November 16, 2022

Lecture 30 : More on factorization and divisibility

Lecturer: James Cummings Scribe: Rajeev Godse

1 Greatest common divisors

Recall: PID \implies UFD. Soon, we will show that the converse is not true, as $\mathbb{Z}[x]$ UFD but not PID. Let R be an ID, $a, b \in \mathbb{R}$. d is a **greatest common divisor** (gcd) of a, b if and only if

- (1) d divides both a and b
- (2) If e divides both a and b, then e divides a.

Note that from this definition, 0 is the only gcd of 0, 0.

Further note that if d', a', b' are associates of d, a, b, then d is a gcd of a, b iff d' is a gcd of a', b'.

Facts:

- (1) If a, b have a gcd, it's unique up to associates. *Proof*: If d_1, d_2 are both gcd's, $d_1 \mid d_2$ and $d_2 \mid d_1$, so d_1, d_2 are associates.
- (2) In a UFD, gcd's exist for all a, b.*Proof sketch*: Compare factorizations of a, b.
- (3) In a PID, (a, b) = (d) for any gcd d of a, b. *Proof*: a ∈ (a, b) = (d), so d | a. Similarly, d | b.
 If e | a, b, then (e) ⊇ (a, b) = (d), so e | d.

2 Non-unique factorization domains

Recall: For $z = a + bi \in \mathbb{C}$, $a, b \in \mathbb{R}$, $|z|^2 = z\overline{z} = a^2 + b^2$. |zw| = |z||w|. Let $\alpha = i\sqrt{5}$, let $R = \mathbb{Z}[\alpha] = \{m + n\alpha : m, n \in \mathbb{Z}\}$. If $r = m + n\alpha \in R$, $N(r) = |r|^2 = (m + n\alpha)(m - n\alpha) = m^2 + 5n^2$. Easy: $N(r) = 0 \iff r = 0$. Also, N(rs) = N(r)N(s). If rs = 1, then N(r)N(s) = N(rs) = N(1) = 1, so N(r) = N(s) = 1. So ± 1 are the only units.

Furthermore, R is an ID as R is a subring of a field.

Useful fact: $m^2 + 5n^2 \equiv 0, 1, 4 \mod 5$ for integers m, n.

Claim: 2 is irreducible. *Proof*: If 2 = ab, 4 = N(2) = N(a)N(b). From the useful fact, there are no elements of norm 2, so WLOG suppose N(a) = 1 and N(b) = 4. Then, *a* is a unit, so we're done. \Box Note: $N(1 + \alpha) = N(1 - \alpha) = 1^2 + 5 \cdot 1^2 = 6$.

Claim: 3, $1 - \alpha$, $1 + \alpha$ all irreducible. *Proof*: similar.

Note: $6 = 2 \times 3 = (1 + \alpha)(1 - \alpha)$, so R is not a UFD and $2, 3, 1 + \alpha, 1 - \alpha$ are not prime, even though they are irreducible.

Claim: There is no gcd of $6, 2(1 + \alpha)$ in $\mathbb{Z}[\alpha]$. *Proof*: $2, 1 + \alpha \mid 6, 2(1 + \alpha)$. If d gcd, then $2 \mid d$ and $1 + \alpha \mid d$, so $N(2) = 4 \mid N(d), N(1 + \alpha) = 6 \mid N(d),$ and $d \mid 6, 2(1 + \alpha),$ so $N(d) \mid 36, 24$. Thus, $N(d) = 12 \equiv 2 \mod 5$, a contradiction.

3 Linear algebra redux

Let M be an R-module.

- (1) For $X \subseteq M$, span(X) = least submodule of M containing X.
- (2) A set $Y \subseteq M$ is **independent** if for all distinct $y_1, \ldots, y_t \in Y$ and all $r_i \in R$, $\sum_{i=1}^t r_i y_i = 0 \iff$ all r_i 's 0.

A basis for M is an independent spanning set. M is free if and only if M has a basis.