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Round Robin is a widely used scheduling policy, used primarily because it is intuitively fair, splitting the 
resources evenly among the jobs. Little is known, however, of its fairness with respect to completion 
times for the jobs, which is typically measured using the �p-norm of the completion times of the jobs 
for small p.
This paper studies Round Robin’s performance for the �p -norm of the completion times when scheduling 
n preemptive jobs on a single machine, for all integral p ≥ 1. We show that if all jobs arrive at the same 
time Round Robin’s approximation ratio is exactly p

√
p + 1. When jobs arrive over time, we show that 

Round Robin’s competitive ratio is at most 4 for any p ≥ 1.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Round Robin (aka Equipartition or Processor Sharing) is one of 
the most popular scheduling algorithms in environments where 
multiple agents or jobs share a common resource, such as pro-
cessing power or bandwidth. It is used in a wide variety of en-
vironments, including operating systems [15], distributed storage 
systems [33], communication systems [34], and bandwidth allo-
cation in LAN [2] and mobile networks [27]. Round Robin (RR) 
assigns short time slices to the agents in equal portions and in 
circular order. These time slices are typically very short; as such 
one can alternatively characterize Round Robin scheduling as split-
ting the resource equally among all active jobs. As such, RR is 
instantaneously fair: it assigns all active agents an equal amount of 
the resource at any given moment. Other than meeting this intu-
itive definition of fairness, RR has other advantages, such as being 
starvation-free and incentivizing jobs to reveal their true size to 
the scheduler [13,29,24,4].

While RR is instantaneously fair, scheduling systems are typi-
cally also interested in meeting some Quality of Service (QoS) goal. 
One of the most common QoS metrics considered in operations 
research and industry is minimizing the average (or total) com-
pletion times [3,18,11,31]. Unfortunately, schedules that optimize 
QoS are typically extremely ‘unfair’, leading to undesirable effects 
such as job starvation [32]. To illustrate this, consider a dynamic 
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system using the shortest remaining processing time next (SRPT) 
algorithm, which is optimal for the average completion time met-
ric. Initially two jobs arrive, one of size 1 (meaning it takes one 
time period to complete) and one of size 2. At every time period 
thereafter, a job of size 1 arrives. It is easy to see that the job 
of size 2 will never be served. Therefore, many systems aim for a 
compromise between QoS and (some notion of) fairness.

The most common way to compromise between QoS and fair-
ness is to use �p-norm of the job completion, for small values of 
p; typically p = 2 or p = 3 [7,5,22]. WThis objective encourages 
minimizing the average completion time while also ensuring the 
completion times are balanced across the different jobs. When jobs 
arrive at the same time then it is folklore that the Shortest Job First 
(SJF) algorithm is optimal for the �p -norm of completion times for 
every p [19]. If jobs arrive over time, it is NP-Hard to minimize 
the �p-norm for any 2 ≤ p < ∞ [23]; Shortest Remaining Process-
ing Time (SRPT) is optimal for the L1-norm and First In First Out 
(FIFO) is optimal for the L∞-norm [23]. In fact, it is not difficult 
to verify that any non-idle scheduler (i.e., one that processes jobs 
whenever at least one job is in the system) is optimal for the L∞
norm.

While much is known about �p -norms (see the related litera-
ture), RR’s performance for these objectives is poorly understood. 
Given that RR is one of the most widely used algorithms for en-
suring fairness in practice, and that �p -norms are the most widely 
used criterion for guaranteeing a balance of fairness and QoS, it 
is important to understand how well the algorithm performs with 
respect to these objectives.

To our knowledge, the only prior work to study RR with re-
spect to �p-norms is [20], who consider the resource augmentation 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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model when jobs arrive over time, and focus on flow time. While 
they do not compute precise constants, their results imply a bound 
on the competitive ratio that is at least 40p2 for the �p-norm of 
completion times; i.e., that RR is roughly 160-competitive for the 
L2-norm and 360-competitive for the L3 norm.

1.1. Our results

This work studies Round Robin’s performance when scheduling 
n preemptive jobs on a single machine with respect to the �p -
norm of job completion times. When all jobs arrive concurrently, 
we show that RR is a p

√
p + 1-approximation algorithm for the �p-

norm of completion times for all integer p ≥ 1, and that this is 
tight. This implies that the approximation ratio of RR is exactly √

3 ≈ 1.73 for the L2-norm and 3
√

4 ≈ 1.59 for the L3-norm.
When jobs arrive over time, we show that RR is 4-competitive 

for the �p-norms of completion times, for all p ≥ 1, using a poten-
tial function argument. Our results show that RR’s instantaneous 
fairness guarantees do not come at a large cost with respect to the 
�p-norms of the completion times both when jobs arrive concur-
rently and over time.

1.2. Overview of technical contributions

The proof for the case where all jobs arrive together uses an 
inductive argument on the base of the norm. To the best of our 
knowledge, this is a new proof technique; we are unaware of simi-
lar inductive arguments in the literature. As Shortest Job First (SJF) 
is optimal for the �p -norm of completion times, p ≥ 1, it suffices 
to bound rrp(x)

sjfp(x) over all possible x, where x is a vector denot-

ing the set of jobs and their sizes and sjfp (x) and rrp (x) are the 
p-th power of the �p-norms of completion times for SJF and RR 
respectively for job set x. This ratio is non-convex, and difficult to 
optimize over. Instead, we consider the difference between rrp (x)
and rrp (y), where y is x minus the smallest job. We show that 
this difference can be represented as sums of the lesser norms of 
RR, i.e., rrp′ (·) : p′ < p. We then use induction on the base of the 
norm to show that differences in sjfp (x) and sjfp (y) can also be 
represented using the lesser norms of RR. Thus we can represent 
the ratio as a function of the lesser norms of RR. We then com-
pute the value for which this function is minimized. Coupled with 
an example giving a matching lower bound, we obtain our tight 
result. An artifact of this proof technique is that the results only 
hold for integral values of p. We conjecture that they hold for all 
real-valued p ≥ 1.

For the case where jobs arrive over time, we use a potential 
function proof that is a form of amortized analysis. The key of the 
proof is the design of the potential. Intuitively, we want an alge-
braic expression for the remaining cost of RR minus the cost of the 
optimal solution. To do so, we first write an expression that is the 
total remaining cost of RR’s �p -norm cost, including jobs that have 
not yet arrived. This is in contrast to many previous potential anal-
yses of scheduling algorithms, which do not include future jobs. By 
definition this potential has enough credit to pay for RR’s remain-
ing cost. But this potential is too large; we therefore replace each 
job size by the lag of the job. This is the remaining processing time 
of the job in the algorithm minus the remaining processing time 
of the job in the optimal solution. In this way, we can then relate 
RR to optimal algorithm though the potential function.

1.3. Related literature

The Lp-norm objective is well understood in multiple schedul-
ing environments. When jobs arrive at the same time, SRPT (which 
reduces to SJF when all jobs arrive simultaneously) is known to be 
21
optimal for all Lp -norms of completion time [19]. When jobs ar-
rive over time, the problem is NP-Hard for 2 ≤ p < ∞ and optimal 
algorithms exist for p ∈ {1, ∞} [23]. For uniformly related multi-
ple machines, [10] give a polynomial time approximation scheme 
for the L1 norm of weighted completion times, building upon 
work on identical machines [1]. A long line of research [14,8,9,16]
gives online algorithms that are constant competitive with a small 
amount of resource augmentation for minimizing the total flow 
time in multiple machine environments. Other metrics are popu-
lar in scheduling theory besides the norms of completion time and 
flow time; e.g., [26] and the references therein.

Due to its popularity as a scheduling algorithm, Round Robin’s 
performance has been extensively studied, e.g., [13,25], including 
several works specifically dedicated to its performance with re-
spect to the average completion time, e.g., [28,25,30]. We note that 
while it was previously known that RR is 2-competitive w.r.t. the
L1 norm (which is precisely the average completion time), we give 
a short proof for completeness, in the proof of Lemma 3.6.

As mentioned above, our work is most closely related to [20], 
which shows that RR is O (p/ε)-competitive for 0 < ε ≤ 1/10 us-
ing a processor 2p(1 + 10ε) times faster than optimal when the 
objective is minimizing total flow time. It is easy to verify using 
standard techniques and a known connection of flow time and 
completion time, that their bound implies a competitive ratio of 
at least 40p2 for the Lp-norm of completion times. We note that 
our techniques completely differ from those of [20]; they use a 
dual fitting analysis, while we use a potential function to obtain 
our bound for jobs that arrive over time.

A complementary line of work focuses on bounding the unfair-
ness of algorithms that perform well for total completion time, like 
SJF and SRPT [6,12]. These papers compare these algorithms to RR 
and demonstrate that these algorithms do not starve jobs much 
more than RR under certain conditions.

2. Preliminaries

There are n jobs, 1, . . . , n, to be scheduled preemptively on a 
single machine. Jobs arrive over time and each job i has a release 
date (arrival time) ri . We denote the size of job i by xi ; job i is 
completed once it is processed for xi (possibly nonconsecutive and 
infinitesimal) time units after its arrival. Let Ci be the completion 
time for job i. The objective we study is minimizing the �p -norm 
of the job completion times, 

(∑
i (Ci)

p)1/p , for p ≥ 1. Note that 
minimizing this value is identical to minimizing 

∑
i (Ci)

p ; we will 
focus on the latter, ignoring the p-th root for the analyses. In Sec-
tion 3, we only consider integer values of p; this is an artifact of 
our analysis. The results of Section 4 hold for all real-values p ≥ 1.

Our goal is to bound the approximation ratio of Round Robin 
with respect to the �p-norm of the completion time, where the 
approximation ratio of an algorithm is the ratio between the re-
sult obtained by the algorithm and the optimal value. That is, 
if O P T (x) is best possible result for input x and ALG(x) is the 
value of the algorithm on input x, we say that ALG is an α-
approximation algorithm if for all x, ALG(x) ≤ αO P T (x). We say 
that the approximation ratio is tight if in addition there is an in-
stance x such that ALG(x) = αO P T (x). We note that in Section 4, 
Round Robin is treated as an online algorithm, and the approxi-
mation ratio is given with respect to the optimal offline solution. 
Traditionally, the approximation ratio of online algorithms is re-
ferred to as the competitive ratio, and we adhere to this tradition.

We call jobs that have been released but are incomplete live. 
The Round Robin algorithm splits the processor evenly among all 
of live jobs in the system. Although in practice only one job is 
allocated to a (single core) processor at any time, we assume, as 
is standard in the literature on Round Robin scheduling, that all 
live jobs are allocated to the processor at the same time. More 



B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
precisely, we assume that when there are m live jobs, each live job 
receives a 1/m fraction of the processing power.

3. Jobs arrive concurrently

In this section we prove the approximation ratio for the �p -
norm of completion times of Round Robin when the jobs arrive 
concurrently. Our main result is the following.

Theorem 3.1. When scheduling jobs that arrive concurrently on a single 
machine, the approximation ratio of Round Robin with respect to the �p-
norm of completion times is p

√
p + 1 for all integer p ≥ 1, and this is 

tight.

To prove Theorem 3.1 we first need some notation. Let x =
{1, . . . , n} be a set of jobs, sorted so that x1 ≥ x2 ≥ · · · ≥ xn . Denote 
the set of the � largest jobs of x by x� = {1, . . . , �}. The completion 
time of job j when SJF is run on x� is Csjf(x j) = ∑�

i= j xi . For any 
p ≥ 1 and any 1 ≤ � ≤ n, define sjfp

(
x�

)
as follows:

sjfp

(
x�

)
=

�∑
j=1

Csjf(x j)
p =

�∑
j=1

⎛
⎝ �∑

i= j

xi

⎞
⎠p

. (1)

For RR, job j waits min{xi, x j} as a result of job i be-
ing in the system. That is, job j waits min{xi, x j} time while 
job i is being processed. The completion time for job j is 
Crr(x j) = ∑n

i=1 min{xi, x j}. Therefore Crr(x j) = ∑�
i= j+1 xi + jx j . 

Define rrp
(
x�

)
as follows:

rrp

(
x�

)
=

�∑
j=1

Crr(x j)
p =

�∑
j=1

⎛
⎝ �∑

i= j+1

xi + jx j

⎞
⎠p

. (2)

Shortest Job First (SJF) is optimal for the �p -norm of completion 
times, p ≥ 1. Note that rrp (x) and sjfp (x) are the pth power of 
the objectives of RR and SJF respectively for input x. Our goal is 
to bound rrp(x)

sjfp(x) over all possible x. We first show that sjfp

(
x�

) −
sjfp

(
x�−1

)
and rrp

(
x�

)− rrp
(
x�−1

)
can be characterized precisely 

in terms of their lesser norms.

Lemma 3.2. For any set of jobs x = {1, . . . , n}, any integer � such that 
1 ≤ � ≤ n and any integer p ≥ 1,

1. sjfp

(
x�

) − sjfp

(
x�−1

) = x�
p + ∑p−1

i=0

(p
i

)
x�

p−i
sjfi

(
x�−1

)
,

2. rrp
(
x�

) − rrp
(
x�−1

) = �p x�
p + ∑p−1

i=0

(p
i

)
x�

p−i
rri

(
x�−1

)
.

Proof. For job j, set ψ j = ∑�−1
i= j xi . Note that

• sjfp

(
x�−1

) = ∑�−1
j=1

(
ψ j

)p
,

• sjfp

(
x�

) = ∑�−1
j=1

(
ψ j + x�

)p + x�
p .

sjfp

(
x�

)
− sjfp

(
x�−1

)
=

�−1∑
j=1

(
ψ j + x�

)p + x�
p −

�−1∑
j=1

(
ψ j

)p (3)

= x�
p +

�−1∑
j=1

p∑
i=0

(
p

i

)(
ψ j

)i
x�

p−i

−
�−1∑(

ψ j
)p (4)
j=1
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= x�
p +

�−1∑
j=1

p−1∑
i=0

(
p

i

)(
ψ j

)i
x�

p−i

= x�
p +

p−1∑
i=0

(
p

i

)
x�

p−i
�−1∑
j=1

(
ψ j

)i (5)

= x�
p +

p−1∑
i=0

(
p

i

)
x�

p−i
sjfi

(
x�−1

)
, (6)

where (3) and (6) are by the definition of sjf, (4) uses the bino-
mial expansion of 

(
ψ j + x�

)
and (5) is by rearrangement of the 

summations.
Identical reasoning gives the result for rr, using Z j = ∑

i:i> j xi +
jx j , rrp

(
x�−1

) = ∑�−1
j=1

(
Z j

)p and rrp
(
x�

) = ∑�−1
j=1

(
Z j + x�

)p +
(�x�)

p . �
The characterization given in Lemma 3.2 is used as a building 

block in the proof of Lemma 3.6, which provides the upper bound 
needed for Theorem 3.1. Before proving Lemma 3.6, we need sev-
eral more technical results.

Lemma 3.3. For any � ≥ 1 and k ≥ 1,

arg min
x:|x|=�−1

�p + ∑p−1
i=0

(p
i

)
rri(x)

1 + ∑p−1
i=0

(p
i

)
rri(x)

i+1

= (1,1, . . . ,1).

Proof. Setting x = (1,1, . . . ,1︸ ︷︷ ︸
�−1 times

), gives rri(x) = (n − 1)i+1. Once 

again, set Z j = ∑
i:i> j xi + jx j . We show that

�p + ∑p−1
i=0

(p
i

)
(n − 1)i+1

1 + ∑p−1
i=0

(p
i

)
(n−1)i+1

i+1

≥ �p + ∑p−1
i=0

(p
i

)∑�−1
j=1(Z j)

i

1 + ∑p−1
i=0

(p
i

)∑�−1
j=1(Z j)

i

i+1

,

for any x = (x1, . . . , x�−1), where x is sorted non-increasing and 
x�−1 ≥ 1. Note that

�−1∑
j=1

(
Z j

)i ≥ (n − 1)i+1 (7)

for any i ≥ 0.
From (10), the above is equivalent to⎛

⎝�p +
p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎞
⎠

⎛
⎝1 + 1

p + 1

p−1∑
i=0

(
p + 1

i + 1

) �−1∑
j=1

(Z j)
i

⎞
⎠

≥
⎛
⎝�p +

p−1∑
i=0

(
p

i

)�−1∑
j=1

(Z j)
i

⎞
⎠

⎛
⎝1 + 1

p + 1

p−1∑
i=0

(
p + 1

i + 1

)
(n − 1)i+1

⎞
⎠

Multiplying by p + 1, and simplifying using (9), the above holds iff

�p
p−1∑
i=0

(
p + 1

i + 1

)⎛
⎝�−1∑

j=1

(Z j)
i − (n − 1)i+1

⎞
⎠

− (p + 1)

p−1∑
i=0

(
p

i

)⎛
⎝�−1∑

j=1

(Z j)
i − (n − 1)i+1

⎞
⎠

+
p−1∑
i=0

(
p

i

)
(n − 1)i+1

p−1∑
j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠
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−
p−1∑
i=0

(
p

i + 1

)
(n − 1)i+1

p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠ ≥ 0

The left hand of the inequality above is equivalent to

= (�p+1 − (n − 1)p+1)

p−1∑
j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− k
p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− �p

⎛
⎝p−1∑

i=0

(
p

i + 1

)
(n − 1)i+1 +

p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎞
⎠

+ (p + 1)

p−1∑
i=0

(
p

i

)
(n − 1)i+1

≥
p−1∑
i=0

(
p

i

)
(n − 1)i+1

p−1∑
j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− k
p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− (�p − k − 1)

⎛
⎝p−1∑

i=0

(
p

i

)
(n − 1)i+1

⎞
⎠ (8)

=
p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎛
⎝p−1∑

j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠− �p + p + 1

⎞
⎠

− k
p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

=
p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎛
⎝p−1∑

j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

−
p−1∑
i=0

(
p

i + 1

)
(n − 1)i+1

⎞
⎠

− k

⎛
⎝p−1∑

j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠ −

p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎞
⎠

≥ 0,

where (8) is due to (7). �
Lemma 3.4. The following hold for any k, j, � ≥ 0:(

p + 1

j + 1

)
=

(
p

j + 1

)
+

(
p

j

)
, (9)

1

j + 1

(
p

j

)
= 1

p + 1

(
p + 1

j + 1

)
, (10)

�p +
p−1∑
i=0

(
p

i

)
(� − 1)i+1 = �p+1 − (� − 1)p+1, (11)

p∑(
p + 1

i

)
(� − 1)i = �p+1 − (� − 1)p+1 − 1. (12)

Pro
Equ
foll

For
(� −

(� −

Lem

�p

1

Pro

�p

1

wh
to (

ore

Lem

rrp

Pro

x2 ≥

sjf1

The∑�
j

rec
{x1

sjf

wh
pot
are
loss
i=1

23
of. Equation (9) is the standard binomial coefficient equality; 
ation (10) is straightforward to verify; Equations (11) and (12)
ow from the equality �p = (� − 1 + 1)p = ∑p

i=0

(p
i

)
(� − 1)i . 

(11), note that 
∑p−1

i=0

(p
i

)
(� − 1)i+1 = (� − 1) 

∑p−1
i=0

(p
i

)
(� − 1)i =

1) 
(
�p − (� − 1)p

)
.

For (12), 
∑p

i=1

(p+1
i

)
(� −1)i = ∑p+1

i=0

(p+1
i

)
(� −1)i − (� −1)p+1 −

1)0 = (� − 1)p − (� − 1)p+1 − 1. �
ma 3.5. For any � ≥ 1, integral p ≥ 1 and x such that |x| = � − 1,

+ ∑p−1
i=0

(p
i

)
rri (x)

+ ∑p−1
i=0

(p
i

)
rri(x)

i+1

≤ p + 1.

of. We have that

+ ∑p−1
i=0

(p
i

)
rri

(
x�−1

)
+ ∑p−1

i=0

(p
i

)
rri

(
x�−1

)
i+1

≤ �p + ∑p−1
i=0

(p
i

)
(n − 1)i+1

1 + ∑p−1
i=0

(p
i

)
(n−1)i+1

i+1

(13)

= �p + ∑p−1
i=0

(p
i

)
(n − 1)i+1

1 + 1
p+1

∑p−1
i=0

(p+1
i+1

)
(n − 1)i+1

(14)

= �p+1 − (n − 1)p+1

1 + 1
p+1

(
�p+1 − (n − 1)p+1 − 1

)
(15)

≤ p + 1,

ere (13) is from Lemma 3.3, (14) is due to (10) and (15) is due 
11) and (12) in Lemma 3.4. �
We are now ready to prove the upper bound required for The-
m 3.1.

ma 3.6. For any x, and any integral p ≥ 1,

(x) ≤ (p + 1)sjfp (x) .

of. The proof is by induction on p.

Base case. Let p = 1 and let x be any set of � jobs, with x1 ≥
. . . ≥ x� . From (1),

(x) =
�∑

j=1

∑
i:i≥ j

xi =
�∑

j=1

jx j.

refore, using (2), rr1 (x) = ∑�
j=1

(∑
i:i> j xi + jx j

)
= ∑�

j=1
∑

i:i> j xi +
=1 jx j ≤ 2 

∑�
j=1 jx j = 2sjf1 (x).

Inductive step. Let x = {1, . . . , n} be an arbitrary set of jobs and 
all that the set of the � largest jobs of x is denoted by x� =
, . . . , x�}. We bound sjfp

(
x�

) − sjfp

(
x�−1

)
as follows:

p

(
x�

)
− sjfp

(
x�−1

)
= x�

p +
p−1∑
i=0

(
p

i

)
x�

p−i
sjfi

(
x�−1

)
(16)

≥ x�
p +

p−1∑
i=0

(
p

i

)
x�

p−i rri
(
x�−1

)
i + 1

, (17)

ere (16) is due to Lemma 3.2 and (17) uses the inductive hy-
hesis. As both sjf and rr scale identically when the job sizes 
 multiplied by a constant for any p, we can set x� = 1 without 
 of generality. We now bound the following ratio.
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rrp
(
x�

) − rrp
(
x�−1

)
sjfp

(
x�

) − sjfp

(
x�−1

) ≤ �p + ∑p−1
i=0

(p
i

)
rri

(
x�−1

)
1 + ∑p−1

i=0

(p
i

)
rri

(
x�−1

)
i+1

≤ p +1, (18)

where the first inequality is due to the second part of Lemma 3.2
and (17) and the second inequality is due to Lemma 3.5.

We bound the ratio rrp(x)
sjfp(x) as follows.

rrp (x)

sjfp (x)
= rrp

(
x1

) + ∑n
�=2

(
rrp

(
x�

) − rrp
(
x�−1

))
sjfp

(
x1

) + ∑n
�=2

(
sjfp

(
x�

) − sjfp

(
x�−1

))
≤ max

2≤�≤n

{
rrp

(
x�

) − rrp
(
x�−1

)
sjfp

(
x�

) − sjfp

(
x�−1

)
}

(19)

≤ p + 1,

where (19) is because rrp
(
x1

)
sjfp

(
x1

) = 1, and rrp(x)
sjfp(x) ≥ 1 for any x and any 

p ≥ 1; the last inequality follows from (18). �
We now give a lower bound that shows that the result of 

Lemma 3.6 is tight.

Lemma 3.7. For any integral p ≥ 1 and any ε > 0 there exists a set of 
jobs x such that rrp (x) ≥ (p + 1)sjfp (x) − ε .

Proof. The bound is obtained from the following simple example: 
let there be n identical jobs: x = {1, 2, . . . , n}, x1 = x2 = · · · = xn =
1. Then, rrp (x) = ∑n

j=1 np = np+1 and sjfp (x) = ∑n
j=1 jp .

From Faulhaber’s formula, 
∑n

j=1 jp = np+1

p+1 + O (np). Taking n →
∞ completes the proof. �

Theorem 3.1 follows from Lemmas 3.6 and 3.7.

4. Jobs arrive over time

In this section, we bound the Lp-norms of the completion times 
when jobs arrive over time. We prove the following theorem.

Theorem 4.1. Round Robin is 4-competitive for the Lp-norm of com-
pletion times when scheduling jobs that arrive over time on a single 
machine, for all integer p ≥ 1.

4.1. Slowing down the optimal scheduler

When bounding the cost of RR, we assume that the optimal 
scheduler’s processor is slowed down by a factor of s for s ≥ 1. In 
particular, we will assume that RR has a processor of speed s and 
the optimal scheduler is given a processor of speed one. (Note that 
this is the same as increasing the size of each job in the optimal 
scheduler by a factor s.) It is known that this adds a factor of at 
most s to the approximation ratio. For instance, this easily follows 
by extending a lemma in [17]. We state the result for complete-
ness.

Lemma 4.2 ([17]). For any p ≥ 1, the following holds. Let OPTσ denote 
the value of the Lp-norm of the completion times of the optimal algo-
rithm where the optimal algorithm can process σ jobs in each time step. 
Then for any s ≥ 1, OPT1 ≤ sOPTs .

4.2. The potential function framework

Fix p ≥ 1. For any scheduling algorithm A, we call the Lp -norm 
of the completion times A’s cost. Let OPT denote both the optimal 
scheduler as well as its cost, where the meaning will be clear from 
context.
24
Throughout this section, we will be focusing on bounded the 
pth power of the algorithm’s objective by the pth power of the 
optimal objective. Call this the pth power cost. Let OPT

p be the 
optimal objective cost to the pth power. We focus on bounding 
the derivative of RR’s p-power cost at each point in time. Let R(t)
be jobs that are still incomplete at time t under RR including those 
that have yet to arrive. Let dR R

dt = ∑
i∈R(t) p · t p−1 be the derivative 

in RR’s p-power cost at time t; each job that is incomplete con-
tributes p · t p−1 to the objective at time t . Notice that 

∫ ∞
t=0

dR R
dt dt =∫ ∞

t=0

∑
i∈R(t) p · t p−1dt = ∑

i∈[n] (Ci)
p is RR’s pth power cost. Here 

Ci is the completion time of i in the RR’s schedule. We define 
an analogous quantity for OPT. Let O (t) be the set of jobs that 
are incomplete in OPT at time t . Let dO

dt = ∑
i∈O (t) p · t p−1 be the 

derivative in OPT’s pth power cost at time t .
We will define a potential function � (t) that has the following 

properties. For details on potential function analysis in scheduling 
see [21].

1. � (0) = � (∞) = 0.
2. The function �(t) may be discontinuous, but at any such dis-

continuity the function does not increase. At all other times 
the function is continuous and differentiable.

3. There exists a c ≥ 1 such that for all continuous differentiable 
changes in � it is the case that dR R

dt + d�(t)
dt ≤ c dO

dt for every 
time t .

Let I be a collection of disjoint intervals in [0, ∞] such that the 
function is continuous and differentiable at all times in any inter-
val Ii = (bi, ei) ∈ I . Moreover, let T be the collection of time steps 
where the potential function is non-differentiable. Together T and 
I are required to partition all time. Let D be the total summation 
of the changes in the potential at times T where the potential is 
non-differentiable.

This will allow us to bound RR’s pth power cost as follows. 
Notice the first term is RR’s pth power cost.

∞∫
t=0

dR R

dt
dt =

∑
Ii∈I

ei∫
t=bi

dR R

dt
dt (20)

= D +
∑
Ii∈I

ei∫
t=bi

(
d�(t)

dt
+ dR R

dt

)
dt (21)

≤
∑
Ii∈I

ei∫
t=bi

c
dO

dt
dt =

∞∫
t=0

c
dO

dt
dt = c · OPT

p . (22)

Note that (21) follows because � (0) = � (∞) = 0. Inequality (22)
follows from the second and third properties of the potential func-
tion. In particular D ≤ 0 and dR R

dt + �(t)
dt ≤ c dO

dt for every time t . The 
integration is only over time steps where the function in contin-
uous. The function maybe discontinuous, but property (2) ensures 
that this will not increase the potential. Thus, the above proper-
ties of the potential function therefore allow us to bound RR’s pth 
power cost by OPT’s.

4.3. Potential function definition and analysis

Let xi(t) and xO
i (t) be the remaining processing time of job i in 

RR and OPT at time t , respectively, let at and aO
t be the number 

of live jobs (recall that a job is live if it has been released but is 
as yet incomplete), at time t in RR and OPT respectively, and let nt
and nO

t be the number of live jobs at time t as well as those that 
have yet to arrive in RR and OPT respectively. Note that these are 
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the jobs that contribute to the objective at time t . Let wt be the 
number of jobs that have yet to arrive at time t .

Let zi (t) = max{xi(t) − xO
i (t), 0} be the lag of job i. This is ‘how 

far behind’ RR is compared to OPT on job i. Let R(t) and O (t) be 
the set of jobs that have yet to be completed at time t under RR 
and OPT respectively. This includes jobs that have yet to arrive and 
by definition |R(t)| = nt and |O (t)| = nO

t .
We now define the potential. Let c > 0 be a constant and s ≥ 1

be the speed reduction of OPT’s processor.

�(t) :=
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p

−
∑

i∈R(t)

t p . (23)

Intuition Behind the Potential: Consider the first term in the po-
tential. This is an estimate of the remaining pth power cost of RR 
over OPT. Each z j (t) is how far RR has fallen behind the optimal 
on job j. The value of c

∑
j∈R(t) z j (t) is an estimate of the remain-

ing work that RR will need to do before completing a job i, which 
the optimal does not have to do in the future. Intuitively, this is 
the extra time a job will wait in RR versus the optimal.

At time t , a job in R(t) must have completion time greater 
than t . Thus, such a job has already contributed t p to the ob-
jective. The potential seeks to capture its remaining pth power 
cost that OPT will not pay, but RR will. This is estimated as (

t + c
∑

j∈R(t) z j (t)
)p − t p . We sum over all jobs to get an esti-

mate on the total pth power cost that RR may need to pay that 
the optimal will not.

4.4. Bounding the change in the potential

We begin by considering non-continuous changes in the poten-
tial.

Lemma 4.3. For non-continuous changes, which can only occur at the 
arrival and completion of jobs, the change in potential is non-positive.

Proof. Every job has a corresponding term in all three summations 
of (23) at time 0 by definition of R(t). The potential at time 0 is 
�(0) = 0. This is because at t = 0, zi (t) = 0 for all jobs i as no 
processing has been done by either algorithm.

When OPT completes a job it does not change the potential. 
Consider when RR completes job i at time t: zi (t) = 0 at this time. 
Thus, in the summation in first term for job j �= i, the inner sum-
mation does not change due to removing job i. When RR completes 
job i, terms are removed from the potential function for i both in 
the first outer summation and the second. The terms removed are (

t + c
∑

j∈R(t) z j (t)
)p − t p ≥ 0.

The inequality follows from the fact that z j (t) ≥ 0 for all jobs. 
As the terms removed are positive, the potential decreases. �

We look at continuous changes in the potential at points where 
the potential is differentiable. We compute the partial derivatives 
with respect to the change of time, OPT processing a job and RR 
processing a job. OPT chooses one job and works on it with unit 
speed. In the worst case, this is a job j in R(t) and z j(t) increases 
at the rate of a unit. This gives the following.

Lemma 4.4. At any time t, the partial derivative in the potential due to 

OPT processing a job is at most cp 
∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1
.

We now bound the change in the potential due to the change 
in time. Time changes both terms of � and there is no c in front 
of the first term. The second term in the change is exactly the 
increase in the algorithm’s objective at time t .
25
Lemma 4.5. At any time t, the partial derivative in the potential due 

to the change in time is at most p 
∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1 −
p 

∑
i∈R(t) t p−1 .

Next we bound potential change due to RR processing jobs.

Lemma 4.6. At any time t, the partial derivative in the potential due to 
RR processing jobs is at most −cp 

(∑
i∈R(t)\O (t)

s
at

)
× ∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1
.

Proof. Each z j (t) decreases at a rate of s
at

if j ∈ R(t) \ O (t). These 
are jobs that have arrived and OPT has completed so zi (t) is pos-
itive. RR processes each job at a rate of s

at
. It maybe the case that 

z j (t) decreases for a j ∈ R(t) ∩ O (t) that RR processes, but this 
will only decrease the potential more; we can therefore ignore this 
change in the potential. Thus the change is upper bounded by the 
expression in the lemma statement. �

Recall that dR R
dt and dO

dt are the increases in RR’s and OPT’s cost 
at time t respectively. We are now ready to bound the total change 
in the potential.

Lemma 4.7. Assuming that (s − 1) c ≥ 1 the total derivative in the 
potential summing over all continuous changes is at most − dR R

dt +
(1 + c)p−1 cs dO

dt .

Proof. Combining Lemmas 4.4, 4.5 and 4.6, we can bound the total 
change in potential as follows. Let L (t) be the jobs that have yet 
to arrive at time t and S (t) := (R(t) ∩ O (t)) \ L (t) be the jobs that 
have arrived and are incomplete for both RR and OPT at t .

cp
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

+ p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− p
∑

i∈R(t)

t p−1 − cp

⎛
⎝ ∑

i∈R(t)\O (t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

= (c + 1) p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− dR R

dt

− cp

⎛
⎝ ∑

i∈R(t)\O (t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

= (c + 1) p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− dR R

dt

− cp

⎛
⎝ ∑

i∈R(t)\L(t)

s

at
−

∑
i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

= (c + 1) p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− dR R

dt

− cp

⎛
⎝s −

∑
i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

. (24)
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We now use the assumption that (s − 1) c ≥ 1, specifically that 

cps ≥ (c + 1)p. As 
∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1
> 0, (24) is at 

most: − dR R
dt + cp 

(∑
i∈S(t)

s
at

)∑
i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1∑
j∈R(t) z j (t) ≤ t because this is at most the total work that RR 

fell behind OPT and OPT has a unit processor. Thus it can process 
at most t work during [0, t]. Thus, the prior term is upper bounded 
by the following. Recall that wt is the number of jobs yet to arrive.

− dR R

dt
+ cp

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

((1 + c) t)p−1

= −dR R

dt
+ (1 + c)p−1 cp

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

t p−1

= −dR R

dt
+ (1 + c)p−1 cpt p−1

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠nt

= −dR R

dt
+ (1 + c)p−1 cpt p−1

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠(

wt + at

)
(25)

= −dR R

dt
+ (1 + c)p−1 cpt p−1s

(
aO∩R R

t

at

)(
wt + at

)
= −dR R

dt
+ (1 + c)p−1 cpt p−1s

(
aO∩R R

t wt

at
+ aO∩R R

t at

at

)

≤ −dR R

dt
+ (1 + c)p−1 cpt p−1s

(
wt + aO∩R R

t

)
≤ −dR R

dt
+ (1 + c)p−1 cpt p−1snO

t

= −dR R

dt
+ (1 + c)p−1 cs

dO

dt
,

where (25) is because nt = wt + at by definition. �
We now have all the building blocks for the proof of Theo-

rem 4.1.

Proof of Theorem 4.1. The potential function is clearly 0 at times 
0 and ∞. Lemmas 4.3 and 4.7 complete the proof of the potential 
function framework. Overall this proves that RR with processing 
speed s times faster than OPT is p

√
cs (1 + c)p−1-competitive for 

the Lp-norm, p ≥ 1. Finally, using Lemma 4.2, we conclude that 
RR is s p

√
cs (1 + c)p−1-competitive when given the same speed as 

OPT. Setting s = 2 and c = 1 gives that RR is 2 p
√

2 · (2)p−1 = 4-
competitive. �
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