
Operations Research Letters 50 (2022) 20–27

Contents lists available at ScienceDirect

Operations Research Letters

www.elsevier.com/locate/orl

The efficiency-fairness balance of Round Robin scheduling

Benjamin Moseley a, Shai Vardi b,∗
a Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
b Krannert School of Management, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 April 2021
Received in revised form 20 September
2021
Accepted 7 November 2021
Available online 16 November 2021

Keywords:
Scheduling
Completion time
Potential function
Lk-norms

Round Robin is a widely used scheduling policy, used primarily because it is intuitively fair, splitting the
resources evenly among the jobs. Little is known, however, of its fairness with respect to completion
times for the jobs, which is typically measured using the �p-norm of the completion times of the jobs
for small p.
This paper studies Round Robin’s performance for the �p -norm of the completion times when scheduling
n preemptive jobs on a single machine, for all integral p ≥ 1. We show that if all jobs arrive at the same
time Round Robin’s approximation ratio is exactly p

√
p + 1. When jobs arrive over time, we show that

Round Robin’s competitive ratio is at most 4 for any p ≥ 1.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Round Robin (aka Equipartition or Processor Sharing) is one of
the most popular scheduling algorithms in environments where
multiple agents or jobs share a common resource, such as pro-
cessing power or bandwidth. It is used in a wide variety of en-
vironments, including operating systems [15], distributed storage
systems [33], communication systems [34], and bandwidth allo-
cation in LAN [2] and mobile networks [27]. Round Robin (RR)
assigns short time slices to the agents in equal portions and in
circular order. These time slices are typically very short; as such
one can alternatively characterize Round Robin scheduling as split-
ting the resource equally among all active jobs. As such, RR is
instantaneously fair: it assigns all active agents an equal amount of
the resource at any given moment. Other than meeting this intu-
itive definition of fairness, RR has other advantages, such as being
starvation-free and incentivizing jobs to reveal their true size to
the scheduler [13,29,24,4].

While RR is instantaneously fair, scheduling systems are typi-
cally also interested in meeting some Quality of Service (QoS) goal.
One of the most common QoS metrics considered in operations
research and industry is minimizing the average (or total) com-
pletion times [3,18,11,31]. Unfortunately, schedules that optimize
QoS are typically extremely ‘unfair’, leading to undesirable effects
such as job starvation [32]. To illustrate this, consider a dynamic

* Corresponding author.
E-mail addresses: moseleyb@andrew.cmu.edu (B. Moseley), svardi@purdue.edu

(S. Vardi).
https://doi.org/10.1016/j.orl.2021.11.008
0167-6377/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
system using the shortest remaining processing time next (SRPT)
algorithm, which is optimal for the average completion time met-
ric. Initially two jobs arrive, one of size 1 (meaning it takes one
time period to complete) and one of size 2. At every time period
thereafter, a job of size 1 arrives. It is easy to see that the job
of size 2 will never be served. Therefore, many systems aim for a
compromise between QoS and (some notion of) fairness.

The most common way to compromise between QoS and fair-
ness is to use �p-norm of the job completion, for small values of
p; typically p = 2 or p = 3 [7,5,22]. WThis objective encourages
minimizing the average completion time while also ensuring the
completion times are balanced across the different jobs. When jobs
arrive at the same time then it is folklore that the Shortest Job First
(SJF) algorithm is optimal for the �p -norm of completion times for
every p [19]. If jobs arrive over time, it is NP-Hard to minimize
the �p-norm for any 2 ≤ p < ∞ [23]; Shortest Remaining Process-
ing Time (SRPT) is optimal for the L1-norm and First In First Out
(FIFO) is optimal for the L∞-norm [23]. In fact, it is not difficult
to verify that any non-idle scheduler (i.e., one that processes jobs
whenever at least one job is in the system) is optimal for the L∞
norm.

While much is known about �p -norms (see the related litera-
ture), RR’s performance for these objectives is poorly understood.
Given that RR is one of the most widely used algorithms for en-
suring fairness in practice, and that �p -norms are the most widely
used criterion for guaranteeing a balance of fairness and QoS, it
is important to understand how well the algorithm performs with
respect to these objectives.

To our knowledge, the only prior work to study RR with re-
spect to �p-norms is [20], who consider the resource augmentation
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.orl.2021.11.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2021.11.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:moseleyb@andrew.cmu.edu
mailto:svardi@purdue.edu
https://doi.org/10.1016/j.orl.2021.11.008
http://creativecommons.org/licenses/by/4.0/

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
model when jobs arrive over time, and focus on flow time. While
they do not compute precise constants, their results imply a bound
on the competitive ratio that is at least 40p2 for the �p-norm of
completion times; i.e., that RR is roughly 160-competitive for the
L2-norm and 360-competitive for the L3 norm.

1.1. Our results

This work studies Round Robin’s performance when scheduling
n preemptive jobs on a single machine with respect to the �p -
norm of job completion times. When all jobs arrive concurrently,
we show that RR is a p

√
p + 1-approximation algorithm for the �p-

norm of completion times for all integer p ≥ 1, and that this is
tight. This implies that the approximation ratio of RR is exactly √

3 ≈ 1.73 for the L2-norm and 3
√

4 ≈ 1.59 for the L3-norm.
When jobs arrive over time, we show that RR is 4-competitive

for the �p-norms of completion times, for all p ≥ 1, using a poten-
tial function argument. Our results show that RR’s instantaneous
fairness guarantees do not come at a large cost with respect to the
�p-norms of the completion times both when jobs arrive concur-
rently and over time.

1.2. Overview of technical contributions

The proof for the case where all jobs arrive together uses an
inductive argument on the base of the norm. To the best of our
knowledge, this is a new proof technique; we are unaware of simi-
lar inductive arguments in the literature. As Shortest Job First (SJF)
is optimal for the �p -norm of completion times, p ≥ 1, it suffices
to bound rrp(x)

sjfp(x) over all possible x, where x is a vector denot-

ing the set of jobs and their sizes and sjfp (x) and rrp (x) are the
p-th power of the �p-norms of completion times for SJF and RR
respectively for job set x. This ratio is non-convex, and difficult to
optimize over. Instead, we consider the difference between rrp (x)
and rrp (y), where y is x minus the smallest job. We show that
this difference can be represented as sums of the lesser norms of
RR, i.e., rrp′ (·) : p′ < p. We then use induction on the base of the
norm to show that differences in sjfp (x) and sjfp (y) can also be
represented using the lesser norms of RR. Thus we can represent
the ratio as a function of the lesser norms of RR. We then com-
pute the value for which this function is minimized. Coupled with
an example giving a matching lower bound, we obtain our tight
result. An artifact of this proof technique is that the results only
hold for integral values of p. We conjecture that they hold for all
real-valued p ≥ 1.

For the case where jobs arrive over time, we use a potential
function proof that is a form of amortized analysis. The key of the
proof is the design of the potential. Intuitively, we want an alge-
braic expression for the remaining cost of RR minus the cost of the
optimal solution. To do so, we first write an expression that is the
total remaining cost of RR’s �p -norm cost, including jobs that have
not yet arrived. This is in contrast to many previous potential anal-
yses of scheduling algorithms, which do not include future jobs. By
definition this potential has enough credit to pay for RR’s remain-
ing cost. But this potential is too large; we therefore replace each
job size by the lag of the job. This is the remaining processing time
of the job in the algorithm minus the remaining processing time
of the job in the optimal solution. In this way, we can then relate
RR to optimal algorithm though the potential function.

1.3. Related literature

The Lp-norm objective is well understood in multiple schedul-
ing environments. When jobs arrive at the same time, SRPT (which
reduces to SJF when all jobs arrive simultaneously) is known to be
21
optimal for all Lp -norms of completion time [19]. When jobs ar-
rive over time, the problem is NP-Hard for 2 ≤ p < ∞ and optimal
algorithms exist for p ∈ {1, ∞} [23]. For uniformly related multi-
ple machines, [10] give a polynomial time approximation scheme
for the L1 norm of weighted completion times, building upon
work on identical machines [1]. A long line of research [14,8,9,16]
gives online algorithms that are constant competitive with a small
amount of resource augmentation for minimizing the total flow
time in multiple machine environments. Other metrics are popu-
lar in scheduling theory besides the norms of completion time and
flow time; e.g., [26] and the references therein.

Due to its popularity as a scheduling algorithm, Round Robin’s
performance has been extensively studied, e.g., [13,25], including
several works specifically dedicated to its performance with re-
spect to the average completion time, e.g., [28,25,30]. We note that
while it was previously known that RR is 2-competitive w.r.t. the
L1 norm (which is precisely the average completion time), we give
a short proof for completeness, in the proof of Lemma 3.6.

As mentioned above, our work is most closely related to [20],
which shows that RR is O (p/ε)-competitive for 0 < ε ≤ 1/10 us-
ing a processor 2p(1 + 10ε) times faster than optimal when the
objective is minimizing total flow time. It is easy to verify using
standard techniques and a known connection of flow time and
completion time, that their bound implies a competitive ratio of
at least 40p2 for the Lp-norm of completion times. We note that
our techniques completely differ from those of [20]; they use a
dual fitting analysis, while we use a potential function to obtain
our bound for jobs that arrive over time.

A complementary line of work focuses on bounding the unfair-
ness of algorithms that perform well for total completion time, like
SJF and SRPT [6,12]. These papers compare these algorithms to RR
and demonstrate that these algorithms do not starve jobs much
more than RR under certain conditions.

2. Preliminaries

There are n jobs, 1, . . . , n, to be scheduled preemptively on a
single machine. Jobs arrive over time and each job i has a release
date (arrival time) ri . We denote the size of job i by xi ; job i is
completed once it is processed for xi (possibly nonconsecutive and
infinitesimal) time units after its arrival. Let Ci be the completion
time for job i. The objective we study is minimizing the �p -norm
of the job completion times,

(∑
i (Ci)

p)1/p , for p ≥ 1. Note that
minimizing this value is identical to minimizing

∑
i (Ci)

p ; we will
focus on the latter, ignoring the p-th root for the analyses. In Sec-
tion 3, we only consider integer values of p; this is an artifact of
our analysis. The results of Section 4 hold for all real-values p ≥ 1.

Our goal is to bound the approximation ratio of Round Robin
with respect to the �p-norm of the completion time, where the
approximation ratio of an algorithm is the ratio between the re-
sult obtained by the algorithm and the optimal value. That is,
if O P T (x) is best possible result for input x and ALG(x) is the
value of the algorithm on input x, we say that ALG is an α-
approximation algorithm if for all x, ALG(x) ≤ αO P T (x). We say
that the approximation ratio is tight if in addition there is an in-
stance x such that ALG(x) = αO P T (x). We note that in Section 4,
Round Robin is treated as an online algorithm, and the approxi-
mation ratio is given with respect to the optimal offline solution.
Traditionally, the approximation ratio of online algorithms is re-
ferred to as the competitive ratio, and we adhere to this tradition.

We call jobs that have been released but are incomplete live.
The Round Robin algorithm splits the processor evenly among all
of live jobs in the system. Although in practice only one job is
allocated to a (single core) processor at any time, we assume, as
is standard in the literature on Round Robin scheduling, that all
live jobs are allocated to the processor at the same time. More

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
precisely, we assume that when there are m live jobs, each live job
receives a 1/m fraction of the processing power.

3. Jobs arrive concurrently

In this section we prove the approximation ratio for the �p -
norm of completion times of Round Robin when the jobs arrive
concurrently. Our main result is the following.

Theorem 3.1. When scheduling jobs that arrive concurrently on a single
machine, the approximation ratio of Round Robin with respect to the �p-
norm of completion times is p

√
p + 1 for all integer p ≥ 1, and this is

tight.

To prove Theorem 3.1 we first need some notation. Let x =
{1, . . . , n} be a set of jobs, sorted so that x1 ≥ x2 ≥ · · · ≥ xn . Denote
the set of the � largest jobs of x by x� = {1, . . . , �}. The completion
time of job j when SJF is run on x� is Csjf(x j) = ∑�

i= j xi . For any
p ≥ 1 and any 1 ≤ � ≤ n, define sjfp

(
x�

)
as follows:

sjfp

(
x�

)
=

�∑
j=1

Csjf(x j)
p =

�∑
j=1

⎛
⎝ �∑

i= j

xi

⎞
⎠p

. (1)

For RR, job j waits min{xi, x j} as a result of job i be-
ing in the system. That is, job j waits min{xi, x j} time while
job i is being processed. The completion time for job j is
Crr(x j) = ∑n

i=1 min{xi, x j}. Therefore Crr(x j) = ∑�
i= j+1 xi + jx j .

Define rrp
(
x�

)
as follows:

rrp

(
x�

)
=

�∑
j=1

Crr(x j)
p =

�∑
j=1

⎛
⎝ �∑

i= j+1

xi + jx j

⎞
⎠p

. (2)

Shortest Job First (SJF) is optimal for the �p -norm of completion
times, p ≥ 1. Note that rrp (x) and sjfp (x) are the pth power of
the objectives of RR and SJF respectively for input x. Our goal is
to bound rrp(x)

sjfp(x) over all possible x. We first show that sjfp

(
x�

) −
sjfp

(
x�−1

)
and rrp

(
x�

)− rrp
(
x�−1

)
can be characterized precisely

in terms of their lesser norms.

Lemma 3.2. For any set of jobs x = {1, . . . , n}, any integer � such that
1 ≤ � ≤ n and any integer p ≥ 1,

1. sjfp

(
x�

) − sjfp

(
x�−1

) = x�
p + ∑p−1

i=0

(p
i

)
x�

p−i
sjfi

(
x�−1

)
,

2. rrp
(
x�

) − rrp
(
x�−1

) = �p x�
p + ∑p−1

i=0

(p
i

)
x�

p−i
rri

(
x�−1

)
.

Proof. For job j, set ψ j = ∑�−1
i= j xi . Note that

• sjfp

(
x�−1

) = ∑�−1
j=1

(
ψ j

)p
,

• sjfp

(
x�

) = ∑�−1
j=1

(
ψ j + x�

)p + x�
p .

sjfp

(
x�

)
− sjfp

(
x�−1

)
=

�−1∑
j=1

(
ψ j + x�

)p + x�
p −

�−1∑
j=1

(
ψ j

)p (3)

= x�
p +

�−1∑
j=1

p∑
i=0

(
p

i

)(
ψ j

)i
x�

p−i

−
�−1∑(

ψ j
)p (4)
j=1

22
= x�
p +

�−1∑
j=1

p−1∑
i=0

(
p

i

)(
ψ j

)i
x�

p−i

= x�
p +

p−1∑
i=0

(
p

i

)
x�

p−i
�−1∑
j=1

(
ψ j

)i (5)

= x�
p +

p−1∑
i=0

(
p

i

)
x�

p−i
sjfi

(
x�−1

)
, (6)

where (3) and (6) are by the definition of sjf, (4) uses the bino-
mial expansion of

(
ψ j + x�

)
and (5) is by rearrangement of the

summations.
Identical reasoning gives the result for rr, using Z j = ∑

i:i> j xi +
jx j , rrp

(
x�−1

) = ∑�−1
j=1

(
Z j

)p and rrp
(
x�

) = ∑�−1
j=1

(
Z j + x�

)p +
(�x�)

p . �
The characterization given in Lemma 3.2 is used as a building

block in the proof of Lemma 3.6, which provides the upper bound
needed for Theorem 3.1. Before proving Lemma 3.6, we need sev-
eral more technical results.

Lemma 3.3. For any � ≥ 1 and k ≥ 1,

arg min
x:|x|=�−1

�p + ∑p−1
i=0

(p
i

)
rri(x)

1 + ∑p−1
i=0

(p
i

)
rri(x)

i+1

= (1,1, . . . ,1).

Proof. Setting x = (1,1, . . . ,1︸ ︷︷ ︸
�−1 times

), gives rri(x) = (n − 1)i+1. Once

again, set Z j = ∑
i:i> j xi + jx j . We show that

�p + ∑p−1
i=0

(p
i

)
(n − 1)i+1

1 + ∑p−1
i=0

(p
i

)
(n−1)i+1

i+1

≥ �p + ∑p−1
i=0

(p
i

)∑�−1
j=1(Z j)

i

1 + ∑p−1
i=0

(p
i

)∑�−1
j=1(Z j)

i

i+1

,

for any x = (x1, . . . , x�−1), where x is sorted non-increasing and
x�−1 ≥ 1. Note that

�−1∑
j=1

(
Z j

)i ≥ (n − 1)i+1 (7)

for any i ≥ 0.
From (10), the above is equivalent to⎛

⎝�p +
p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎞
⎠

⎛
⎝1 + 1

p + 1

p−1∑
i=0

(
p + 1

i + 1

) �−1∑
j=1

(Z j)
i

⎞
⎠

≥
⎛
⎝�p +

p−1∑
i=0

(
p

i

)�−1∑
j=1

(Z j)
i

⎞
⎠

⎛
⎝1 + 1

p + 1

p−1∑
i=0

(
p + 1

i + 1

)
(n − 1)i+1

⎞
⎠

Multiplying by p + 1, and simplifying using (9), the above holds iff

�p
p−1∑
i=0

(
p + 1

i + 1

)⎛
⎝�−1∑

j=1

(Z j)
i − (n − 1)i+1

⎞
⎠

− (p + 1)

p−1∑
i=0

(
p

i

)⎛
⎝�−1∑

j=1

(Z j)
i − (n − 1)i+1

⎞
⎠

+
p−1∑
i=0

(
p

i

)
(n − 1)i+1

p−1∑
j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
−
p−1∑
i=0

(
p

i + 1

)
(n − 1)i+1

p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠ ≥ 0

The left hand of the inequality above is equivalent to

= (�p+1 − (n − 1)p+1)

p−1∑
j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− k
p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− �p

⎛
⎝p−1∑

i=0

(
p

i + 1

)
(n − 1)i+1 +

p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎞
⎠

+ (p + 1)

p−1∑
i=0

(
p

i

)
(n − 1)i+1

≥
p−1∑
i=0

(
p

i

)
(n − 1)i+1

p−1∑
j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− k
p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

− (�p − k − 1)

⎛
⎝p−1∑

i=0

(
p

i

)
(n − 1)i+1

⎞
⎠ (8)

=
p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎛
⎝p−1∑

j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠− �p + p + 1

⎞
⎠

− k
p−1∑
j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

=
p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎛
⎝p−1∑

j=0

(
p

j + 1

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠

−
p−1∑
i=0

(
p

i + 1

)
(n − 1)i+1

⎞
⎠

− k

⎛
⎝p−1∑

j=0

(
p

j

)⎛
⎝�−1∑

j=1

(Z j)
j

⎞
⎠ −

p−1∑
i=0

(
p

i

)
(n − 1)i+1

⎞
⎠

≥ 0,

where (8) is due to (7). �
Lemma 3.4. The following hold for any k, j, � ≥ 0:(

p + 1

j + 1

)
=

(
p

j + 1

)
+

(
p

j

)
, (9)

1

j + 1

(
p

j

)
= 1

p + 1

(
p + 1

j + 1

)
, (10)

�p +
p−1∑
i=0

(
p

i

)
(� − 1)i+1 = �p+1 − (� − 1)p+1, (11)

p∑(
p + 1

i

)
(� − 1)i = �p+1 − (� − 1)p+1 − 1. (12)

Pro
Equ
foll

For
(� −

(� −

Lem

�p

1

Pro

�p

1

wh
to (

ore

Lem

rrp

Pro

x2 ≥

sjf1

The∑�
j

rec
{x1

sjf

wh
pot
are
loss
i=1

23
of. Equation (9) is the standard binomial coefficient equality;
ation (10) is straightforward to verify; Equations (11) and (12)
ow from the equality �p = (� − 1 + 1)p = ∑p

i=0

(p
i

)
(� − 1)i .

(11), note that
∑p−1

i=0

(p
i

)
(� − 1)i+1 = (� − 1)

∑p−1
i=0

(p
i

)
(� − 1)i =

1)
(
�p − (� − 1)p

)
.

For (12),
∑p

i=1

(p+1
i

)
(� −1)i = ∑p+1

i=0

(p+1
i

)
(� −1)i − (� −1)p+1 −

1)0 = (� − 1)p − (� − 1)p+1 − 1. �
ma 3.5. For any � ≥ 1, integral p ≥ 1 and x such that |x| = � − 1,

+ ∑p−1
i=0

(p
i

)
rri (x)

+ ∑p−1
i=0

(p
i

)
rri(x)

i+1

≤ p + 1.

of. We have that

+ ∑p−1
i=0

(p
i

)
rri

(
x�−1

)
+ ∑p−1

i=0

(p
i

)
rri

(
x�−1

)
i+1

≤ �p + ∑p−1
i=0

(p
i

)
(n − 1)i+1

1 + ∑p−1
i=0

(p
i

)
(n−1)i+1

i+1

(13)

= �p + ∑p−1
i=0

(p
i

)
(n − 1)i+1

1 + 1
p+1

∑p−1
i=0

(p+1
i+1

)
(n − 1)i+1

(14)

= �p+1 − (n − 1)p+1

1 + 1
p+1

(
�p+1 − (n − 1)p+1 − 1

)
(15)

≤ p + 1,

ere (13) is from Lemma 3.3, (14) is due to (10) and (15) is due
11) and (12) in Lemma 3.4. �
We are now ready to prove the upper bound required for The-
m 3.1.

ma 3.6. For any x, and any integral p ≥ 1,

(x) ≤ (p + 1)sjfp (x) .

of. The proof is by induction on p.

Base case. Let p = 1 and let x be any set of � jobs, with x1 ≥
. . . ≥ x� . From (1),

(x) =
�∑

j=1

∑
i:i≥ j

xi =
�∑

j=1

jx j.

refore, using (2), rr1 (x) = ∑�
j=1

(∑
i:i> j xi + jx j

)
= ∑�

j=1
∑

i:i> j xi +
=1 jx j ≤ 2

∑�
j=1 jx j = 2sjf1 (x).

Inductive step. Let x = {1, . . . , n} be an arbitrary set of jobs and
all that the set of the � largest jobs of x is denoted by x� =
, . . . , x�}. We bound sjfp

(
x�

) − sjfp

(
x�−1

)
as follows:

p

(
x�

)
− sjfp

(
x�−1

)
= x�

p +
p−1∑
i=0

(
p

i

)
x�

p−i
sjfi

(
x�−1

)
(16)

≥ x�
p +

p−1∑
i=0

(
p

i

)
x�

p−i rri
(
x�−1

)
i + 1

, (17)

ere (16) is due to Lemma 3.2 and (17) uses the inductive hy-
hesis. As both sjf and rr scale identically when the job sizes
 multiplied by a constant for any p, we can set x� = 1 without
 of generality. We now bound the following ratio.

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
rrp
(
x�

) − rrp
(
x�−1

)
sjfp

(
x�

) − sjfp

(
x�−1

) ≤ �p + ∑p−1
i=0

(p
i

)
rri

(
x�−1

)
1 + ∑p−1

i=0

(p
i

)
rri

(
x�−1

)
i+1

≤ p +1, (18)

where the first inequality is due to the second part of Lemma 3.2
and (17) and the second inequality is due to Lemma 3.5.

We bound the ratio rrp(x)
sjfp(x) as follows.

rrp (x)

sjfp (x)
= rrp

(
x1

) + ∑n
�=2

(
rrp

(
x�

) − rrp
(
x�−1

))
sjfp

(
x1

) + ∑n
�=2

(
sjfp

(
x�

) − sjfp

(
x�−1

))
≤ max

2≤�≤n

{
rrp

(
x�

) − rrp
(
x�−1

)
sjfp

(
x�

) − sjfp

(
x�−1

)
}

(19)

≤ p + 1,

where (19) is because rrp
(
x1

)
sjfp

(
x1

) = 1, and rrp(x)
sjfp(x) ≥ 1 for any x and any

p ≥ 1; the last inequality follows from (18). �
We now give a lower bound that shows that the result of

Lemma 3.6 is tight.

Lemma 3.7. For any integral p ≥ 1 and any ε > 0 there exists a set of
jobs x such that rrp (x) ≥ (p + 1)sjfp (x) − ε .

Proof. The bound is obtained from the following simple example:
let there be n identical jobs: x = {1, 2, . . . , n}, x1 = x2 = · · · = xn =
1. Then, rrp (x) = ∑n

j=1 np = np+1 and sjfp (x) = ∑n
j=1 jp .

From Faulhaber’s formula,
∑n

j=1 jp = np+1

p+1 + O (np). Taking n →
∞ completes the proof. �

Theorem 3.1 follows from Lemmas 3.6 and 3.7.

4. Jobs arrive over time

In this section, we bound the Lp-norms of the completion times
when jobs arrive over time. We prove the following theorem.

Theorem 4.1. Round Robin is 4-competitive for the Lp-norm of com-
pletion times when scheduling jobs that arrive over time on a single
machine, for all integer p ≥ 1.

4.1. Slowing down the optimal scheduler

When bounding the cost of RR, we assume that the optimal
scheduler’s processor is slowed down by a factor of s for s ≥ 1. In
particular, we will assume that RR has a processor of speed s and
the optimal scheduler is given a processor of speed one. (Note that
this is the same as increasing the size of each job in the optimal
scheduler by a factor s.) It is known that this adds a factor of at
most s to the approximation ratio. For instance, this easily follows
by extending a lemma in [17]. We state the result for complete-
ness.

Lemma 4.2 ([17]). For any p ≥ 1, the following holds. Let OPTσ denote
the value of the Lp-norm of the completion times of the optimal algo-
rithm where the optimal algorithm can process σ jobs in each time step.
Then for any s ≥ 1, OPT1 ≤ sOPTs .

4.2. The potential function framework

Fix p ≥ 1. For any scheduling algorithm A, we call the Lp -norm
of the completion times A’s cost. Let OPT denote both the optimal
scheduler as well as its cost, where the meaning will be clear from
context.
24
Throughout this section, we will be focusing on bounded the
pth power of the algorithm’s objective by the pth power of the
optimal objective. Call this the pth power cost. Let OPT

p be the
optimal objective cost to the pth power. We focus on bounding
the derivative of RR’s p-power cost at each point in time. Let R(t)
be jobs that are still incomplete at time t under RR including those
that have yet to arrive. Let dR R

dt = ∑
i∈R(t) p · t p−1 be the derivative

in RR’s p-power cost at time t; each job that is incomplete con-
tributes p · t p−1 to the objective at time t . Notice that

∫ ∞
t=0

dR R
dt dt =∫ ∞

t=0

∑
i∈R(t) p · t p−1dt = ∑

i∈[n] (Ci)
p is RR’s pth power cost. Here

Ci is the completion time of i in the RR’s schedule. We define
an analogous quantity for OPT. Let O (t) be the set of jobs that
are incomplete in OPT at time t . Let dO

dt = ∑
i∈O (t) p · t p−1 be the

derivative in OPT’s pth power cost at time t .
We will define a potential function � (t) that has the following

properties. For details on potential function analysis in scheduling
see [21].

1. � (0) = � (∞) = 0.
2. The function �(t) may be discontinuous, but at any such dis-

continuity the function does not increase. At all other times
the function is continuous and differentiable.

3. There exists a c ≥ 1 such that for all continuous differentiable
changes in � it is the case that dR R

dt + d�(t)
dt ≤ c dO

dt for every
time t .

Let I be a collection of disjoint intervals in [0, ∞] such that the
function is continuous and differentiable at all times in any inter-
val Ii = (bi, ei) ∈ I . Moreover, let T be the collection of time steps
where the potential function is non-differentiable. Together T and
I are required to partition all time. Let D be the total summation
of the changes in the potential at times T where the potential is
non-differentiable.

This will allow us to bound RR’s pth power cost as follows.
Notice the first term is RR’s pth power cost.

∞∫
t=0

dR R

dt
dt =

∑
Ii∈I

ei∫
t=bi

dR R

dt
dt (20)

= D +
∑
Ii∈I

ei∫
t=bi

(
d�(t)

dt
+ dR R

dt

)
dt (21)

≤
∑
Ii∈I

ei∫
t=bi

c
dO

dt
dt =

∞∫
t=0

c
dO

dt
dt = c · OPT

p . (22)

Note that (21) follows because � (0) = � (∞) = 0. Inequality (22)
follows from the second and third properties of the potential func-
tion. In particular D ≤ 0 and dR R

dt + �(t)
dt ≤ c dO

dt for every time t . The
integration is only over time steps where the function in contin-
uous. The function maybe discontinuous, but property (2) ensures
that this will not increase the potential. Thus, the above proper-
ties of the potential function therefore allow us to bound RR’s pth
power cost by OPT’s.

4.3. Potential function definition and analysis

Let xi(t) and xO
i (t) be the remaining processing time of job i in

RR and OPT at time t , respectively, let at and aO
t be the number

of live jobs (recall that a job is live if it has been released but is
as yet incomplete), at time t in RR and OPT respectively, and let nt
and nO

t be the number of live jobs at time t as well as those that
have yet to arrive in RR and OPT respectively. Note that these are

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
the jobs that contribute to the objective at time t . Let wt be the
number of jobs that have yet to arrive at time t .

Let zi (t) = max{xi(t) − xO
i (t), 0} be the lag of job i. This is ‘how

far behind’ RR is compared to OPT on job i. Let R(t) and O (t) be
the set of jobs that have yet to be completed at time t under RR
and OPT respectively. This includes jobs that have yet to arrive and
by definition |R(t)| = nt and |O (t)| = nO

t .
We now define the potential. Let c > 0 be a constant and s ≥ 1

be the speed reduction of OPT’s processor.

�(t) :=
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p

−
∑

i∈R(t)

t p . (23)

Intuition Behind the Potential: Consider the first term in the po-
tential. This is an estimate of the remaining pth power cost of RR
over OPT. Each z j (t) is how far RR has fallen behind the optimal
on job j. The value of c

∑
j∈R(t) z j (t) is an estimate of the remain-

ing work that RR will need to do before completing a job i, which
the optimal does not have to do in the future. Intuitively, this is
the extra time a job will wait in RR versus the optimal.

At time t , a job in R(t) must have completion time greater
than t . Thus, such a job has already contributed t p to the ob-
jective. The potential seeks to capture its remaining pth power
cost that OPT will not pay, but RR will. This is estimated as (

t + c
∑

j∈R(t) z j (t)
)p − t p . We sum over all jobs to get an esti-

mate on the total pth power cost that RR may need to pay that
the optimal will not.

4.4. Bounding the change in the potential

We begin by considering non-continuous changes in the poten-
tial.

Lemma 4.3. For non-continuous changes, which can only occur at the
arrival and completion of jobs, the change in potential is non-positive.

Proof. Every job has a corresponding term in all three summations
of (23) at time 0 by definition of R(t). The potential at time 0 is
�(0) = 0. This is because at t = 0, zi (t) = 0 for all jobs i as no
processing has been done by either algorithm.

When OPT completes a job it does not change the potential.
Consider when RR completes job i at time t: zi (t) = 0 at this time.
Thus, in the summation in first term for job j �= i, the inner sum-
mation does not change due to removing job i. When RR completes
job i, terms are removed from the potential function for i both in
the first outer summation and the second. The terms removed are (

t + c
∑

j∈R(t) z j (t)
)p − t p ≥ 0.

The inequality follows from the fact that z j (t) ≥ 0 for all jobs.
As the terms removed are positive, the potential decreases. �

We look at continuous changes in the potential at points where
the potential is differentiable. We compute the partial derivatives
with respect to the change of time, OPT processing a job and RR
processing a job. OPT chooses one job and works on it with unit
speed. In the worst case, this is a job j in R(t) and z j(t) increases
at the rate of a unit. This gives the following.

Lemma 4.4. At any time t, the partial derivative in the potential due to

OPT processing a job is at most cp
∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1
.

We now bound the change in the potential due to the change
in time. Time changes both terms of � and there is no c in front
of the first term. The second term in the change is exactly the
increase in the algorithm’s objective at time t .
25
Lemma 4.5. At any time t, the partial derivative in the potential due

to the change in time is at most p
∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1 −
p

∑
i∈R(t) t p−1 .

Next we bound potential change due to RR processing jobs.

Lemma 4.6. At any time t, the partial derivative in the potential due to
RR processing jobs is at most −cp

(∑
i∈R(t)\O (t)

s
at

)
× ∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1
.

Proof. Each z j (t) decreases at a rate of s
at

if j ∈ R(t) \ O (t). These
are jobs that have arrived and OPT has completed so zi (t) is pos-
itive. RR processes each job at a rate of s

at
. It maybe the case that

z j (t) decreases for a j ∈ R(t) ∩ O (t) that RR processes, but this
will only decrease the potential more; we can therefore ignore this
change in the potential. Thus the change is upper bounded by the
expression in the lemma statement. �

Recall that dR R
dt and dO

dt are the increases in RR’s and OPT’s cost
at time t respectively. We are now ready to bound the total change
in the potential.

Lemma 4.7. Assuming that (s − 1) c ≥ 1 the total derivative in the
potential summing over all continuous changes is at most − dR R

dt +
(1 + c)p−1 cs dO

dt .

Proof. Combining Lemmas 4.4, 4.5 and 4.6, we can bound the total
change in potential as follows. Let L (t) be the jobs that have yet
to arrive at time t and S (t) := (R(t) ∩ O (t)) \ L (t) be the jobs that
have arrived and are incomplete for both RR and OPT at t .

cp
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

+ p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− p
∑

i∈R(t)

t p−1 − cp

⎛
⎝ ∑

i∈R(t)\O (t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

= (c + 1) p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− dR R

dt

− cp

⎛
⎝ ∑

i∈R(t)\O (t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

= (c + 1) p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− dR R

dt

− cp

⎛
⎝ ∑

i∈R(t)\L(t)

s

at
−

∑
i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

= (c + 1) p
∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

− dR R

dt

− cp

⎛
⎝s −

∑
i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

⎛
⎝t + c

∑
j∈R(t)

z j (t)

⎞
⎠p−1

. (24)

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
We now use the assumption that (s − 1) c ≥ 1, specifically that

cps ≥ (c + 1)p. As
∑

i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1
> 0, (24) is at

most: − dR R
dt + cp

(∑
i∈S(t)

s
at

)∑
i∈R(t)

(
t + c

∑
j∈R(t) z j (t)

)p−1∑
j∈R(t) z j (t) ≤ t because this is at most the total work that RR

fell behind OPT and OPT has a unit processor. Thus it can process
at most t work during [0, t]. Thus, the prior term is upper bounded
by the following. Recall that wt is the number of jobs yet to arrive.

− dR R

dt
+ cp

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

((1 + c) t)p−1

= −dR R

dt
+ (1 + c)p−1 cp

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠ ∑

i∈R(t)

t p−1

= −dR R

dt
+ (1 + c)p−1 cpt p−1

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠nt

= −dR R

dt
+ (1 + c)p−1 cpt p−1

⎛
⎝ ∑

i∈S(t)

s

at

⎞
⎠(

wt + at

)
(25)

= −dR R

dt
+ (1 + c)p−1 cpt p−1s

(
aO∩R R

t

at

)(
wt + at

)
= −dR R

dt
+ (1 + c)p−1 cpt p−1s

(
aO∩R R

t wt

at
+ aO∩R R

t at

at

)

≤ −dR R

dt
+ (1 + c)p−1 cpt p−1s

(
wt + aO∩R R

t

)
≤ −dR R

dt
+ (1 + c)p−1 cpt p−1snO

t

= −dR R

dt
+ (1 + c)p−1 cs

dO

dt
,

where (25) is because nt = wt + at by definition. �
We now have all the building blocks for the proof of Theo-

rem 4.1.

Proof of Theorem 4.1. The potential function is clearly 0 at times
0 and ∞. Lemmas 4.3 and 4.7 complete the proof of the potential
function framework. Overall this proves that RR with processing
speed s times faster than OPT is p

√
cs (1 + c)p−1-competitive for

the Lp-norm, p ≥ 1. Finally, using Lemma 4.2, we conclude that
RR is s p

√
cs (1 + c)p−1-competitive when given the same speed as

OPT. Setting s = 2 and c = 1 gives that RR is 2 p
√

2 · (2)p−1 = 4-
competitive. �
References

[1] Foto N. Afrati, Evripidis Bampis, Chandra Chekuri, David R. Karger, Claire
Kenyon, Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Martin Skutella,
Clifford Stein, Maxim Sviridenko, Approximation schemes for minimizing aver-
age weighted completion time with release dates, in: 40th Annual Symposium
on Foundations of Computer Science, FOCS ‘99, 17-18 October, 1999, New York,
NY, USA, 1999, pp. 32–44.

[2] Eitan Altman, Nahum Shimkin, Individual equilibrium and learning in proces-
sor sharing systems, Oper. Res. 46 (6) (1998) 776–784.

[3] Edward J. Anderson, Chris N. Potts, Online scheduling of a single machine
to minimize total weighted completion time, Math. Oper. Res. 29 (3) (2004)
686–697.

[4] Arash Asadi, Vincenzo Mancuso, A survey on opportunistic scheduling in wire-
less communications, IEEE Commun. Surv. Tutor. 15 (4) (2013) 1671–1688.

[5] Adi Avidor, Yossi Azar, Jirí Sgall, Ancient and new algorithms for load balancing
in the lp norm, in: Proceedings of the Ninth Annual ACM-SIAM Symposium on
26
Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA, 1998,
pp. 426–435.

[6] Nikhil Bansal, Mor Harchol-Balter, Analysis of SRPT scheduling: investigating
unfairness, in: Proceedings of the Joint International Conference on Measure-
ments and Modeling of Computer Systems, SIGMETRICS/Performance 2001,
June 16–20, 2001, Cambridge, MA, USA, 2001, pp. 279–290.

[7] Nikhil Bansal, Kirk Pruhs, Server scheduling in the weighted lp norm, in: LATIN
2004: Theoretical Informatics, 6th Latin American Symposium, Buenos Aires,
Argentina, April 5-8, 2004, in: Proceedings, 2004, pp. 434–443.

[8] Carl Bussema, Eric Torng, Greedy multiprocessor server scheduling, Oper. Res.
Lett. 34 (4) (2006) 451–458.

[9] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, Amit Kumar, Multi-processor
scheduling to minimize flow time with epsilon resource augmentation, in:
Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13–16, 2004, 2004, pp. 363–372.

[10] Chandra Chekuri, Sanjeev Khanna, A PTAS for minimizing weighted completion
time on uniformly related machines, in: Automata, Languages and Program-
ming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8–12,
2001, in: Proceedings, 2001, pp. 848–861.

[11] C. Chekuri, R. Motwani, B. Natarajan, C. Stein, Approximation techniques for
average completion time scheduling, SIAM J. Comput. 31 (2001) 146–166.

[12] Mark Crovella, Robert Frangioso, Mor Harchol-Balter, Connection scheduling in
web servers, in: 2nd USENIX Symposium on Internet Technologies and Sys-
tems, USITS’99, Boulder, Colorado, USA, October 11-14, 1999, 1999.

[13] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair queueing
algorithm, SIGCOMM Comput. Commun. Rev. 19 (4) (August 1989) 1–12.

[14] Jeff Edmonds, Sungjin Im, Benjamin Moseley, Online scalable scheduling for the
Lk-norms of flow time without conservation of work, in: Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011, 2011, pp. 109–119.

[15] H. Christian Gromoll, Philippe Robert, Bert Zwart, Fluid limits for processor-
sharing queues with impatience, Math. Oper. Res. 33 (2) (2008) 375–402.

[16] Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Online primal-dual
for non-linear optimization with applications to speed scaling, in: Approxi-
mation and Online Algorithms - 10th International Workshop, WAOA 2012,
Ljubljana, Slovenia, September 13-14, 2012, in: Revised Selected Papers, 2012,
pp. 173–186.

[17] Varun Gupta, Benjamin Moseley, Marc Uetz, Qiaomin Xie, Stochastic online
scheduling on unrelated machines, in: Integer Programming and Combinatorial
Optimization - 19th International Conference, IPCO 2017, Waterloo, oN, Canada,
June 26-28, 2017, in: Proceedings, 2017, pp. 228–240.

[18] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, Joel Wein, Scheduling to
minimize average completion time: off-line and on-line approximation algo-
rithms, Math. Oper. Res. 22 (3) (1997) 513–544.

[19] Wiebke Höhn, Tobias Jacobs, On the performance of Smith’s rule in single-
machine scheduling with nonlinear cost, ACM Trans. Algorithms 11 (4) (April
2015) 25:1–25:30.

[20] Sungjin Im, Janardhan KuLkarni, Benjamin Moseley, Temporal fairness of round
robin: competitive analysis for Lk -norms of flow time, in: Proceedings of the
27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA
2015, Portland, OR, USA, June 13–15, 2015, 2015, pp. 155–160.

[21] Sungjin Im, Benjamin Moseley, Kirk Pruhs, A tutorial on amortized local com-
petitiveness in online scheduling, SIGACT News 42 (2) (2011) 83–97.

[22] Michael M. Kostreva, Włodzimierz Ogryczak, Adam Wierzbicki, Equitable aggre-
gations and multiple criteria analysis, Eur. J. Oper. Res. 158 (2) (2004) 362–377.

[23] Benjamin Moseley, Kirk Pruhs, Cliff Stein, The complexity of scheduling for p-
norms of flow and stretch - (extended abstract), in: Integer Programming and
Combinatorial Optimization - 16th International Conference, IPCO 2013, Val-
paraíso, Chile, March 18–20, 2013, in: Proceedings, 2013, pp. 278–289.

[24] Hervé Moulin, Richard Stong, Fair queuing and other probabilistic allocation
methods, Math. Oper. Res. 27 (1) (2002) 1–30.

[25] T.M. O’Donovan, Direct solutions of M/G/1 processor-sharing models, Oper. Res.
22 (6) (1974) 1232–1235.

[26] Kirk Pruhs, Jirí Sgall, Eric Torng, Online scheduling, in: Joseph Y.-T. Leung
(Ed.), Handbook of Scheduling - Algorithms, Models, and Performance Anal-
ysis, Chapman and Hall/CRC, 2004.

[27] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield, Ian Pratt, Suman Baner-
jee Mar, A commuter router infrastructure for the mobile internet, in: Proceed-
ings of the Second International Conference on Mobile Systems, Applications,
and Services (MobiSys 2004), 01 2004.

[28] M. Sakata, S. Noguchi, J. Oizumi, An analysis of the M/G/1 queue under round-
robin scheduling, Oper. Res. 19 (2) (April 1971) 371–385.

[29] M. Shreedhar, George Varghese, Efficient fair queueing using deficit round-
robin, IEEE/ACM Trans. Netw. 4 (3) (1996) 375–385.

[30] Abraham Silberschatz, Peter Galvin, Greg Gagne, Applied Operating System
Concepts, 1st edition, John Wiley & Sons, Inc., New York, NY, USA, 2001.

[31] M. Skutella, G.J. Woeginger, A PTAS for minimizing the total weighted comple-
tion time on identical parallel machines, Math. Oper. Res. 25 (2000) 63–75.

[32] Andrew S. Tanenbaum, Operating Systems: Design and Implementation,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

http://refhub.elsevier.com/S0167-6377(21)00161-9/bibADF89134595F249B5E62D994DFC84171s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibADF89134595F249B5E62D994DFC84171s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibADF89134595F249B5E62D994DFC84171s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibADF89134595F249B5E62D994DFC84171s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibADF89134595F249B5E62D994DFC84171s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibADF89134595F249B5E62D994DFC84171s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib426E700D16EF1A793E479824A6F32C30s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib426E700D16EF1A793E479824A6F32C30s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibE1B30628C67665FAB1CB0BFEABF36839s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibE1B30628C67665FAB1CB0BFEABF36839s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibE1B30628C67665FAB1CB0BFEABF36839s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib7D4D6D1C5BC2267F7892958430D49A30s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib7D4D6D1C5BC2267F7892958430D49A30s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib17F009B5231F4477A2CD5FEA96EFBCD6s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib17F009B5231F4477A2CD5FEA96EFBCD6s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib17F009B5231F4477A2CD5FEA96EFBCD6s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib17F009B5231F4477A2CD5FEA96EFBCD6s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0488C23A3072C05199E28378D51B0F39s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0488C23A3072C05199E28378D51B0F39s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0488C23A3072C05199E28378D51B0F39s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0488C23A3072C05199E28378D51B0F39s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0523E22324AD54B22107CD535CEDCC56s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0523E22324AD54B22107CD535CEDCC56s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0523E22324AD54B22107CD535CEDCC56s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib4E3B19CF589191376A8890B2E33F08C9s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib4E3B19CF589191376A8890B2E33F08C9s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibCBDC49C4C0A8199C421F113E29EF4F8Ds1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibCBDC49C4C0A8199C421F113E29EF4F8Ds1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibCBDC49C4C0A8199C421F113E29EF4F8Ds1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibCBDC49C4C0A8199C421F113E29EF4F8Ds1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD1B0A9EA54D8F8E9D602803282CF45FCs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD1B0A9EA54D8F8E9D602803282CF45FCs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD1B0A9EA54D8F8E9D602803282CF45FCs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD1B0A9EA54D8F8E9D602803282CF45FCs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib64DA9815A24CDFE0BA870887577CC041s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib64DA9815A24CDFE0BA870887577CC041s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib81ECB647D1036D951994585E7359CE3Bs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib81ECB647D1036D951994585E7359CE3Bs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib81ECB647D1036D951994585E7359CE3Bs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0AAFA33479F97A71F35EC3AF1B63F716s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib0AAFA33479F97A71F35EC3AF1B63F716s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib765FA8EE3F840F33A2DD2E94A342AF13s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib765FA8EE3F840F33A2DD2E94A342AF13s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib765FA8EE3F840F33A2DD2E94A342AF13s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib765FA8EE3F840F33A2DD2E94A342AF13s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib5A77577B215E20F77E4EC2759F1640F0s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib5A77577B215E20F77E4EC2759F1640F0s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDF930342095520D3C121DC70DB193A20s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDF930342095520D3C121DC70DB193A20s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDF930342095520D3C121DC70DB193A20s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDF930342095520D3C121DC70DB193A20s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDF930342095520D3C121DC70DB193A20s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6C29AA3CF14AB872D6D205D8B7572C7As1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6C29AA3CF14AB872D6D205D8B7572C7As1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6C29AA3CF14AB872D6D205D8B7572C7As1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6C29AA3CF14AB872D6D205D8B7572C7As1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib75002FE48442A02A55971F48CEBBE3E4s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib75002FE48442A02A55971F48CEBBE3E4s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib75002FE48442A02A55971F48CEBBE3E4s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibA3E30CC919CAF705AF4440480FBE2CCFs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibA3E30CC919CAF705AF4440480FBE2CCFs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibA3E30CC919CAF705AF4440480FBE2CCFs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib67F23BF452DC5FE042BBA5B9FBD81E55s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib67F23BF452DC5FE042BBA5B9FBD81E55s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib67F23BF452DC5FE042BBA5B9FBD81E55s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib67F23BF452DC5FE042BBA5B9FBD81E55s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD07928E8BCAF9865FA0BDF259B880782s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD07928E8BCAF9865FA0BDF259B880782s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib45ADA168E8886B5628E97DD8ED391057s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib45ADA168E8886B5628E97DD8ED391057s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibC40389360CC29522556E2CB4147C5271s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibC40389360CC29522556E2CB4147C5271s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibC40389360CC29522556E2CB4147C5271s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibC40389360CC29522556E2CB4147C5271s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib5CFA988CCEE5D1E0D1038F6CCAE9BCA8s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib5CFA988CCEE5D1E0D1038F6CCAE9BCA8s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib15EE6AD0626EF5E5C931EF20FA8C82F1s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib15EE6AD0626EF5E5C931EF20FA8C82F1s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6D3BB58FCF090334A1BD0D8108BFF192s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6D3BB58FCF090334A1BD0D8108BFF192s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6D3BB58FCF090334A1BD0D8108BFF192s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6AB0461982F82FE5BC6C71E6FAEF45B3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6AB0461982F82FE5BC6C71E6FAEF45B3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6AB0461982F82FE5BC6C71E6FAEF45B3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib6AB0461982F82FE5BC6C71E6FAEF45B3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD9844008D0F036905AD57106935474FBs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibD9844008D0F036905AD57106935474FBs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDE43253DDD9070C9C13768A8FB102ADEs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibDE43253DDD9070C9C13768A8FB102ADEs1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib4F34927DFBED9F6425B40EF776942177s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib4F34927DFBED9F6425B40EF776942177s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib5C52936D66F6E2DA85A1859C099457D5s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib5C52936D66F6E2DA85A1859C099457D5s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibC1249362702672556BD8994BFE33513As1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibC1249362702672556BD8994BFE33513As1

B. Moseley and S. Vardi Operations Research Letters 50 (2022) 20–27
[33] Yin Wang, Arif Merchant, Proportional-share scheduling for distributed storage
systems, in: Proceedings of the 5th USENIX Conference on File and Storage
Technologies, FAST ‘07, USENIX Association, USA, 2007, p. 4.

[34] Jiheng Zhang, J.G. Dai, Bert Zwart, Law of large number limits of limited
processor-sharing queues, Math. Oper. Res. 34 (4) (2009) 937–970.
27

http://refhub.elsevier.com/S0167-6377(21)00161-9/bibE71F0182ED04206CB78BD7CEB2D9F4F3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibE71F0182ED04206CB78BD7CEB2D9F4F3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bibE71F0182ED04206CB78BD7CEB2D9F4F3s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib2447CA2BAA16ED2B54EFB926EFB9E4D9s1
http://refhub.elsevier.com/S0167-6377(21)00161-9/bib2447CA2BAA16ED2B54EFB926EFB9E4D9s1

	The efficiency-fairness balance of Round Robin scheduling
	1 Introduction
	1.1 Our results
	1.2 Overview of technical contributions
	1.3 Related literature

	2 Preliminaries
	3 Jobs arrive concurrently
	4 Jobs arrive over time
	4.1 Slowing down the optimal scheduler
	4.2 The potential function framework
	4.3 Potential function definition and analysis
	4.4 Bounding the change in the potential

	References

