19],
and many other high-profile projects. Rust has gained such wide adoption, in
large part, due to its memory safety guarantees. However, Rust developers must
still perform additional testing or verification to ensure functional correctness
properties, specific to their code.

To help programmers analyze Rust programs, several tools are being devel-
oped [8,11,14,16,18]. For instance, proptest [23], a popular Property-Based
Testing (PBT) [20] tool for Rust, is used in over 1500 crates according to
crates.io [2]. There are several formal verification tools for Rust [1], including
concurrency checkers and dynamic symbolic executors [3,5,6].

However, one road block preventing more Rust developers from using these
tools is that they need to write test or verification harnesses for each of the
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properties that they want to analyze. This is particularly problematic for Rust
developers without a formal methods background, or for those who do not wish
to spend time creating these tests. Therefore, exploring avenues for lowering
developers’ burden and automating the specification and analysis of correctness
properties of Rust programs can be beneficial towards making Rust software
more correct and secure. For instance, prior work has explored automatically
converting existing test harnesses that developers wrote for proptest to harnesses
that Kani, a model checker for Rust can use [22]. As a result, developers can
verify their code using Kani without additional manual effort.

In this paper, we identify further areas where Rust developers can bene-
fit from automated code verification. We observe that one kind of correctness
properties that has been overlooked is correctness invariants of Rust trait imple-
mentations; for instance, a function implementing the equality trait for objects of
a particular type must be transitive, symmetric, and reflexive. Rust traits, sim-
ilar to interfaces in other languages, support shared functionality across types.
Like equality, some Rust traits have invariants that are not checked by Rust’s
type-checker, and are thus left to the programmers to implement correctly.

We develop TraitInv to verify Rust trait invariants, as an addition to the
Kani VS Code Extension [4]. TraitInv, like PBT, is based on the idea that
certain properties of the output of specific methods must exist, regardless of
the input. We identify invariants of commonly-used traits and create modular
harnesses that can be inserted into a user’s code with little intervention. Once
inserted, these harnesses are verified by Kani. The harnesses themselves can be
used by proptest by replacing symbolic value generators with random ones.

We evaluate TraitInv on 42 trait implementations from six libraries from
crates.io [2]. The evaluation results show that TraitInv can create Kani test-
ing harnesses on a wide variety of libraries over many traits. To answer the
question of whether developers need their trait implementations verified for cor-
rectness invariants, we then use Kani to verify all the created harnesses. We
discovered three issues in one trait implementation in PROST!, a popular and
heavily tested Rust library with 40 million downloads. The tool is open source
at https://github.com/binarynewts/kani-vscode-extension.

The rest of this paper is organized as follows. In Sect. 2, we review Rust traits
and Kani and discuss related work. Then we describe specific traits and their
invariants that TraitInv supports in Sect. 3. Next, we present the implementa-
tion and evaluation results in Sect. 4. Limitations of TraitInv and future work
are discussed in Sect. 5.

2 Background and Related Work

In this section, we first discuss Rust traits, then provide the background of Kani,
the Rust model checker that our tool is built on; we then discuss related tools.

https://github.com/binarynewts/kani-vscode-extension
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2.1 Rust Traits

Rust traits define shared behavior abstractly, and are used like interfaces in other
languages. Traits allow for the same methods to be called on many different types
with a shared expected behavior.

For example, the PartialOrd trait allows for a partial order to be instantiated
for a custom type, and the Ord trait can be used to implement a total order.
PartialOrd requires the following partial comparison method:

partial cmp(&self, other: &Rhs) -> Option<Ordering>.

This method takes two objects and returns a Some constructor of the proper
Ordering type (>, <, or =) if they can be compared and a None constructor
otherwise. The total order trait, Ord, requires the following method, which takes
two objects, compares them, and returns an object of the Ordering type:

cmp(&self, other: &Self) -> Ordering.

Some basic Rust trait implementations can be derived automatically by the
compiler. However, traits that require more complex behavior need to be user-
defined. Listed below is an example user-defined implementation of a PartialOrd
and Ord, taken from crypto-bigint/src/limb/cmp.rs, lines 93–116.

1 impl Ord for Limb {
2 fn cmp(&self, other: &Self) -> Ordering {
3 let mut n = 0i8;
4 n -= self.ct_lt(other).unwrap_u8() as i8;
5 n += self.ct_gt(other).unwrap_u8() as i8;
6

7 match n {
8 -1 => Ordering::Less,
9 1 => Ordering::Greater,

10 _ => {
11 debug_assert_eq!(n, 0);
12 debug_assert!(bool::from(self.ct_eq(other)));
13 Ordering::Equal
14 }
15 }
16 }
17 }
18

19 impl PartialOrd for Limb {
20 #[inline]

21 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
22 Some(self.cmp(other))
23 }
24 }
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Rust traits have properties that the programmer must enforce on their imple-
mentation. For example, partial cmp needs to be transitive.

2.2 Kani

The Kani Rust Verifier [24] uses bit-precise model checking and is built on top
of CBMC [15]. Kani has been used to verify components of s2n-quic [21], an
AWS-developed cryptographic library, and several popular Rust crates [22].

Kani harnesses analyze properties that should be maintained within code.
For example, we may want to check that a function that takes in a u64 and is
supposed to return an even integer actually meets this return specification. To do
this, we could write the following Kani harness, where the function return even
is called and the assert statement checks that the result is even.

1 #[kani::proof]

2 fn from_test() {
3 let num: u64 = kani::any();
4 assert!(return_even(num)
5 }

Kani is able to provide formal guarantees by symbolically executing the har-
ness, allowing it to analyze properties checked by the harness for every possible
input. In order for Kani to be able to generate symbolic inputs of a type, the
type must implement the kani::Arbitrary trait. The Kani developers have
implemented this trait for most primitive types and some types in the stan-
dard library. If the objects are enumeration or structure types whose fields
implement kani::Arbitrary, it can be derived by placing #[cfg attr(kani,
derive(kani::Arbitrary))] above the type declaration. If not, the Kani user
will need to implement kani::Arbitrary. This trait contains only the method
any() -> Self, which takes no argument and returns a value of the type that
kani::Arbitrary implements (Self). There are limitations on types that Kani
can efficiently generate symbolic inputs for, which we detail in Sect. 5.

2.3 Related Work

propproof [22] is a tool that converts existing PBT harnesses into Kani har-
nesses so that they can be formally verified. TraitInv implements Kani harnesses
and can be combined with propproof to verify trait invariants and application-
specific invariants of Rust programs.

Erdin developed a tool for verifying user-defined correctness properties of
Rust programs, including trait invariants like ours [9]. Unlike TraitInv, which
automatically generates test harnesses based on trait names, their tool requires
user-provided annotations to generate test harnesses. It uses Prusti [7], a Rust
verifier based on the Viper verification infrastructure.
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3 Verifying Rust Trait Invariants

We explain how programmers can use TraitInv to analyze their trait imple-
mentations and explain its capabilities.

3.1 Workflow for Verifying Trait Invariants

After launching the Kani VS Code Extension with TraitInv, Rust programmers
can easily add Kani testing harnesses. To use this tool, one must navigate to the
code file, highlight the line with their trait implementation declaration, bring up
the Command Palette, and select “Add Trait Test”. Upon selecting this option,
the tool generates the applicable Kani testing harness and inserts it directly
above the implementation line.

3.2 Harnesses for Trait Invariants

We implemented harnesses for invariants of frequently used traits within the Rust
standard library. Next, we describe all the supported traits and their invariants.
From/Into: Rust allows for conversion of values of a source type to values of
a (different) target type using the From and Into traits. In the following code,
we convert from a u8 array of length 12 to a custom type, ObjectId, a struct
with an id field of type length 12 u8 array. We do this by simply returning an
ObjectId instance, populating its id parameter with the array passed in.

1 struct ObjectId {
2 id: [u8; 12],
3 }
4

5 impl From<[u8; 12]> for ObjectId {
6 fn from(bytes: [u8; 12]) -> ObjectId {
7 Self { id: bytes }
8 }
9 }

The only requirement for such a conversion is that it does not panic (e.g.
unwrapping None or dividing by 0). Therefore, the harness consists of code that
first instantiates a symbolic input of the source type to be converted, and then
calls the from method to create an instance of the target type from the value.
Kani will report any panic behavior. Below, we provide an example of a Kani
test harness for the above implementation of From.
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1 #[kani::proof]

2 fn from_test() {
3 let t: [u8; 12] = kani::any();
4 let _ = ObjectId::from(t);
5 }

PartialEq/Eq: Rust types that implement the PartialEq trait allow a partial
equality relation between objects of those types. PartialEq can be implemented
for one type or across two types (e.g., comparing i32 and u32).

To implement this trait, the user must implement the following method:

eq(&self, other: &Rhs) -> bool

This method takes two objects and returns a boolean stating whether or not
these two objects are equal. This method is allowed to throw errors, and states
that the two objects are not comparable in this instance. This distinction allows
for instances like floating point numbers, where we do not want anything to
equal NaN, including NaN.

PartialEq must obey transitivity, symmetry, and be consistent between not
equal and the negation of equality. If this trait is implemented between two
types, all PartialEq properties must hold across any combination of types.

The equality trait, Eq, must obey the rules of PartialEq, but additionally
requires reflexivity and totality. It can only compare instances of the same type.

Below, we include an example of a TraitInv-generated Kani harness for
properties of PartialEq implemented on the type MyType, a placeholder type
for illustrative purposes. Comments point out what each assertion checks for.

1 #[kani::proof]

2 fn partialeq_test() {
3 let a: MyType = kani::any();
4 let b: MyType = kani::any();
5 let c: MyType = kani::any();
6 if a == b { assert!(b == a); } // symmetry

7 if (a == b) && (b == c) { assert!(a == c); } //

transitivity↪→

8 if a != b { assert!(!(a == b)); } // ne eq consistency

9 if !(a == b) { assert!(a != b); } // eq ne consistency

10 }

Note that we do not need to add a test for symmetry by swapping a and b,
since they are of the same type, and this case will be tested regardless.
PartialOrd/Ord: As shown in Sect. 2, Rust has a partial order trait called
PartialOrd, which requires a method

partial cmp(&self, other: &Rhs) -> Option<Ordering>.
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This method takes two objects and, if they can be compared, returns the Some
constructor of the proper Ordering type, or else returns the None constructor.
This method must be consistent with the following infix comparators: <, >, ==. By
consistent, we mean that two objects can be compared with one of the operators
if and only if invoking the partial cmp method on those two objects yields
the Some constructor of the same Ordering type. Additionally, >= and <= must
expand in the natural way. All of these requirements, other than consistency with
==, are ensured by the default implementation of the four methods describing less
than (or equal to) and greater than (or equal to). However, the programmer may
choose to override these default implementations, in which case conformance is
not guaranteed and must be checked.

PartialOrd requires transitivity between <, >, and ==, as well as consis-
tency between not equal and the negation of equality. Since PartialOrd is
required to be consistent with PartialEq, this last consistency is ensured.
Finally, PartialOrd requires duality: that a < b if and only if b > a.

The total order trait, Ord, requires a method

cmp(&self, other: &Self) -> Ordering,

which must be consistent with PartialOrd’s partial cmp. This consistency can
be broken when some traits are derived and others are implemented manually,
or if they are implemented manually in a way that is not future proof.
AsMut/AsRef: These traits provide an interface to define types that represent
static or mutable references of another type. For example, Vec<T> has an AsRef
implementation for [T] because static vector references are also slices. Both
AsRef and AsMut conversions have the same requirement as the From trait, in
that they must not crash during conversion.

4 Implementation and Evaluation

We implemented harnesses for the traits described in Sect. 3 as an addition to
the Kani VS Code Extension, automating the generation and insertion of these
harnesses. We evaluated TraitInv on Rust libraries to answer the following ques-
tions: can TraitInv enable efficient verification of trait invariants across different
traits, types, and libraries; and can TraitInv find bugs in trait implementations
in libraries.

4.1 Implementation

TraitInv is implemented as a fork of the Kani VS Code Extension. Including
this tool, the extension contains around 195K lines of typescript code, with
around 500 lines of typescript code added to original, containing the harness
encodings. Other than containing the encodings, this code reads the highlighted
line, strips it down to figure out what trait and types it must create a harness
for, creates the harness, and inserts it into the user’s code immediately above
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the highlighted line. The tool is launched along with the rest of the Kani VS
Code extension, enabling potential users to use the tool without installing any
tooling from outside the VS Code GUI.

4.2 Evaluation

Experiment Setup We ran our benchmarks on an Intel(R) Core(TM) i7-
7700HQ with 4 cores and 16GB of RAM running Ubuntu 20.04.5 LTS. We used
Kani Rust Verifier version 0.33.0 on CBMC version 5.88.1 with CaDiCaL.

Dataset. We pulled highly-downloaded Rust crates from the Rust community’s
crate registry, crates.io [2]. We looked for crates that contained some of the
implementations of the above traits and had at least several million downloads.
We created 42 harnesses across six libraries, and ran these harnesses with Kani.
The traits and libraries are summarized in Table 1. The Types column details the
types that the trait was implemented on or between, and may be slightly edited
from the original implementation line for ease of reading and comprehension.

For traits implemented on polymorphic types, we can only analyze concrete
instantiations of them. This is because Kani is bit-precise and needs concrete
types to know the memory layout of the values. We list the concrete instantia-
tions of the polymorphic types below.

Test 1. Since chrono::DateTime is parametric, we were only able to test it
on one possible timezone. We chose chrono::Utc, since the other options were
chrono::Local, which would lead to inconsistent testing based on where the
testing takes place geographically, and chrono::FixedOffset, which requires an
input to offset from UTC time, and is thus similar to simply using chrono::Utc.
These other options could potentially lead to bugs that choosing chrono::Utc
might not, which we did not test.

Tests 11, 12. Both of these tests create symbolic values of Checked<T>, which is
parametric, so we were only able to test it on one possible type. We chose U64, a
custom type from the crypto-bigint library similar to the standard u64, since
that was the only type that we found used with Checked in the entire library.

Tests 29, 34. These tests were for the StackVec<usize> type, so we were forced
to choose a usize to implement these tests for. Without choosing, Rust would
not know what size to allot for this, and would lead to an error.

Tests 39–42. Uint<usize> is generated in these tests, and takes in a usize. We
had to fix a usize to implement kani::Arbitrary for and test on, otherwise
the items would not have a fixed size and running Kani would lead to an error.



218 T. Byrnes et al.

Table 1. Harnesses used to evaluate effectiveness of synthesis. **chrono::DateTime<T:
chrono::TimeZone> for Bson.

Trait Library Types Time(s) Mem(GB)

1 From bson-rust * 11.55 0.120

2 From bson-rust u8 for BinarySubtype 2.80 0.046

3 From bson-rust BinarySubtype for u8 2.63 0.045

4 From bson-rust f32 for Bson 7.89 0.038

5 From bson-rust f64 for Bson 5.52 0.048

6 From bson-rust bool for Bson 4.54 0.048

7 From bson-rust i32 for Bson 3.87 0.048

8 From bson-rust i64 for Bson 4.76 0.048

9 From bson-rust Decimal128 for Bson 4.70 0.048

10 From bson-rust [u8; 12] for ObjectId 2.42 0.045

11 From crypto-bigint Checked<T> for CtOption<T> 0.74 0.029

12 From crypto-bigint Checked<T> for Option<T> 0.74 0.030

13 From crypto-bigint u8 for Limb 0.61 0.029

14 From crypto-bigint u16 for Limb 0.61 0.029

15 From crypto-bigint u32 for Limb 0.60 0.029

16 From crypto-bigint u64 for Limb 0.62 0.030

17 From crypto-bigint Limb for Word 0.70 0.029

18 From crypto-bigint Limb for WideWord 0.61 0.029

19 From proptest (usize, usize) for SizeRange 0.48 0.026

20 From proptest usize for SizeRange 0.46 0.026

21 From proptest f64 for Probability 0.50 0.026

22 From proptest Probability for f64 0.49 0.026

23 From prost Timestamp for DateTime 434.63 0.452

24 From prost DateTime for Timestamp 3.18 0.073

25 From prost EncodeError for std::io::Error 4.21 0.282

26 PartialEq crypto-bigint Limb 1.85 0.043

27 PartialEq rust-lexical f16 5.09 0.093

28 PartialEq rust-lexical bf16 0.67 0.022

29 PartialEq rust-lexical StackVec<usize> 5.13 0.112

30 PartialEq sharded-slab State 0.42 0.118

31 PartialEq sharded-slab DontDropMe 1.73 0.135

32 Eq crypto-bigint Limb 1.92 0.043

33 Eq prost Timestamp 1.58 0.207

34 Eq rust-lexical StackVec<usize> 8.14 0.158

35 PartialOrd crypto-bigint Limb 37.90 0.334

36 PartialOrd rust-lexical f16 56.84 0.446

37 PartialOrd rust-lexical bf16 5.69 0.064

38 Ord crypto-bigint Limb 28.75 0.226

39 AsRef crypto-bigint [Word; usize] for Uint<usize> 1.30 0.057

40 AsRef crypto-bigint [Limb] for Uint<usize> 1.23 0.056

41 AsMut crypto-bigint [Word; usize] for Uint<usize> 1.34 0.057

42 AsMut crypto-bigint [Limb] for Uint<usize> 1.32 0.057
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4.3 Results

We ran our 42 Kani test harnesses and collected the results into Table 1.

Performance of TraitInv. The last two columns of Table 1 document the
time spent verifying the given harness in seconds, and maximum memory usage
measured in gigabytes, respectively. Most of our tests were able to complete in
under ten seconds, many of them under one second. Though we had an outlier
at 434.64 s, none of the other tests took over a minute to complete. Each test
uses under 0.5 GB of memory, with only a little over a quarter of the tests using
over 0.1GB of memory. Thus, our tool has been shown to be efficient.

There is a notable disparity in time taken and memory used between tests
23 and 24. Though these From implementations are made to convert between
the same two types, they appear to take vastly different amounts of time to
verify. Conversion from Timestamp to DateTime takes over 400 s, by far the
longest amount of time on the table, while its counterpart, converting in the
other direction, takes only three seconds. This is due to the fact that the former
takes over 400 s to verify as correct, while its counterpart takes only three seconds
to terminate due to finding bugs. The same factor is responsible for the difference
in maximum memory usage between benchmarks 23 and 24.

Verification for tests 29 and 34 took a 5.13 and 8.14 s respectively, consid-
erably longer than those taking under a second. This is because these types
involved loops: Kani will indefinitely unroll loops unless a maximum loop bound
is obvious. Finding a maximum bound is very rare, and it is much more common
for Kani to get stuck attempting to unwind a loop. By telling Kani how far to
unwind, it is able to set an upper bound and try to verify from there. The lower
the bound, the more efficient Kani is, but when set too low Kani may not be
able to formally verify every case and will mark a failed check. The necessary
unwinding on these tests explain the relatively lengthy test time.

Bugs Identified. Using TraitInv, we identified three issues with benchmark
24, an implementation of the From trait that converts objects of PROST! ’s
DateTime type to objects of its Timestamp type. There is already a PBT harness
for this trait implementation, yet the errors had not been found. We followed
a responsible disclosure process in reporting the bug described in this paper,
reporting the bug on the PROST! GitHub issues page.

The from method that coverts from DateTime to Timestamp was imple-
mented by calling several different functions, including ones which convert the
number of years into seconds and the number of months into seconds. All of
the errors were found in the function converting the year into a number of
seconds. The problematic code from prost/prost-types/src/datetime.rs is
shown below. We leave out sections of the function with no problems, since the
full function is around 80 lines. Lines 2–3 set up some variables for the rest of
the function. Line 6 contains an early return for years 1900–2038, since these are
assumed to be seen more often and should thus be able to be computed more
quickly. Lines 10–11 set up more variables to be used in the code excluded on
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line 13. Finally, lines 15–19 do some ending computations and return the tuple
of the number of seconds and a boolean for whether or not it is a leap year.

1 pub(crate) fn year_to_seconds(year: i64) -> (i128, bool) {
2 let is_leap;
3 let year = year - 1900;
4

5 // Fast path for years 1900 - 2038.

6 if year as u64 <= 138 { ... }
7

8 ...
9

10 let mut cycles: i64 = (year - 100) / 400;
11 let mut rem: i64 = (year - 100)
12

13 ...
14

15 (
16 i128::from((year - 100) * 31_536_000) +

i128::from(leaps * 86400 + 946_684_800 + 86400),↪→

17 is_leap,
18 )
19 }

Next, we discuss the three bugs found.

Subtraction Overflow on Line 3. At line 3 in the above function, we see a
subtraction of 1900 from the year. There is no check to ensure that the year is
within a valid range, but the conversion must work for any year. For example,
when this function is called with the year i64::MIN + 1800, we will overflow.

Subtraction Overflow on Line 10. There is a similar error on line 10, where
no check is done to ensure that 100 can actually be subtracted from the current
value of the year. For example, we would overflow if we input the year i64::MIN
+ 1950, since we first reset this to 50 on line 3, then attempt to subtract 100
from it. Though line 11 also contains subtraction by 100 without a check, Kani
does not point this out, as it is the exact same issue. If the issue on line 10 were
fixed without also addressing the subtraction on line 11, Kani would point to
line 11 as an issue.

Multiplication Overflow on Line 16. The return value computation has
a multiplication overflow, which would yield an incorrect number of sec-
onds. Setting the year to a large negative number causes the multipli-
cation (year - 100) * 31 536 000 on line 16 to overflow. Kani returned
year=-6192467633871255600 as a concrete example that causes such an over-
flow.
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5 Limitations and Future Work

We have seen that we can implement some traits across two types. We may
wish to implement some traits across three or more types. We can do this by
implementing a trait across two types in one implementation, and two types in a
separate implementation with overlap. There are some traits which have special
invariants for this case. Both PartialEq and PartialOrd may be defined across
an arbitrary number of types, in which case transitivity must hold across types.
This invariant is not currently checked by TraitInv, as it looks at one imple-
mentation line at a time. There were no such instances of a trait implemented
across more than two types in the test set, so this is likely a rare occurrence.

Since TraitInv is built on top of Kani, it inherits all of Kani’s limitations.
Kani can derive some implementations of its Arbitrary trait, though it can-
not for many types, often leading to manual implementations. For instance,
programmers cannot implement kani::Arbitrary for types with unbounded
size, like strings and vectors. Kani can create inputs for the above types of
any size less than or equal to some bound with large verification time, and
is much more efficient when told to create objects of a specific size. Kani
also struggles to generate Arbitrary implementations for polymorphic types
like struct InnerArray<T, const N: usize>([T; N]);, which requires both
a type and size input in order to implement kani::Arbitrary; we cannot test
on all potential parameterizations. The standard workaround for a parametric
type is to pick a specific parameterization and implement kani::Arbitrary for
that type.

Improving generation in these cases would be extremely beneficial, increasing
modularity and decreasing the amount of time spent by users on formal verifi-
cation. Additionally, there are several performance issues with Kani, stopping
it from working on larger crates. We used our tool to create tests for the AWS
SDK for Rust, but Kani fails to verify these tests, despite their similarity to tests
that Kani has no trouble with in smaller libraries.

6 Conclusion

We introduced a fully automated harness synthesis tool as an extension to the
Kani VS Code Extension, allowing Rust programmers with no formal verification
expertise to ensure correctness of their Rust trait implementations. We enable
Rust programmers to generate Kani testing harnesses for their trait implementa-
tions at the click of a button, which can be checked by Kani and provide formal
verification that their trait implementations follow the necessary invariants. Our
evaluation shows that such harnesses can be used across a wide variety of Rust
libraries, and can identify issues in heavily tested real-world code.
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