Lecture 30 : More on factorization and divisibility

Lecturer: James Cummings Scribe: Rajeev Godse

1 Greatest common divisors

Recall: PID \implies UFD. Soon, we will show that the converse is not true, as $\mathbb{Z}[x]$ UFD but not PID. Let R be an ID, $a, b \in R$. d is a greatest common divisor (gcd) of a, b if and only if

- (1) d divides both a and b
- (2) If e divides both a and b , then e divides a .

Note that from this definition, 0 is the only gcd of 0, 0.

Further note that if d', a', b' are associates of d, a, b , then d is a gcd of a, b iff d' is a gcd of a', b' .

Facts:

- (1) If a, b have a gcd, it's unique up to associates. *Proof*: If d_1, d_2 are both gcd's, $d_1 | d_2$ and $d_2 | d_1$, so d_1, d_2 are associates. \Box
- (2) In a UFD, gcd's exist for all a, b . Proof sketch: Compare factorizations of a, b.
- (3) In a PID, $(a, b) = (d)$ for any gcd d of a, b. *Proof:* $a \in (a, b) = (d)$, so $d | a$. Similarly, $d | b$. If $e \mid a, b$, then $(e) \supseteq (a, b) = (d)$, so $e \mid d$.

2 Non-unique factorization domains

Recall: For $z = a + bi \in \mathbb{C}$, $a, b \in \mathbb{R}$, $|z|^2 = z\overline{z} = a^2 + b^2$. $|zw| = |z||w|$. Let $\alpha = i$ $\sqrt{5}$, let $R = \mathbb{Z}[\alpha] = \{m + n\alpha : m, n \in \mathbb{Z}\}.$ If $r = m + n\alpha \in R$, $N(r) = |r|^2 = (m + n\alpha)(m - n\alpha) = m^2 + 5n^2$. Easy: $N(r) = 0 \iff r = 0$. Also, $N(rs) = N(r)N(s)$. If $rs = 1$, then $N(r)N(s) = N(rs) = N(1) = 1$, so $N(r) = N(s) = 1$. So ± 1 are the only units. Furthermore, R is an ID as R is a subring of a field.

Useful fact: $m^2 + 5n^2 \equiv 0, 1, 4 \mod 5$ for integers m, n .

Claim: 2 is irreducible. *Proof*: If $2 = ab$, $4 = N(2) = N(a)N(b)$. From the useful fact, there are no elements of norm 2, so WLOG suppose $N(a) = 1$ and $N(b) = 4$. Then, a is a unit, so we're done. \Box Note: $N(1+\alpha) = N(1-\alpha) = 1^2 + 5 \cdot 1^2 = 6.$

Claim: 3, $1 - \alpha$, $1 + \alpha$ all irreducible. *Proof*: similar.

Note: $6 = 2 \times 3 = (1 + \alpha)(1 - \alpha)$, so R is not a UFD and $2, 3, 1 + \alpha, 1 - \alpha$ are not prime, even though they are irreducible.

 \Box

 \Box

 \Box

Claim: There is no gcd of $6, 2(1 + \alpha)$ in $\mathbb{Z}[\alpha]$. Proof: $2, 1 + \alpha | 6, 2(1 + \alpha)$. If d gcd, then $2 | d$ and $1 + \alpha | d$, so $N(2) = 4 | N(d)$, $N(1 + \alpha) = 6 | N(d)$, and $d | 6, 2(1 + \alpha)$, so $N(d) | 36, 24$. Thus, $N(d) = 12 \equiv 2 \mod 5$, a contradiction. \Box

3 Linear algebra redux

Let M be an R -module.

- (1) For $X \subseteq M$, span $(X) =$ least submodule of M containing X.
- (2) A set $Y \subseteq M$ is **independent** if for all distinct $y_1, \ldots, y_t \in Y$ and all $r_i \in R$, $\sum_{i=1}^t r_i y_i = 0 \iff$ all r_i 's 0.

A basis for M is an independent spanning set. M is free if and only if M has a basis.