21-237: Math Studies Algebra I

October 7, 2022

Lecture 17 : Universal properties

Lecturer: James Cummings Scribe: Rajeev Godse

## 1 Philosophy

For a set X, recall that we built G with  $(g_x : x \in X)$ ,  $g_x \in G$ . For all groups H and all functions  $f : X \to H$ , there is a unique HM  $\phi : G \to H$  such that  $\phi(g_x) = f(x)$  for all  $x \in X$ .

This property is what we call in mathematics a **universal property**.

**Uniqueness for** G: Suppose G',  $(g'_x : x \in X), g'_x \in G'$  with the same "universal property," namely, for all groups H and all functions  $f : X \to H$ , there is a unique HM  $\phi' : G' \to H$  such that  $\phi(g_x) = f(x)$  for all  $x \in X$ . Then, there is exactly one isomorphism  $\psi : G \simeq G'$  such that  $\psi(g_x) = g'_x$  for all  $x \in X$ .

*Proof*: By the universal property of G, there is unique HM  $\psi : G \to G'$  such that  $\psi(g_x) = g'_x$  for all  $x \in X$ . By the universal property of G', there is a unique  $\psi' : G' \to G$  such that  $\psi'(g'_x) = g_x$  for all  $x \in X$ .  $\psi' \circ \psi$  is a HM from G to G that fixes  $g_x$  for all  $x \in X$ . id<sub>G</sub> also does this, so by the uniqueness in the universal property for G,  $\psi' \circ \psi = id_G$ . Similarly,  $\psi \circ \psi' = id_{G'}$ .

**Example**: Let  $X = \{a, b\}$ . Let G be the free group on X with  $g_a, g_b \in G$  corresponding to a, b. Let H be any group such that  $H = \langle h_0, h_1 \rangle$ . Let  $f : X \to H$  where  $f(a) = h_0, f(b) = h_1$ . By the universal property, there is unique  $\phi : G \to H$  such that  $\phi(g_a) = h_0, \phi(g_b) = h_1$ . Clearly,  $\phi$  is surjective, i.e.  $\operatorname{im}(\phi) = H$ . By the first isomorphism theorem, then  $\frac{G}{\ker(\phi)} \simeq H$ .

## 2 A nice property

**General fact**: Let G be any group,  $N \triangleleft G$ ,  $\phi_N : G \rightarrow G/N$  the quotient HM. As we know,  $N = \ker(\phi_N)$ . Let  $\psi : G \rightarrow H$  be any HM such that  $N \leq \ker(\psi)$ . Then, there is a unique HM  $\rho : G/N \rightarrow H$  such that  $\psi = \rho \circ \phi_N$ . The statement above corresponds to the below commutative diagram:



Intuition:  $\phi_N$  is the "most general" HM whose kernel contains N.

*Proof*: For such a  $\rho$ , we must have that  $\rho(gN) = \psi(g)$  for commutativity to hold.

Consider  $\rho = gN \mapsto \psi(g)$ . It's well-defined since elements that share the same coset of N also share a coset of ker $(\psi) \ge N$ . Then, the first isomorphism theorem gives us that they are mapped to the same value in  $\psi$ . The universal property clearly holds.

## 3 Equations

Let G be a group. An equation in G is an equality  $h_1^{n_1} \dots h_t^{n_t} = 1$  for  $h_i \in G$ ,  $n_i \in \mathbb{Z}$ .

Let G be free on X with generating elements  $(g_x \in G : x \in X)$ . Let E be a set of reduced words. For each  $e \in E$ , say  $e = x_1^{n_1} \dots x_t^{n_t}$ , let  $g_e = g_{x_1}^{n_1} \dots g_{x_t}^{n_t} \in G$ . Let N be the normal subgroup of G generated by  $\{g_e : e \in E\}$ .

Let  $G_E = G/N$ ,  $\phi_E : G \to G_E$  the quotient map. For each  $x \in X$ , let  $\overline{g_x} \in G_E$  with  $\overline{g_x} = g_x N$ . Remarks:

- 1. Since G is generated by  $\{g_x : x \in X\}$ , it's easy to see  $G_E$  is generated by  $\{\overline{g_x} : x \in X\}$ .
- 2. For all  $e \in E$ , say  $e = x_1^{n_1} \dots x_t^{n_t}$ , the equation  $\overline{g_{x_1}}^{n_1} \dots \overline{g_{x_t}}^{n_t} = 1$  holds in  $G_E$ .

Universal property for  $G_E$ : Let H be a group, let  $f: X \to H$  be a function such that for all  $e \in E$ , say  $e = x_1^{n_1} \dots x_t^{n_t}$ , we have that  $f(x_1)^{n_1} \dots f(x_t)^{n_t} = 1$  in H. Then, there is a unique HM  $\rho: G_E \to H$ ,  $\rho(\overline{g_x}) = f(x)$  for all  $x \in X$ .