21-237: Math Studies Algebra I

October 14, 2022

Lecture 20 : Categories

Lecturer: James Cummings Scribe: Rajeev Godse

1 Category theory

1.1 Definitions

To specify a **category** \mathbb{C} , we need:

- (a) A collection of **objects** $Obj(\mathbb{C})$
- (b) A collection of **morphisms** (arrows) $Mor(\mathbb{C})$
- (c) For each object c in $Obj(\mathbb{C})$, a morphism id_C
- (d) For each arrow f in $Mor(\mathbb{C})$, objects dom(f) and cod(f)
- (e) For each pair of morphisms (f, g) such that dom(f) = cod(g), a morphism $f \circ g$ with domain dom(g) and codomain cod(f)
- A category \mathbb{C} must obey the following axioms:
- (1) For all $c \in \text{Obj}(c)$, $\text{dom}(\text{id}_c) = \text{cod}(\text{id}_c) = c$.
- (2) For all $f: a \to b$, $f \circ id_a = id_b \circ f = f$.
- (3) For all $f: c \to d, g: b \to c, h: a \to b, f \circ (g \circ h) = (f \circ g) \circ h.$

1.2 Examples

- Category of sets: the objects are sets, the arrows are functions.
- Category of groups: the objects are groups, the arrows are homomorphisms.
- Metric spaces: the objects are metric spaces, the arrows are isometries.
- For any poset¹ (P, \leq) , we can define a category \mathbb{C} where $Obj(\mathbb{C}) = P$, where if $p \leq q$, there is exactly one arrow from $p \to q$, and if $p \leq q$, there is no arrow from $p \to q$.
- Let \mathbb{C} be any category. \mathbb{C}^{op} (opposite category) is \mathbb{C} with arrows reversed.
- (Small) categories: the objects are (small) categories and the arrows are functors².
- For categories \mathbb{C} , \mathbb{D} , the functor category $\mathbb{D}^{\mathbb{C}}$ has functors from \mathbb{C} to \mathbb{D} as objects and natural transformations³ as arrows.

¹A **poset** is a set *P* equipped with a binary relation \leq that is reflexive $(p \leq p)$, transitive $(p \leq q \leq r \implies p \leq r)$, and antisymmetric $(p \leq q \land q \leq p \implies q = p)$ for all $p, q, r \in P$. For any set $X, (\mathcal{P}(X), \subseteq)$ is a poset.

²Let \mathbb{C}, \mathbb{D} be categories. A **functor** $F : \mathbb{C} \to \mathbb{D}$ sends each $c \in \text{Obj}(\mathbb{C})$ to $F(c) \in \text{Obj}(\mathbb{D})$ and each $f : a \to b$ in $\text{Mor}(\mathbb{C})$ to $F(f) : F(a) \to F(b)$ in $\text{Mor}(\mathbb{D})$ such that $F(\text{id}_a) = \text{id}_{F(a)}$ and $F(f \circ g) = F(f) \circ F(g)$.

³For functors $F, G : \mathbb{C} \to \mathbb{D}$, a **natural transformation** $\nu : F \to G$ is a family $(\nu_a : F(a) \to G(a))_{a \in Obj(\mathbb{C})}$ such that for all $(f : a \to a') \in Mor(\mathbb{C}), \nu_{a'} \circ F(f) = G(f) \circ \nu_a$.