November 28, 2022

Lecture 33 : Uniquely factorizing polynomials (continued)

Lecturer: James Cummings Scribe: Rajeev Godse

1 Finishing the Proof

For UFD R with field of fractions K, recall:

- (1) We say $f \in R[x]$, $f \neq 0$ is **primitive** if a gcd of the coefficients of f is a unit, or equivalently, there is no prime p in R such that $p \mid f$ in R[x].
- (2) The units of R are units in R[x]. $p \in R$ is irreducible in $R \iff p$ is irreducible in R[x].
- (3) Gauss's Lemma: If $f, g \in R[x]$ primitive, then fg is primitive.
- (4) The units of K[x] are $K \setminus \{0\}$. If $f \in K[x]$ non-zero, then f has an associate in K[x] that is primitive in R[x].

Strategy: $R \subseteq R[x] \subseteq K[x]$ and R, K[x] are UFDs.

Lemma: Let $f \in R[x]$ be primitive, $\deg(f) > 0$. f is irreducible in $R[x] \iff f$ irreducible in K[x].

Proof: Suppose f is irreducible in R[x]. Let $g, h \in K[x]$ and suppose f = gh.

We can find $C_0, D_0, C_1, D_1 \in R$, $D_0, D_1 \neq 0$ such that $(C_0/D_0)g$ and $(C_1/D_1)h$ are primitive elements of R[x]. Then, $(C_0/D_0)(C_1/D_1)f = ((C_0/D_0)g)((C_1/D_1)h)$. By Gauss's Lemma, this product of two primitives is primitive in R[x].

We can also get the equation in R[x] that $C_0C_1f = D_0D_1((C_0/D_0)g)((C_1/D_1)h)$.

As f is primitive, C_0C_1 is the content of the LHS of the above equation. As $(((C_0/D_0)g)((C_1/D_1)h))$ is primitive, D_0D_1 is the content of the RHS. So C_0C_1 , D_0D_1 are associates in R. Adjusting C_0 by a unit if necessary which leaves intact its desired properties, we may assume WLOG that $C_0C_1 = D_0D_1 \neq 0$.

Since R[x] is ID, we have that $f = ((C_0/D_0)g)((C_1/D_1)h)$ in R[x]. Since f is irreducible, one of its factors must be a unit in R[x], i.e. a unit in R, so either f or g is a non-zero element in K, i.e. a unit in K[x]. Thus, f is irreducible in K[x].

Conversely, suppose f is irreducible in K[x]. Let f = gh in R[x].

 $g, h \in K[x]$, so WLOG, g is a unit in K[x], i.e. a unit in K.

 $g \in R[x] \cap (K \setminus \{0\}) = R \setminus \{0\}$, so g is non-zero in R.

f = gh, so g divides all the coefficients in f. Since f is primitive, g must be a unit in R, i.e. a unit in R[x]. \Box

We now want to show that factorizations in R[x] exist, and are unique.

Existence: Let $f \in R[x]$, f is nonzero, nonunit.

Where c is the content of f, $f = cf_0$ for primitive f_0 .

If c is a unit, that's great, we can fold it into the factorization of f_0 . Otherwise, we can factor c into irreducibles in R, which are also irreducibles in R[x].

Now, let's view f_0 as a polynomial in K[x]. If f_0 is a unit in K[x], then $f_0 \in R$, so great, factor it in R. Otherwise, factor f_0 into irreducibles h_1, \ldots, h_t in K[x]. For each *i*, let $H_i \in R[x]$ be a primitive associate of h_i in K[x]. Then, $F_0 = \prod_i H_i$ is an associate of f_0 in K[x]. F_0 , the product of primitives in R[x] is primitive in R[x]. So WLOG, $F_0 = f_0$, since they are both primitive, and so the fraction relating them in K[x] must be a unit in R[x].

Since each H_i is primitive and deg $(H_i) > 0$, each H_i is irreducible in R[x]. So indeed, we have a factorization of f.

Uniqueness: Let $f \in R[x]$ be nonzero nonunit. Fix 2 factorizations of f into irreducibles in R[x].

Irreducibles in R[x] are either irreducible in R or non-zero degree and primitive.

Let $f = C_1 \dots C_s g_1 \dots g_t = D_1 \dots D_u h_1 \dots h_v$, where C_i, D_i are irreducible in R and g_i, h_i are irreducible in R[x] with nonzero degree, meaning they are also primitive.

Since $\prod_i g_i$, $\prod_i h_i$ are primitive, WLOG (up to associates), $\prod_i C_i = \prod_i D_i$. As R UFD, s = u and C_i 's are equal to D_i 's up to permutation and associates in R and thus in R[x].

Then, as R[x] is ID, $\prod_i g_i = \prod_i h_i$. As g_i, h_i are primitive, deg > 0, and irreducible in R[x], they are irreducible in K[x]. As K[x] is a UFD, t = v and g's and h's are equal up to associates (in K[x]) and permutation. Since they are all primitives, they are also associates in R[x].