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Dynamic Irreversibility

• Many dynamic decisions involve:

◦ Irreversibility

◦ Uncertainty

• Examples:

◦ R&D investments

◦ Capacity allocation

◦ Long auctions

• These problems are often difficult to analyze

• Need for a tractable methodology
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Overview

• Novel approach to solving dynamic problems with irreversibility

◦ Decomposing the problem into a dynamic part and a static part

◦ The dynamic part assigns an equivalent certain value (ECV)

◦ The static part, finds the optimal action given ECV

• Characterization of properties and comparative statics of ECV

◦ ECV goes down if uncertainty goes up

◦ ECV goes up as we get closer to the deadline

• Show irreversibility is analogous to information loss

◦ Act as if you have worse information

• Application to dynamic auction design
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Outline

• Model

• Key Results

• Application to Dynamic Auctions
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General Model Structure

• Time: Continuous [0, T ]

• Decision times: Random τ0, τ1, ...

• Actions: aτ ∈ A

◦ A: totally ordered set

◦ aτ ′ ≥ aτ for τ ′ > τ (irreversible actions)

• aT : the final action

• Final payoff: U(vT , aT )
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Assumptions on Payoff Function

• U(v, a):

◦ Linear in v

◦ Supermodular in v and a

◦ Admits a maximum with respect to a for all v.
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Information Arrival and Decision Times

• Joint stochastic processes on [0, T ]

• Decision times: Stopping times {τn(ω)}, where τn+1(ω) > τn(ω)

◦ modeled as jumps of counting process {η(t, ω)}

• Information arrival: Stochastic process ṽ(t, ω)

◦ Property: E(vT |ṽ(t, ω) = v) = v

• Filtration {Ft}0≤t≤T represents available information

◦ increasing σ-algebras on Ω with the property that Ft ⊂ Ft+s ⊂ F .

◦ {Ft} generated by {η(t, ω), ṽ(t, ω)}

Assumption: {vn, τn} follows a joint Markov process, i.e.,

P (vn+1 = v′, τn+1 = τ ′|Fτn) = P (vn+1 = v′, τn+1 = τ ′|vn, τn) .

⇒ can identify decision nodes with pairs (vn, τn) corresponding to the

realized signal and time in the last arrival.
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Information Arrival and Decision Times

• Decision times: exogenous

• However, the specification is still flexible

◦ Allows correlation between decision times and expected values

◦ Captures varying eagerness to revise strategy based on value

◦ Allows for nonstationary Markov process (more arrival rate closer to

deadline)
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Decision Strategies and Optimal Choice

• Decision strategy s:

◦ Specifies action s(vn, τn) at each decision node

• Prevailing action at time t: a(s, t) = max{s(vn, τn)|τn ≤ t}

• Final choice: a(s, T )

• S: Set of strategies satisfying these conditions

• for each realized path ω:

◦ value U (v (T, ω) , a (s, T, ω)),

◦ where a (s, T, ω) = sup {s (vn (ω) , τn (ω)) |τn ≤ T}.

Optimal Decision Strategy:

sup
s∈S

E0U(v(T ), a(s, T ))
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Examples of Dynamic Problems

• Entry Decisions and Search

◦ Random entry opportunities or search offers

◦ Binary action space: A = {0, 1}

• Bidding in Long Auctions

◦ Changing bidder values over time

◦ Increasing bids only

• Irreversible Investment

◦ Random investment opportunities

• General Contest and Teamwork

◦ Effort exertion at random times, uncertain prize value or alternatives

• Sequential Trading Commitments

◦ Random opportunities to sell future deliveries

Key Features: Random decision times, irreversibility, changing values
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Methodology

• Two step procedure:

1. Identify “equivalent certain values” (ECV)

- ECVs partition the state space into indifference classes

- Agent’s optimal action is the same for any point with the same ECV

- We define it implicitly by a recursive problem (dynamic)

2. Find corresponding optimal choices for ECV

- Optimal action if no future opportunities and your value is ECV

- This is a static problem

- The particular payoff function, U , is only used in this step
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Illustrating ECVs
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Defining ECV

• Define ECV function: e(v, t)

• Self-generated expectation property:

e(v, t) = E(vT |ω ∈ H(e(v, t), v, t))

• Where H(e, v, t) is the set of ωs where all future arrivals (if any)

have lower ECV

◦ This is the set in which the action taken at t is going to be the final

action
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Self-Generated Property of ECV
v
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H(e, v, t): set of ωs where all future arrivals (if any) have lower ECV
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Calculating ECVs

• Auxiliary functional equation given W (ε, v, t):

W (ε, v, t) =

∫ T

t

min (W (ε, v′, τ ′) , 0) dP (v′, τ ′|v, t)

+

∫
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

• where N (v, t) denote the set of paths ω ∈ Ω such that there are no

arrivals after (v, t)

• e(v, t) defined implicitly by W (e(v, t), v, t) = 0

• Proposition 1: Unique solution to the above functional equation

exists and W (e (v, t) , v, t) = 0 satisfies self-generated expectation

property. Assumption
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Optimal Solution

• Static problem:

S̃(v) = argmaxaU(v, a)

• Optimal dynamic strategy: S(v, t) = S̃(e(v, t))

• Theorem 1: This strategy is optimal for any payoff function (given

the assumptions mentioned earlier)
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Proof Sketch for Theorem 1

1. Consider a decision node (v, t) and alternative action

a2 ̸= a1 = S(v, t)

2. Show that one-period deviation is not an improvement

3. Use properties of ECVs and supermodularity of payoff function

-p. 17



Key Implications

• ECVs partition the state space into indifference classes

• Optimal strategy depends only on ECVs, not full history

• Reduces dynamic problem to a sequence of static problems

• Allows for tractable analysis of a wide range of dynamic problems

-p. 18



Embedding in Games

Game: Γ =
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {uiT }i∈I

)
• I set of players

• Ai action spaces

• Zi space of values

• Pi transition process on Zi × [0, T ]

• uiT (ai, a−i) final payoff functions
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Equilibrium

• Strategies Si : Zi × [0, T ] → Ai

• Expected payoffs ui (Si, S−i) = E0uiT (viT , aiT , a−iT |Si, S−i)

• Nash equilibrium in normal form game

◦ ui (Si, S−i) ≥ ui (S
′
i, S−i) for all S

′
i ∈ Si.

• High dimensional problem

-p. 20



Mapping into Bayesian Game

Equivalent values: For every history ω,

vi (ω) = max {ei (vn (ω) , τn (ω))}

This induces distributions of values Ψi for each player.

Bayesian Game: ΓB =
(
I, {Ψi}i∈I , {Ai}i∈I , {uiT }i∈I

)
Assumption: uiT (vi, ai, a−i) are linear in vi and supermodular in

(vi, ai).

Theorem: Given equilibrium strategies
{
S̃i

}
i∈N

of ΓB the strategies

defined by Si (v, t) = S̃i (ei (v, t)) are an equilibrium for Γ

-p. 21



Decomposition

• Our result decomposes the problem of finding an equilibrium to Γ

into two steps:

1. A dynamic decision problem to find the equivalent final values e(v, t)

2. A static equilibrium determination of the Bayesian game

• Result holds without privately observed actions when Bayesian

Game has an equilibrium in weakly dominating strategies (e.g.

second-price auction)

• Also for Anonymous Sequential games
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Properties of ECVs

• ECV≤ Expected Value

◦ ECV is expected value conditional on action at time t is final action

◦ Negative option value

• This implies shading of actions,

◦ S (v, t) ≤ S̃ (E [vT |v, t]).

• Strict under fairly general regularity conditions.

• Determinants of shading:

◦ Variance of innovations – precision of signals

◦ Arrival process for action times

• ECV goes up over time for a given expected value
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Irreversibility and Information Loss

• Proposition: Distribution of final values {v̄(ω)} is

mean-preserving spread of {ē(ω)}
◦ v̄(ω): final value associated with any path

◦ ē(ω): final ECV associated with any path

• Irreversibility constrains actions, limiting use of information

• Agent acts as if they had worse information than with reversible

actions
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Effect of Increasing Arrival Rates

• Proposition: More frequent arrivals result in:

◦ Higher shading initially

◦ More frequent actions

◦ Mean-preserving spread of final actions
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Outline

• Model

• Key Results

• Application to Dynamic Auction Design
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Dynamic Second-Price Auctions

• N bidders with independent private values

• Sealed bid auction, can increase bid at any bidding opportunity

• Assume that the markov process for value and bidding

opportunities are independent (presentation)

• Optimal bid: b(v, t) = b̃(e(v, t)) = e(v, t)

• Standing bid: maximum of ECVs among decision nodes

• Results in:

◦ Revenue equivalence holds under standard conditions

◦ Optimal reserve price similar to static case, using ē(ω) distribution
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Design Implications

• Allowing bid retraction:

◦ Removes shading incentive

◦ Mean-preserving spread of bids

◦ Can harm bidders, benefit auctioneer (for many bidders)

• Increasing arrival rates:

◦ Also leads to mean-preserving spread of bids

◦ Effects depend on number of bidders

◦ Many bidders: higher arrival rates leads to higher winning bids

-p. 28
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Final Remarks

• Analyzed a class of dynamic problems with irreversible actions

• Embedding in games with privately observed actions

• Decomposition: dynamics/equilibrium

• Can relax assumption of privately observed actions

◦ When Bayesian Game has an equilibrium in weakly dominating

strategies

◦ Anonymous Sequential/Mean field games

◦ Oblivious equilibrium?

• Design applications

◦ Optimal dynamic auction
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Thank You!
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Assumption

The following properties hold:

1. There exists δ > 0 such that Π (N (v, t) |v, t) > δ for all (v, t),

2. The integral
∫
N(v,t)

(vT (ω)) dΠ(ω|v, t) is continuous in v, t, and

3. The Markov process, P (v′, t′|v, t), is continuous in the topology of

weak convergence.
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