Probability and AI - Syllabus, Spring 1999
80-316 and 80-716
Instructor: Peter Spirtes
Office: 135D BH
Telephone: x88460
Office Hours: M,W 11:00 - 12:00
Texts: An Introduction to Bayesian Networks by F. Jensen
various articles handed out in class
Grades:
20% Quizzes
80% Homework Assignments
Assignments
1. Introduction - The problem of uncertainty - Jensen, 2.1
2. Approaches to Handling Uncertainty - Jensen, 1
3. Probability and Statistics - Jensen, 2.3.1 - 2.3.5, Probability,Virtual Laboratory, Basic Probability, Probability Spaces, 1-6.
4. Probability and Statistics - Jensen, 2.3.1 - 2.3.5, Probability,Virtual Laboratory, Basic Probability, Probability Spaces, 1-6.
5. Probability and Statistics - Jensen, 2.3.1 - 2.3.5, Probability,Virtual Laboratory, Distributions, 1-6.
6. Probability and Statistics - Jensen, 2.3.1 - 2.3.5, Probability,Virtual Laboratory, Expected Value, 1-6.
7. Interpretations of probability
8. Interpretations of probability
9. Interpretations of probability
10. Conditional Independence
11. Directed Graphs - Jensen, 2.3.6 - end of chapter 2
12. Causality and Probability - SGS, pp. 41-70
13. Manipulating and Predicting - SGS, pp. 201-221
14. Parameter Estimation and Sampling Distributions - handout
15. Parameter Estimation and Sampling Distributions - handout
16. Constructing Bayes Networks - Jensen, Chapter 3
17. Constructing Bayes Networks - Bayesian approach
18. Constructing Bayes Networks - Constraint Based Approach, SGS, pp. 101-124
19. Applications - handout
20. Updating - Jensen, chapter 4.6
21. Other Approaches - Regression, handout
22. Other Approaches - handouts
23. Other Approaches - handouts
24. Hidden Variables - handout
25. Decision Theory - Jensen, chapter 6
26. Decision Theory - Jensen, chapter 6
Homework Assignment, April 19, 1999
Homework, April 19, 1999