October 12, 2022

Lecture 19 : Cayley graphs

Lecturer: Clinton Conley Scribe: Rajeev Godse

1 (Right) Cayley graphs

Given a group G and subsets $S \subseteq G$, the corresponding (right) Cayley graph, Cay(G, S), is the labeled, directed graph on vertex set G with an edge labeled by s from g to h when h = gs for $s \in S$.

Examples:

- 1. $G = \mathbb{Z}, S = \{1\}$ $\cdots \xrightarrow{1} (-2) \xrightarrow{1} (-1) \xrightarrow{1} (0) \xrightarrow{1} (1) \xrightarrow{1} (2) \xrightarrow{1} \cdots$
- 2. $G = \mathbb{Z}, S = \{2, 3\}$. Similar to above.
- 3. $G = \langle a, b : a^2 = 1, b^5 = 1, aba = b^{-1} \rangle$, $S = \{a, b\}$. You can work it out for yourself, but we get two "circles" acting in opposite directions, connected at each vertex bidirectionally by reflections.
- 4. $G = \mathbb{F}_2 = \langle a, b \rangle, S = \{a, b\}$. The Cayley graph is an infinite 4-regular tree, as each reduced word represents a sequence of operations such that the inverse of a previous operation does not occur after that operation.
- 5. $G = \langle a, b : aba^{-1}b^{-1} = e \rangle, S = \{a, b\}$. The Cayley graph gives us good intuition that $G \simeq \mathbb{Z}^2$.

2 Commutators (again!)

Recall, for $g, h \in G$, their **commutator** is $[g, h] = ghg^{-1}h^{-1}$, and $[g, h] = 1 \iff gh = hg$ by extreme obviousness.

Further recall the **commutator subgroup**, or **derived subgroup**, G' = [G, G], is $\langle [a, b] : a, b \in G \rangle$. More generally, for $A, B \subseteq G$, define $[A, B] = \langle [a, b] : a \in A, b \in B \rangle$.

Lemma: Let G be a group, $H \leq G$. The following are equivalent:

- (I) $H \triangleleft G$
- (II) $[H,G] \leq H$

Proof: Suppose $H \triangleleft G$. Let $h \in H$, $g \in G$. $[h,g] = h(h^{-1})^g \in H$. So $[H,G] \leq H$. Now suppose $[H,G] \leq H$. Let $h \in H$, $g \in G$. $h^g = h[h^{-1},g] \in H$. So $H \triangleleft G$.

Certainly, we have $[G', G] \leq [G, G] = G'$. So by the lemma, $G' \triangleleft G$.

Claim: For any group G, G/G' is abelian.

 $Proof: \text{ Let } aG', bG' \in G/G'. \ (aG')(bG') = abG' = [a, b]baG' = ([a, b]G')baG' = bG'aG'. \ \Box$

Theorem: Let G be a group, $H \leq G$. The following are equivalent:

- (I) $G' \leq H$
- (II) $H \triangleleft G$ and G/H is abelian.

So G' is the least subgroup with abelian quotient.

Proof: Suppose $G' \leq H$. Certainly, $[H, G] \leq [G, G] = G' \leq H$. So from the lemma, $H \triangleleft G$.

Then, as above, ab = [a, b]ba, so (aH)(bH) = abH = baH = (bH)(aH).

Now, suppose G/H is abelian. Then $\forall a, b \in G$, abH = baH. Equivalently, $aba^{-1}b^{-1}H = H$, i.e. $aba^{-1}b^{-1} \in H$. Hence, $[G, G] \in H$.

2.1 As a universal property

The **abelianization** of a group G is the quotient map $q: G \to G/G'$. It is characterized by the following *universal property*:

Given any abelian group A and any homomorphism $\phi: G \to A$, there exists a unique homomorphism $\psi: G/G' \to A$ such that $\phi = \psi \circ q$.

Proof: Note that by the first IM theorem, $G/\ker(\phi) \simeq \operatorname{im}(\phi) \le A$, so $G/\ker(\phi)$ is abelian. Accordingly, $G' \le \ker(\phi)$. Thus, whenever gG' = hG', we know that $\phi(g) = \phi(h)$ since $g^{-1}h \in G' \le \ker(\phi)$. We may thus unambiguously define $\psi: G/G' \to A$ by $gG' \mapsto \phi(g)$. Certainly, it works, so ψ is unique. \Box