Equivalent Certain Values and Dynamic Irreversibility

Hugo Hopenhayn UCLA Maryam Saeedi CMU

SITE (Dynamic Games, Contracts, and Markets)

Dynamic Irreversibility _

- Many dynamic decisions involve:
 - \circ Irreversibility
 - \circ Uncertainty
- Examples:
 - $\circ~{\rm R\&D}$ investments
 - $\circ~$ Capacity allocation
 - \circ Long auctions
- These problems are often difficult to analyze
- Need for a tractable methodology

Novel approach to solving dynamic problems with irreversibility
 Decomposing the problem into a dynamic part and a static part

Overview _____

- Novel approach to solving dynamic problems with irreversibility
 - $\circ~$ Decomposing the problem into a dynamic part and a static part
 - The dynamic part assigns an equivalent certain value (ECV)
 - $\circ~$ The static part, finds the optimal action given ECV

Overview _____

- Novel approach to solving dynamic problems with irreversibility
 - $\circ~$ Decomposing the problem into a dynamic part and a static part
 - The dynamic part assigns an equivalent certain value (ECV)
 - $\circ~$ The static part, finds the optimal action given ECV
- Characterization of properties and comparative statics of ECV
 - $\circ~{\rm ECV}$ goes down if uncertainty goes up
 - $\circ~{\rm ECV}$ goes up as we get closer to the deadline

Overview _____

- Novel approach to solving dynamic problems with irreversibility
 - $\circ~$ Decomposing the problem into a dynamic part and a static part
 - The dynamic part assigns an equivalent certain value (ECV)
 - $\circ~$ The static part, finds the optimal action given ECV
- Characterization of properties and comparative statics of ECV
 - $\circ~{\rm ECV}$ goes down if uncertainty goes up
 - $\circ~{\rm ECV}$ goes up as we get closer to the deadline
- Show irreversibility is analogous to information loss
 - $\circ~$ Act as if you have worse information
- Application to dynamic auction design

Outline _____

- Model
- $\bullet~{\rm Key}~{\rm Results}$
- Application to Dynamic Auctions

General Model Structure

- Time: Continuous [0,T]
- Decision times: Random τ_0, τ_1, \dots
- Actions: $a_{\tau} \in A$
 - $\circ~A$: totally ordered set
 - $\circ a_{\tau'} \ge a_{\tau}$ for $\tau' > \tau$ (irreversible actions)
- a_T : the final action
- Final payoff: $U(v_T, a_T)$

Assumptions on Payoff Function _

- U(v,a):
 - $\circ~$ Linear in v
 - $\circ~$ Supermodular in v and a
 - \circ Admits a maximum with respect to *a* for all *v*.

Information Arrival and Decision Times _

- Joint stochastic processes on $\left[0,T\right]$
- Decision times: Stopping times $\{\tau_n(\omega)\}$, where $\tau_{n+1}(\omega) > \tau_n(\omega)$

 $\circ \,$ modeled as jumps of counting process $\{\eta(t,\omega)\}$

Information Arrival and Decision Times

- Joint stochastic processes on $\left[0,T\right]$
- Decision times: Stopping times $\{\tau_n(\omega)\}$, where $\tau_{n+1}(\omega) > \tau_n(\omega)$

 $\circ~$ modeled as jumps of counting process $\{\eta(t,\omega)\}$

• Information arrival: Stochastic process $\tilde{v}(t, \omega)$

• Property: $E(v_T | \tilde{v}(t, \omega) = v) = v$

Information Arrival and Decision Times

- Joint stochastic processes on $\left[0,T\right]$
- Decision times: Stopping times {τ_n(ω)}, where τ_{n+1}(ω) > τ_n(ω)
 modeled as jumps of counting process {η(t, ω)}
 - modeled as jumps of counting process $\{\eta(t,\omega)\}$
- Information arrival: Stochastic process $\tilde{v}(t,\omega)$
 - Property: $E(v_T | \tilde{v}(t, \omega) = v) = v$
- Filtration $\{\mathcal{F}_t\}_{0 \le t \le T}$ represents available information
 - increasing σ -algebras on Ω with the property that $\mathcal{F}_t \subset \mathcal{F}_{t+s} \subset \mathcal{F}$.
 - $\circ \{\mathcal{F}_t\}$ generated by $\{\eta(t,\omega), \tilde{v}(t,\omega)\}$

Information Arrival and Decision Times

- Joint stochastic processes on $\left[0,T\right]$
- Decision times: Stopping times {τ_n(ω)}, where τ_{n+1}(ω) > τ_n(ω)
 modeled as jumps of counting process {η(t, ω)}
- Information arrival: Stochastic process $\tilde{v}(t, \omega)$
 - Property: $E(v_T | \tilde{v}(t, \omega) = v) = v$
- Filtration $\{\mathcal{F}_t\}_{0 \leq t \leq T}$ represents available information
 - increasing σ -algebras on Ω with the property that $\mathcal{F}_t \subset \mathcal{F}_{t+s} \subset \mathcal{F}$.
 - $\{\mathcal{F}_t\}$ generated by $\{\eta(t,\omega), \tilde{v}(t,\omega)\}$

Assumption: $\{v_n, \tau_n\}$ follows a joint Markov process, i.e.,

$$P(v_{n+1} = v', \tau_{n+1} = \tau' | \mathcal{F}_{\tau_n}) = P(v_{n+1} = v', \tau_{n+1} = \tau' | v_n, \tau_n).$$

 \Rightarrow can identify decision nodes with pairs (v_n, τ_n) corresponding to the realized signal and time in the last arrival.

Information Arrival and Decision Times _

- Decision times: exogenous
- However, the specification is still flexible
 - Allows correlation between decision times and expected values
 - Captures varying eagerness to revise strategy based on value
 - Allows for nonstationary Markov process (more arrival rate closer to deadline)

Decision Strategies and Optimal Choice

• Decision strategy s:

• Specifies action $s(v_n, \tau_n)$ at each decision node

- Prevailing action at time t: $a(s,t) = \max\{s(v_n,\tau_n) | \tau_n \le t\}$
- Final choice: a(s,T)
- S: Set of strategies satisfying these conditions
- for each realized path ω :

 $\circ \text{ value } U\left(v\left(T,\omega\right),a\left(s,T,\omega\right)\right),$

• where $a(s, T, \omega) = \sup \{s(v_n(\omega), \tau_n(\omega)) | \tau_n \leq T\}.$

Optimal Decision Strategy:

$$\sup_{s \in \mathbf{S}} E_0 U(v(T), a(s, T))$$

Examples of Dynamic Problems _

- Entry Decisions and Search
 - Random entry opportunities or search offers
 - Binary action space: $A = \{0, 1\}$
- Bidding in Long Auctions
 - Changing bidder values over time
 - Increasing bids only
- Irreversible Investment
 - Random investment opportunities
- General Contest and Teamwork
 - Effort exertion at random times, uncertain prize value or alternatives
- Sequential Trading Commitments
 - Random opportunities to sell future deliveries

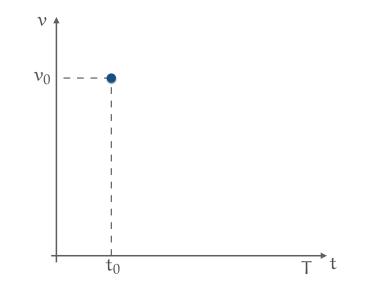
Key Features: Random decision times, irreversibility, changing values

- Two step procedure:
 - 1. Identify "equivalent certain values" (ECV)

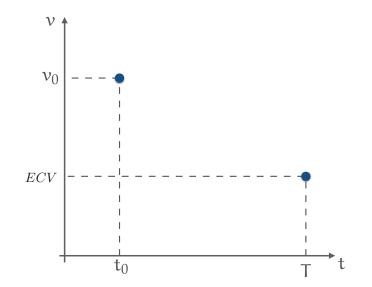
2. Find corresponding optimal choices for ECV

- Two step procedure:
 - 1. Identify "equivalent certain values" (ECV)
 - ECVs partition the state space into indifference classes
 - Agent's optimal action is the same for any point with the same ECV
 - We define it implicitly by a recursive problem (dynamic)
 - 2. Find corresponding optimal choices for ECV
 - Optimal action if no future opportunities and your value is ECV
 - This is a static problem
 - The particular payoff function, U, is only used in this step

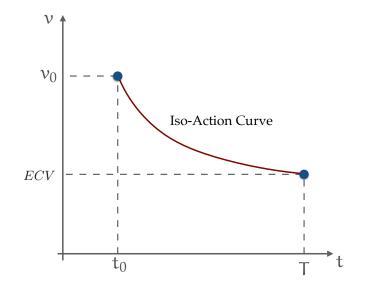
Illustrating ECVs _



Illustrating ECVs _



Illustrating ECVs _



- Define ECV function: e(v, t)
- Self-generated expectation property:

$$e(v,t) = E(v_T | \omega \in H(e(v,t),v,t))$$

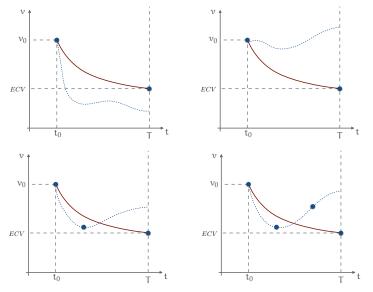
• Where H(e, v, t) is the set of ω s where all future arrivals (if any) have lower ECV

- Define ECV function: e(v, t)
- Self-generated expectation property:

$$e(v,t) = E(v_T | \omega \in H(e(v,t),v,t))$$

- Where H(e, v, t) is the set of ω s where all future arrivals (if any) have lower ECV
 - $\circ~$ This is the set in which the action taken at t is going to be the final action

Self-Generated Property of ECV



H(e, v, t): set of ω s where all future arrivals (if any) have lower ECV

Calculating ECVs ____

• Auxiliary functional equation given $W(\varepsilon, v, t)$:

$$W(\varepsilon, v, t) = \int_{t}^{T} \min \left(W(\varepsilon, v', \tau'), 0 \right) dP(v', \tau'|v, t)$$

+
$$\int_{N(v,t)} \left(v_{T}(\omega) - \varepsilon \right) d\Pi(\omega|v, t)$$

- where N(v,t) denote the set of paths $\omega \in \Omega$ such that there are no arrivals after (v,t)
- e(v,t) defined implicitly by W(e(v,t),v,t) = 0

Calculating ECVs ____

• Auxiliary functional equation given $W(\varepsilon, v, t)$:

$$W(\varepsilon, v, t) = \int_{t}^{T} \min \left(W(\varepsilon, v', \tau'), 0 \right) dP(v', \tau'|v, t)$$

+
$$\int_{N(v,t)} \left(v_{T}(\omega) - \varepsilon \right) d\Pi(\omega|v, t)$$

- where N(v,t) denote the set of paths $\omega \in \Omega$ such that there are no arrivals after (v,t)
- e(v,t) defined implicitly by W(e(v,t),v,t) = 0
- Proposition 1: Unique solution to the above functional equation exists and W(e(v,t),v,t) = 0 satisfies self-generated expectation property. \rightarrow Assumption

• Static problem:

$$\tilde{S}(v) = argmax_a U(v, a)$$

- Optimal dynamic strategy: $S(v,t) = \tilde{S}(e(v,t))$
- **Theorem 1**: This strategy is optimal for any payoff function (given the assumptions mentioned earlier)

- 1. Consider a decision node (v, t) and alternative action $a_2 \neq a_1 = S(v, t)$
- 2. Show that one-period deviation is not an improvement
- 3. Use properties of ECVs and supermodularity of payoff function

- ECVs partition the state space into indifference classes
- Optimal strategy depends only on ECVs, not full history
- Reduces dynamic problem to a sequence of static problems
- Allows for tractable analysis of a wide range of dynamic problems

Embedding in Games

Game: $\Gamma = (I, \{A_i\}_{i \in I}, \{Z_i\}_{i \in I}, \{P_i\}_{i \in I}, \{u_{iT}\}_{i \in I})$

- I set of players
- A_i action spaces
- Z_i space of values
- P_i transition process on $Z_i \times [0,T]$
- $u_{iT}(a_i, a_{-i})$ final payoff functions

- Strategies $S_i: Z_i \times [0,T] \to A_i$
- Expected payoffs $u_i(S_i, S_{-i}) = \mathbb{E}_0 u_{iT}(v_{iT}, a_{iT}, a_{-iT}|S_i, S_{-i})$
- Nash equilibrium in normal form game

 $\circ \ u_i \left(S_i, S_{-i} \right) \ge u_i \left(S'_i, S_{-i} \right) \text{ for all } S'_i \in \mathbf{S_i}.$

• High dimensional problem

Equivalent values: For every history ω ,

$$v_{i}(\omega) = \max \left\{ e_{i}\left(v_{n}(\omega), \tau_{n}(\omega)\right) \right\}$$

This induces distributions of values Ψ_i for each player.

Bayesian Game: $\Gamma_B = (I, \{\Psi_i\}_{i \in I}, \{A_i\}_{i \in I}, \{u_{iT}\}_{i \in I})$ Assumption: $u_{iT}(v_i, a_i, a_{-i})$ are linear in v_i and supermodular in (v_i, a_i) . Theorem: Given equilibrium strategies $\{\tilde{S}_i\}_{i \in N}$ of Γ_B the strategies

defined by $S_{i}(v,t) = \tilde{S}_{i}(e_{i}(v,t))$ are an equilibrium for Γ

- Our result decomposes the problem of finding an equilibrium to Γ into two steps:
 - 1. A dynamic decision problem to find the equivalent final values e(v, t)
 - 2. A static equilibrium determination of the Bayesian game
- Result holds without privately observed actions when Bayesian Game has an equilibrium in weakly dominating strategies (e.g. second-price auction)
- Also for Anonymous Sequential games

Properties of ECVs _____

 $\bullet~{\rm ECV}{\leq}$ Expected Value

Properties of ECVs _____

- ECV \leq Expected Value
 - $\circ~{\rm ECV}$ is expected value conditional on action at time t is final action
 - $\circ~$ Negative option value

Properties of ECVs ____

- ECV \leq Expected Value
 - $\circ~{\rm ECV}$ is expected value conditional on action at time t is final action
 - $\circ~$ Negative option value
- This implies shading of actions,

 $\circ \ S(v,t) \leq \tilde{S}\left(\mathbb{E}\left[v_T | v, t\right]\right).$

• Strict under fairly general regularity conditions.

Properties of ECVs _

- ECV \leq Expected Value
 - $\circ~{\rm ECV}$ is expected value conditional on action at time t is final action
 - $\circ~$ Negative option value
- This implies shading of actions,

 $\circ \ S(v,t) \leq \tilde{S}(\mathbb{E}[v_T|v,t]).$

- Strict under fairly general regularity conditions.
- Determinants of shading:
 - Variance of innovations precision of signals
 - $\circ~$ Arrival process for action times
- ECV goes up over time for a given expected value

Irreversibility and Information Loss _

- Proposition: Distribution of final values {v
 v(ω)} is mean-preserving spread of {*e*(ω)}
 - $\circ \ \bar{v}(\omega)$: final value associated with any path
 - $\circ \bar{e}(\omega)$: final ECV associated with any path
- Irreversibility constrains actions, limiting use of information
- Agent acts as if they had worse information than with reversible actions

Effect of Increasing Arrival Rates ____

- **Proposition**: More frequent arrivals result in:
 - $\circ~$ Higher shading initially
 - $\circ~$ More frequent actions
 - $\circ~$ Mean-preserving spread of final actions

Outline _____

- Model
- Key Results
- Application to Dynamic Auction Design

Dynamic Second-Price Auctions _____

- N bidders with independent private values
- Sealed bid auction, can increase bid at any bidding opportunity
- Assume that the markov process for value and bidding opportunities are independent (presentation)

Dynamic Second-Price Auctions _____

- N bidders with independent private values
- Sealed bid auction, can increase bid at any bidding opportunity
- Assume that the markov process for value and bidding opportunities are independent (presentation)

• Optimal bid:
$$b(v,t) = \tilde{b}(e(v,t))$$

Dynamic Second-Price Auctions ____

- N bidders with independent private values
- Sealed bid auction, can increase bid at any bidding opportunity
- Assume that the markov process for value and bidding opportunities are independent (presentation)
- Optimal bid: $b(v,t) = \tilde{b}(e(v,t)) = e(v,t)$
- Standing bid: maximum of ECVs among decision nodes

Dynamic Second-Price Auctions _

- N bidders with independent private values
- Sealed bid auction, can increase bid at any bidding opportunity
- Assume that the markov process for value and bidding opportunities are independent (presentation)
- Optimal bid: $b(v,t) = \tilde{b}(e(v,t)) = e(v,t)$
- Standing bid: maximum of ECVs among decision nodes
- Results in:
 - $\circ~$ Revenue equivalence holds under standard conditions
 - $\circ~$ Optimal reserve price similar to static case, using $\bar{e}(\omega)$ distribution

Design Implications _

- Allowing bid retraction:
 - \circ Removes shading incentive
 - $\circ~$ Mean-preserving spread of bids
 - Can harm bidders, benefit auctioneer (for many bidders)

Design Implications _

- Allowing bid retraction:
 - $\circ~{\rm Removes}$ shading incentive
 - $\circ~$ Mean-preserving spread of bids
 - Can harm bidders, benefit auctioneer (for many bidders)
- Increasing arrival rates:
 - $\circ~$ Also leads to mean-preserving spread of bids
 - Effects depend on number of bidders
 - Many bidders: higher arrival rates leads to higher winning bids

Literature Review _

- Dynamic decision problems with irreversibility:
 - Arrow and Fisher (1974), Henry (1974): Option value in irreversible decisions
 - Dixit et al. (1994): Investment under uncertainty
- Revenue management and dynamic pricing:
 - Elmaghraby and Keskinocak (2003), Den Boer (2015): Surveys
 - Zhao and Zheng (2000): Dynamic pricing with limited capacity
- Random Opportunities: Ockenfels and Roth (2006), Ambrus, Ishii and Burns (2014), Groeger and Miller (2015), Revision games: Kamada and Kandori (2020), Kapor and Moroni (2016)
- Dynamic across auctions:
 - Jofre-Bonet and Pesendorfer (2003), Zeithammer (2006), Said (2011), Hendricks and Sorensen (2018), Coey, Larsen and Platt (2020), Backus and Lewis (2024)

Final Remarks _

- Analyzed a class of dynamic problems with irreversible actions
- Embedding in games with privately observed actions
- Decomposition: dynamics/equilibrium
- Can relax assumption of privately observed actions
 - When Bayesian Game has an equilibrium in weakly dominating strategies
 - $\circ~$ Anonymous Sequential/Mean field games
 - Oblivious equilibrium?
- Design applications
 - $\circ~$ Optimal dynamic auction

Thank You!

Assumption

The following properties hold:

- 1. There exists $\delta > 0$ such that $\Pi (N(v,t) | v, t) > \delta$ for all (v,t),
- 2. The integral $\int_{N(v,t)} (v_T(\omega)) d\Pi(\omega|v,t)$ is continuous in v, t, and
- 3. The Markov process, P(v', t'|v, t), is continuous in the topology of weak convergence.