21-237: Math Studies Algebra I

September 23, 2022

Lecture 11 : Sylow's Theorem

Lecturer: James Cummings Scribe: Rajeev Godse

1 More notation

Let G act on X. We say $Y \subseteq X$ is **invariant** (G-invariant) if $g \cdot y \in Y$ for all $g \in G, y \in Y$. Equivalently, Y is a union of orbits. We get an action of G on Y.

Let $H \leq G$. Then we get an action of H on Y, in which each G-orbit may be split into many H-orbits.

2 Sylow

Let G be a finite group, p is a prime, $p \mid |G|$, p^t is the largest power of p dividing |G|.

Let $\operatorname{Syl}_p(G) = \{H : H \leq G, |H| = p^t\}$. We call these the **Sylow** *p*-subgroups. We can say that a *p*-subgroup of *G* is $K \leq G$, where |K| is a power of *p*.

Theorem (Sylow):

(a) For every *p*-subgroup K of G, there is $H \in Syl_p(G)$ where $K \leq H$

(b) All Sylow *p*-subgroups are conjugate.

(c) The number of Sylow *p*-subgroups, i.e. $|Syl_p(G)|$, divides |G| and is $\equiv 1 \mod p$.

Proof:

Let $\Sigma = \{K : K \text{ is a non-trivial } p$ -subgroup of $G\}$. Let $\Omega = \{K \in \Sigma : K \text{ is maximal under inclusion}\}$. We say K is maximal under inclusion if for all $L \in \Sigma$, $K \subseteq L \implies L = K$.

Claim 1: $\Sigma \neq \emptyset$. Proof: Use Cauchy to show there is $K \leq G$ with |K| = p.

Claim 2: For all $K_1 \in \Sigma$, there is $K_2 \in \Omega$ such that $K_1 \leq K_2$. Proof: Let $|K_2|$ be largest among $\{K_2 \in \Sigma : K_1 \leq K_2\}$, which is non-empty since K_1 is in the set and finite since G is finite.

Claim 3: For all $K \in \Sigma$, $g \in G$, $K^g \in \Sigma$. Proof: K^g is a subgroup and $|K^g| = |K|$ since conjugation by a group element is an automorphism.

Claim 4: For all $K \in \Omega$, $g \in G$, $K^g \in \Omega$. Proof: If $A, B \leq G$, $g \in G$, $A \leq B \iff A^g \leq B^g$. Suppose K^g was strictly contained in some $L \in \Sigma$. Then, K is strictly contained in $L^{g^{-1}}$, so $K \notin \Omega$. By contrapositive, $K^g \in \Omega$.

Claim 5: Let $H \in \Omega$. As $H \leq G$ and G acts on Ω by conjugation, H acts on Σ by conjugation. H is the only fixed point for the action of H on Ω by conjugation. *Proof*: For all $h \in H$, $H^h = H$, so H is a fixed point. Suppose that $K \in \Omega$ is a fixed point, i.e. $K^h = K$ for all $h \in H$. So $K \leq N_G(K)$. By a fact from last lecture, $HK \leq G$. From the HW, $HK = \frac{|H||K|}{|H \cap K|}$. So |HK| is a power of p, that is $HK \in \Sigma$. $H \in \Omega$ and $H \subseteq HK$, so H = HK. Similarly, $K \in \Omega$ and $K \subseteq HK$, so K = HK = H.

Claim 6: $|\Omega| \equiv 1 \mod p$. Proof: Look at the orbits of the action of H on Ω . As H is the only fixed point, $\{H\}$ is the only orbit of size 1. Other orbits have sizes which are positive powers of p, as they must divide |H| via the orbit-stabilizer theorem and LaGrange's theorem.

Claim 7: All elements of Ω are conjugate, i.e. Ω forms a single orbit for the action of G on Ω by conjugation. *Proof*: Otherwise, let H_1, H_2 lie in distinct orbits. Let O_i denote the orbit of H_i , i.e.

 $\{H_i^g : g \in G\}$. As $H_1 \leq G$, H_1 acts on O_1 and on O_2 by conjugation. In the action of H_1 on O_1 , H_1 is the only fixed point. In the action of H_1 on O_2 , there are no fixed points. Thus, $|O_1| \equiv 1 \mod p$ and $|O_2| \equiv 0 \mod p$. To finish, swap H_1 and H_2 and derive a contradiction.

Claim 8: $|\Omega|$ divides |G|. Proof: Ω forms a single orbit in the action of G. In fact, $|\Omega| = [G : N_G(H)]$ for any $H \in \Omega$ by the orbit-stabilizer equation.

Claim 9: $\Omega = \operatorname{Syl}_p(G)$. Proof: Next lecture.