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Dynamic Irreversibility

Many dynamic decisions involve:

o Irreversibility

o Uncertainty

Examples:
o R&D investments
o Capacity allocation

o Long auctions

These problems are often difficult to analyze

e Need for a tractable methodology
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Overview

Novel approach to solving dynamic problems with irreversibility
o Decomposing the problem into a dynamic part and a static part
o The dynamic part assigns an equivalent certain value (ECV)
o The static part, finds the optimal action given ECV

Characterization of properties and comparative statics of ECV

o ECV goes down if uncertainty goes up
o ECV goes up as we get closer to the deadline

e Show irreversibility is analogous to information loss

o Act as if you have worse information

Application to dynamic auction design



Outline

e Model
o Key Results

e Application to Dynamic Auctions



General Model Structure

Time: Continuous [0, T

e Decision times: Random 79, 74, ...

Actions: a, € A
o A: totally ordered set

o a, > a, for 7' > 7 (irreversible actions)

e ap: the final action

Final payoff: U(vr,ar)



Assumptions on Payoff Function

o U(v,a):
o Linear in v
o Supermodular in v and a
o Admits a maximum with respect to a for all v.
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Information Arrival and Decision Times

e Joint stochastic processes on [0, 7]

e Decision times: Stopping times {7,,(w)}, where 7,41 (w) > 7, (w)
o modeled as jumps of counting process {n(t,w)}

e Information arrival: Stochastic process o(t, w)
o Property: E(vr|o(t,w) =v) =v

o Filtration {F; }o<i<r represents available information

o increasing o-algebras on 2 with the property that 7 C Fiys C F.
o {F:} generated by {n(t,w),v(t,w)}

Assumption: {v,,7,} follows a joint Markov process, i.e.,
/ ! / /
P(vpy1 =0, 71 =7 Fr,) = P(vpg1 =V, Tng1 = 7' |V, Tn) -

= can identify decision nodes with pairs (v, 7,) corresponding to the
realized signal and time in the last arrival.



Information Arrival and Decision Times

e Decision times: exogenous

e However, the specification is still flexible
o Allows correlation between decision times and expected values
o Captures varying eagerness to revise strategy based on value

o Allows for nonstationary Markov process (more arrival rate closer to
deadline)



Decision Strategies and Optimal Choice

e Decision strategy s:

o Specifies action s(vn, T») at each decision node

Prevailing action at time ¢: a(s,t) = max{s(vp, 7n)|mn < t}

Final choice: a(s,T)

e S: Set of strategies satisfying these conditions

for each realized path w:
o value U (v (T,w),a(s,T,w)),
o where a (s,T,w) = sup{s (vn (W), 7n (W)) | < T}.

Optimal Decision Strategy:

sup EoU (v(T),a(s,T))
sesS



Examples of Dynamic Problems

Entry Decisions and Search

o Random entry opportunities or search offers

o Binary action space: A = {0, 1}

Bidding in Long Auctions

o Changing bidder values over time

o Increasing bids only
e Irreversible Investment
o Random investment opportunities

General Contest and Teamwork

o Effort exertion at random times, uncertain prize value or alternatives

Sequential Trading Commitments

o Random opportunities to sell future deliveries

Key Features: Random decision times, irreversibility, changing values
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Methodology

e Two step procedure:

1. Identify “equivalent certain values” (ECV)
- ECVs partition the state space into indifference classes
- Agent’s optimal action is the same for any point with the same ECV
- We define it implicitly by a recursive problem (dynamic)

2. Find corresponding optimal choices for ECV
- Optimal action if no future opportunities and your value is ECV
- This is a static problem
- The particular payoff function, U, is only used in this step
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Defining ECV

e Define ECV function: e(v,t)

e Self-generated expectation property:
e(v,t) = E(vr|w € H(e(v,t),v,1))

e Where H(e,v,t) is the set of ws where all future arrivals (if any)
have lower ECV



Defining ECV

e Define ECV function: e(v,t)

e Self-generated expectation property:
e(v,t) = E(vr|w € H(e(v,t),v,1))

e Where H(e,v,t) is the set of ws where all future arrivals (if any)
have lower ECV
o This is the set in which the action taken at t is going to be the final

action



Self-Generated Property of ECV

vol|---

H(e,v,t): set of ws where all future arrivals (if any) have lower ECV

-p. 14



Calculating ECVs

e Auxiliary functional equation given W (e, v,t):
(g,v,t) / min (W (g,2',7"),0)dP (v, 7’|v, t)
/ (o7 () = &)l (o], )
N(v,t)

e where N (v,t) denote the set of paths w € €2 such that there are no
arrivals after (v,t)

e e(v,t) defined implicitly by W(e(v,t),v,t) =0



Calculating ECVs

Auxiliary functional equation given W (e, v,t):
W (g,v,t) / min (W (g,2',7"),0)dP (v, 7’|v, t)
/ (o7 () = &)l (o], )
N(v,t)

where N (v,t) denote the set of paths w € Q such that there are no
arrivals after (v,t)

e(v,t) defined implicitly by W(e(v,t),v,t) =0

Proposition 1: Unique solution to the above functional equation
exists and W (e (v,1),v,t) = 0 satisfies self-generated expectation
property.



Optimal Solution

e Static problem:

S(v) = argmaz,U(v,a)

e Optimal dynamic strategy: S(v,t) = S(e(v,t))
e Theorem 1: This strategy is optimal for any payoff function (given

the assumptions mentioned earlier)



Proof Sketch for Theorem 1

1. Consider a decision node (v,t) and alternative action
as # ap = S(v,t)
2. Show that one-period deviation is not an improvement

3. Use properties of ECVs and supermodularity of payoff function



Key Implications

ECVs partition the state space into indifference classes

Optimal strategy depends only on ECVs, not full history

Reduces dynamic problem to a sequence of static problems

Allows for tractable analysis of a wide range of dynamic problems



Embedding in Games

Game: I = (I,{Ai};c; AZi}ier APiYier » {wir}icr)

I set of players

e A, action spaces

Z; space of values

P; transition process on Z; x [0,T]

w;r(a;, a—;) final payoff functions



Equilibrium

Strategies S; : Z; x [0,T] — A;
Expected payoffs (7 (SZ‘, Sfl) = EouiT (UiT; a;T, a,iT|Si7 sz)

Nash equilibrium in normal form game
o u; (Si,8-:) > u; (S;,Sfi) for all S} € S;.

e High dimensional problem



Mapping into Bayesian Game

Equivalent values: For every history w,

vi (W) = max {e; (vn (W) , 70 (@)}

This induces distributions of values ¥; for each player.

Bayesian Game: 'y = (1,{¥;},.; . {Ai},c; {wir}icr)

Assumption: wu;r (v;,a;,a—;) are linear in v; and supermodular in

(04, a;).

Theorem: Given equilibrium strategies {5”1} v of I'p the strategies
_ i€

defined by S; (v,t) = S; (e; (v,t)) are an equilibrium for T’



Decomposition

e Our result decomposes the problem of finding an equilibrium to I’
into two steps:
1. A dynamic decision problem to find the equivalent final values e(v,t)
2. A static equilibrium determination of the Bayesian game
e Result holds without privately observed actions when Bayesian
Game has an equilibrium in weakly dominating strategies (e.g.

second-price auction)

e Also for Anonymous Sequential games
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Properties of ECVs

e ECV< Expected Value

o ECV is expected value conditional on action at time ¢ is final action

o Negative option value

This implies shading of actions,
o S(v,t) < S (E[vr|v,t]).

Strict under fairly general regularity conditions.

Determinants of shading:

o Variance of innovations — precision of signals

o Arrival process for action times

ECV goes up over time for a given expected value



Irreversibility and Information Loss

e Proposition: Distribution of final values {3(w)} is
mean-preserving spread of {&(w)}
o ¥(w): final value associated with any path
o &(w): final ECV associated with any path

e Irreversibility constrains actions, limiting use of information

e Agent acts as if they had worse information than with reversible

actions



Effect of Increasing Arrival Rates

e Proposition: More frequent arrivals result in:
o Higher shading initially
o More frequent actions

o Mean-preserving spread of final actions
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o Key Results

e Application to Dynamic Auction Design
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Dynamic Second-Price Auctions

N bidders with independent private values

Sealed bid auction, can increase bid at any bidding opportunity

Assume that the markov process for value and bidding

opportunities are independent (presentation)

Optimal bid: b(v,t) = b(e(v,t)) = e(v, t)

e Standing bid: maximum of ECVs among decision nodes

Results in:

o Revenue equivalence holds under standard conditions

o Optimal reserve price similar to static case, using €(w) distribution
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Design Implications

e Allowing bid retraction:
o Removes shading incentive
o Mean-preserving spread of bids
o Can harm bidders, benefit auctioneer (for many bidders)
e Increasing arrival rates:
o Also leads to mean-preserving spread of bids
o Effects depend on number of bidders
o Many bidders: higher arrival rates leads to higher winning bids
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Final Remarks

Analyzed a class of dynamic problems with irreversible actions

Embedding in games with privately observed actions

e Decomposition: dynamics/equilibrium

Can relax assumption of privately observed actions

o When Bayesian Game has an equilibrium in weakly dominating
strategies
o Anonymous Sequential/Mean field games
o Oblivious equilibrium?
e Design applications

o Optimal dynamic auction



Thank You!



Assumption
The following properties hold:
1. There exists 6 > 0 such that II (N (v,t) |v,¢) > 0 for all (v,?),
2. The integral fN(v " (vr (w)) dII (w|v, t) is continuous in v, ¢, and

3. The Markov process, P (v, t'|v,t), is continuous in the topology of

weak convergence.



	Model

