Aggregating Strategic Information

James Best¹ Maryam Saeedi¹ Ali Shourideh¹ Daniel Quigley²

¹Department of Economics, Tepper School of Business, CMU

²Department of Economics, University of Oxford

June 2024 Cowles Annual Economic Theory Conference 2024

Best, Saeedi, Shourideh, Quigley

Aggregating Information _____

- Decision-makers often rely on information from multiple sources
 - 1. Board relies on reports of multiple divisions
 - 2. CB rate decisions communicate views of many board members
 - 3. Online trade and review aggregation: Yelp, IMDb, Goodreads

Aggregating Information

- Decision-makers often rely on information from multiple sources
 - 1. Board relies on reports of multiple divisions
 - 2. CB rate decisions communicate views of many board members
 - 3. Online trade and review aggregation: Yelp, IMDb, Goodreads
- Common issue: conflicts of interest & strategic manipulation

- Is there a way for an aggregator to overcome this strategic manipulation while being informative?
- What are the properties of optimal mechanism?
- How does this mechanism depend on
 - $\circ~$ the level of "conflict"
 - $\circ~$ the number of senders

Literature

Multi-sender/issue cheap talk: Austen-Smith (1993), Krishna & Morgan (2001), Battaglini (2002, 2004), Ambrus et al. (2013), Meyer et al. (2019), Lipnowski and Ravid (2020), Antic et al (2023).

Mediation/mechanism design in communication games: Wolinsky (2002), Krishna & Morgan (2008), Goltsman et al. (2009), Salamanca (2020), Jann & Schottmüller (2023).

Mechanism Design without transfers: Börgers & Postl (2009), Gershkov et al. (2017), Li et al (2017), Guo & Hörner (2018), Kattwinkel, et al (2022), Kattwinkel & Winter (in progress)

Incentives in information design: Onuchic and Ray (2022), Boleslavski and Kim (2023), Saeedi and Shourideh (2023)

This paper:

Optimal multi-sender communication mechanisms without transfers or cross-checking.

Model

Results

Simple & Approximate Implementation

Delegation Problem

Best, Saeedi, Shourideh, Quigley

- n senders each with iid type s_i ~ F[−1, 1],
 o where s = (s_i)ⁿ_{i=1}.
- A receiver with binary action $a \in \{0, 1\}$.
- Payoff relevant state variable $\omega = \frac{\sum_{i=1}^{n} s_i}{n}$
- Receiver Payoff: $a\omega$.
- Senders' Payoff: $a(\omega + b)$ with b > 0.
 - $\circ~$ Biased toward a=1

Best, Saeedi, Shourideh, Quigley

Two Sender Case

Best, Saeedi, Shourideh, Quigley

Two Sender Case, Receiver Optimal Action

Best, Saeedi, Shourideh, Quigley

Two Sender Case, Senders Optimal Action

Best, Saeedi, Shourideh, Quigley

Aggregating Strategic Information

Disagreement Region

Best, Saeedi, Shourideh, Quigley

Mediator with Commitment

- Mediator with commitment, e.g., a review aggregator
- Commits to a mechanism $\sigma : [-1, 1]^n \to \Delta\{0, 1\}.$
 - Myerson (1982, 1986): WLOG, direct mechanisms
- Each sender reports type $s_i \in [-1, 1]$ to the mediator
- The mediator recommends action $\tilde{a} = 1$ with probability equal to $\sigma(\mathbf{s} = (s_i)_{i=1}^n)$.
- After observing \tilde{a} , receiver chooses $a \in \{0, 1\}$ and payoffs are realized.

Mediator Problem, Maximizing Receiver Payoff ____

$$\max_{\sigma} \mathbb{E}\left[\sigma(\mathbf{s})\omega\right]$$

Subject to

$$s_i \in \arg\max_{\tilde{s}} \mathbb{E}\left[\sigma(\tilde{s}, \mathbf{s}_{-i}) \left(\omega + b\right)\right]$$
 (IC)

$$\mathbb{E}_{\sigma}\left[\omega \mid \tilde{a}\right](2\tilde{a}-1) \ge 0 \tag{OB}$$

Best, Saeedi, Shourideh, Quigley

Allocations and Incentives: Two Senders ____

Best, Saeedi, Shourideh, Quigley

Allocations and Incentives: Two Senders ____

Best, Saeedi, Shourideh, Quigley

Allocations and Incentives: Two Senders _

Best, Saeedi, Shourideh, Quigley

Allocations and Incentives: Two Senders ____

Best, Saeedi, Shourideh, Quigley

Allocations and Incentives: Two Senders

Best, Saeedi, Shourideh, Quigley

Allocations and Incentives: Two Senders ____

Best, Saeedi, Shourideh, Quigley

Model

Results

Simple & Approximate Implementation

Delegation Problem

Best, Saeedi, Shourideh, Quigley

Small Bias: Sender Preferred Mechanism ___

Theorem. The optimal mechanism induces the senders' first best allocation if

$$1 - bn\left(1 - \frac{f'(x)}{f(x)}(1 - x)\right) \ge 0, \ \forall x \in [-1, 1]$$
(1)

Theorem. The optimal mechanism induces the senders' first best allocation if

$$1 - bn\left(1 - \frac{f'(x)}{f(x)}(1 - x)\right) \ge 0, \ \forall x \in [-1, 1]$$
(1)

- This condition only holds if $bn \leq 1$
- Sender first best is optimal when
 - bias is small relative to number of senders

Best, Saeedi, Shourideh, Quigley

Theorem. The optimal mechanism induces the senders' first best allocation if

$$1 - bn\left(1 - \frac{f'(x)}{f(x)}(1 - x)\right) \ge 0, \ \forall x \in [-1, 1]$$
(1)

- This condition only holds if $bn \leq 1$
- Sender first best is optimal when
 - bias is small relative to number of senders
- f'/f imposes conditions on density (more on it later)

Overview of Proof _____

Two main steps:

• Strong duality holds

Overview of Proof ____

Two main steps:

- Strong duality holds
 - $\,\circ\,$ Standard methods do not work: non-empty interior in L^∞
 - $\circ~$ Use Mitter (2008), perturbing incentive constraints are bounded by a linear function
 - As in Kleiner & Manelli (2019) and Kushnir & Shourideh (2024)

Overview of Proof

Two main steps:

- Strong duality holds
 - $\,\circ\,$ Standard methods do not work: non-empty interior in L^∞
 - $\circ~$ Use Mitter (2008), perturbing incentive constraints are bounded by a linear function
 - As in Kleiner & Manelli (2019) and Kushnir & Shourideh (2024)
- Constructing Lagrange Multipliers and proving that using those the only solution is seller preferred allocation
 - After many steps of algebra, we get to a term that is in form of

 $\sigma(s)(\omega+b)A$

- $\circ~$ The assumptions ensures that A is positive.
- $\circ~$ Then to maximize objective set $\sigma~$
 - Equal to 1, if $(\omega + b) > 0$
 - Equal to 0, if $(\omega + b) < 0$

Best, Saeedi, Shourideh, Quigley

Corollary. If the distributions of types are uniform, then the optimal mechanism induced by the senders' first best allocation if and only if

 $b \leq 1/n.$

Corollary. If the distributions of types are uniform, then the optimal mechanism induced by the senders' first best allocation if and only if

 $b \leq 1/n.$

- The higher the number of senders, the smaller the bias that induces senders first best
- Each sender has smaller share of the total information

Best, Saeedi, Shourideh, Quigley

• What prevents us from setting $\sigma = 0$ in the disagreement region?

Best, Saeedi, Shourideh, Quigley

- Let's assume that we set $\sigma = 0$ in disagreement region as above.
- To make the IC for these types hold, should make higher types worse off.

Best, Saeedi, Shourideh, Quigley

- Next step, more valuable ω , we can make the deviation smaller
- But we need to keep going!

Best, Saeedi, Shourideh, Quigley

• We need to keep making higher levels of s worse off even in the agreement region.

Best, Saeedi, Shourideh, Quigley

• Keep going until ...

Best, Saeedi, Shourideh, Quigley

• We get to $s_1, s_2 = 1$

Best, Saeedi, Shourideh, Quigley

- For the receiver, in the case of uniform and b = 1/2
 - The benefit (green) = The cost (red)

Best, Saeedi, Shourideh, Quigley

- For the receiver, in the case of uniform and b < 1/2
 - The benefit (green) < The cost (red)

Best, Saeedi, Shourideh, Quigley

- For the receiver, in the case of uniform and b > 1/2
 - The benefit (green) > The cost (red)

Best, Saeedi, Shourideh, Quigley

- At b = 1/2 above non-monotone mechanism satisfies IC
- Gives receiver the same payoff as sender best allocation

Best, Saeedi, Shourideh, Quigley

• Condition (1):

$$1 - bn\left(1 - \frac{f'(x)}{f(x)}(1 - x)\right) \ge 0$$

- Density cannot be declining too fast.
- Somewhat similar to increasing virtual values in Myerson (81).

Intuition: Condition (1) ____

• Our condition ensures that there is no big mass in the disagreement region

Best, Saeedi, Shourideh, Quigley

Proposition. There exists a $\overline{b} \in [\frac{1}{n}, 1)$ such that the optimal mechanism is non-monotonic for all $b > \overline{b}$.

Large bias: Non-monotone Mechanism

Proof Outline

• We first show that all IC and monotone mechanisms have one of the following two forms or their combinations.

Large bias: Non-monotone Mechanism

Proof Outline

• We first show that all IC and monotone mechanisms have one of the following two forms or their combinations.

- Construct an upper bound on $\mathbb{E}_{\sigma} u^R$ from monotonic σ
- Show that it converges to zero as $b \to 1$.
- Show there always exists an informative non-monotonic mechanism.

Best, Saeedi, Shourideh, Quigley

Optimal Non-monotone Mechanisms!

$$b = .6, s \sim U[-1, 1]$$

• Blue area:
$$\sigma = 1$$
, the rest, $\sigma = 0$

Best, Saeedi, Shourideh, Quigley

Model

Results

Simple & Approximate Implementation

Delegation Problem

Best, Saeedi, Shourideh, Quigley

Simple & Approximate Implementation ____

- Assume that the mediator restricts itself to a *simpler* mechanisms
- The mediator asks the senders if their signal was positive or negative (Thumbs up/Thumbs down)
- Then implements a mechanism as a function of number of positive signals: $\sigma(k)$
- This will greatly simplify IC's and the number of parameters for σ
- Let's assume that the distribution of signals are uniform for the presentation (Not necessary)

Simple & Approximate Implementation _____

• The problem of the mediator and IC will become maximizing the following:

$$V_n(\sigma(k)) = \sum_{k=0}^n \binom{n}{k} \sigma(k) \mathbb{E}(\omega|k)$$
(2)

• Subject to the IC for s = 0:

$$\sum_{k=0}^{n-1} \binom{n-1}{k} (\sigma(k+1) - \sigma(k)) \mathbb{E}(\omega+b|s=0,k) = 0$$

• Monotonicity and Obedience

Best, Saeedi, Shourideh, Quigley

Simple & Approximate Implementation _

• We show that the optimal σ has one of the following two forms:

Monotone Mechanism

Best, Saeedi, Shourideh, Quigley

Simple & Approximate Implementation

• We show that the optimal σ has one of the following two forms:

Best, Saeedi, Shourideh, Quigley

Simple & Approximate Implementation ____

- For low levels of b the monotone mechanism will be optimal
 - This is the closest approximation to sender best
- For high levels of b the non-monotone will be optimal
 - The switch happens exactly at b = 1/n
 - Similar to the non-monotone mechanism for two sender.

Model

Results

Simple & Approximate Implementation

Delegation Problem

Best, Saeedi, Shourideh, Quigley

Parallel to the Delegation Problem _____

- In our problem we assume that the mediator gets information from multiple sources
- What if the mediator, has its own private signal and wants to elicit only one other source
 - $\circ s_2$ is directly observed
 - $\circ~$ Elicit information from sender 1: s_1

Parallel to the Delegation Problem _____

- In our problem we assume that the mediator gets information from multiple sources
- What if the mediator, has its own private signal and wants to elicit only one other source
 - \circ s_2 is directly observed
 - Elicit information from sender 1: s_1
- The designer's problem is

$$\max \mathbb{E}[\frac{(s_1+s_2)}{2}\sigma(s_1,s_2)]$$

Subject to

$$s_1 \in \arg\max_{\tilde{s}} \mathbb{E}\left[\sigma(\tilde{s}, s_2)\left(\frac{(s_1 + s_2)}{2} + b\right)\right]$$
 (IC)

Best, Saeedi, Shourideh, Quigley

Parallel to the Delegation

Theorem. Assuming inverse hazard rate, $\frac{1-F}{f}$, is non-increasing, the following mechanism maximizes the receiver's expected payoff:

1. If $1 + \mathbb{E}[s] < 2b$:

$$\sigma^{\star}(s_1, s_2) = \begin{cases} 1, & \text{if } s_2 \ge -\mathbb{E}[s_1] \\ 0, & \text{otherwise.} \end{cases}$$

2. If
$$1 + \mathbb{E}[s] \ge 2b$$
:
 $\sigma^{\star}(s_1, s_2) = \begin{cases} 1, & \text{if } s_2 \ge -\bar{s}_1 - 2b \text{ and } s_1 \ge -s_2 - 2b \\ 0, & \text{otherwise.} \end{cases}$

where $\bar{s}_1 \in (-1, 1)$ is the unique solution to $\mathbb{E}[s_1 \mid s_1 \ge s'_1] = s'_1 + 2b.$

Best, Saeedi, Shourideh, Quigley

Parallel to the Delegation - Low Bias ____

Best, Saeedi, Shourideh, Quigley

Parallel to the Delegation _____

• High bias:

• Ignore the signal from sender 1

• Low bias:

- $\circ~$ If own signal is too low: recommend action 0
- Otherwise, privately let sender 1 know your signal and delegate

Parallel to the Delegation _

• High bias:

 $\circ~$ Ignore the signal from sender 1

- Low bias:
 - $\circ~$ If own signal is too low: recommend action 0
 - Otherwise, privately let sender 1 know your signal and delegate
- In this case, we do not have a non-monotone mechanism.
- Non-monotonicity is a feature of incentivizing multiple senders at the same time
- One sender case: same as interval delegation:
 - Amador, Werning, and Angeletos (2006), Alonso and Matouschek (2008), Amador and Bagwell (2013), Halac and Yared (2014, 2018, 2020, 2022, ...?), ...

- When the bias and number of senders are small:
 - Sender best is optimal
 - Mediator can implement this by allowing the senders to talk freely and propose the action to reciever
- High bias or large number of sender
 - The mediator can improve the outcome for the receiver by implementing a non-monotone mechanism
 - Amazon retracting high ratings from time to time

Thank you!

Monotonic versus Nonmonotonic Mechanisms Back

We say a mechanism is (ex post) monotonic IFF

$$\sigma(\tilde{s}, \mathbf{s}_{-i}) - \sigma(s_i, \mathbf{s}_{-i}) \ge 0 \text{ for all } \tilde{s} \ge s_i, \, \mathbf{s}_{-i} \in [-1, 1]^{n-1}$$

Monotonic versus Nonmonotonic Mechanisms (Back

We say a mechanism is (ex post) monotonic IFF

$$\sigma(\tilde{s}, \mathbf{s}_{-i}) - \sigma(s_i, \mathbf{s}_{-i}) \ge 0 \text{ for all } \tilde{s} \ge s_i, \, \mathbf{s}_{-i} \in [-1, 1]^{n-1}$$

Monotonic versus Nonmonotonic Mechanisms Back

We say a mechanism is (ex post) monotonic IFF

$$\sigma(\tilde{s}, \mathbf{s}_{-i}) - \sigma(s_i, \mathbf{s}_{-i}) \ge 0 \text{ for all } \tilde{s} \ge s_i, \, \mathbf{s}_{-i} \in [-1, 1]^{n-1}$$

This is distinct from interim monotonicity, which is always required by IC:

$$\mathbb{E}[\sigma(\tilde{s}, \mathbf{s}_{-i})]$$
 is non-decreasing in \tilde{s} .

Best, Saeedi, Shourideh, Quigley