21-237: Math Studies Algebra I

December 7, 2022

Lecture 37 : Adjunction

Lecturer: James Cummings Scribe: Rajeev Godse

1 Categorical constructions

Let \mathcal{C} be a category. \mathcal{C}^{op} is " \mathcal{C} with the arrows reversed."

For categories \mathcal{C}, \mathcal{D} , define $\mathcal{C} \times \mathcal{D}$, the **product** of \mathcal{C} and \mathcal{D} with objects (c, d) for c an object of \mathcal{C} and dan object of \mathcal{D} and morphisms $(f, g) : (c_1, d_1) \to (c_2, d_2)$ for arrows $f : c_1 \to c_2$ in $\mathcal{C}, g : d_1 \to d_2$ in \mathcal{D} .

For categories \mathcal{C}, \mathcal{D} , define Fun $(\mathcal{C}, \mathcal{D})$, the **functor category** of \mathcal{C}, \mathcal{D} with objects functors $F : \mathcal{C} \to \mathcal{D}$ and arrows $\eta : F \to G$ natural transformations from F to G, i.e. a family $(\eta_c : Fc \to Gc)_{c \in obj(\mathcal{C})}$ such that for all arrows $\alpha : c \to c'$ in $\mathcal{C}, G\alpha \circ \eta_c = \eta_{c'} \circ F\alpha$, i.e. the following diagram commutes:

Given a category \mathcal{C} , objects c, c' of \mathcal{C} , $\operatorname{Hom}_{\mathcal{C}}(c, c')$ is the collection of arrows from c to c' in \mathcal{C} .

A natural question to ask is how we might compare $\operatorname{Hom}_{\mathcal{C}}(c, c')$ and $\operatorname{Hom}_{\mathcal{C}}(d, d')$.

It's category theory! Let's use arrows.

For some $\alpha : d \to c, \beta : c' \to d'$, we can map $\gamma : c \to c'$ to $\beta \gamma \alpha : d \to d'$.

If \mathcal{C} is locally small, we can construct the **hom functor**, $\operatorname{Hom}_{\mathcal{C}}(-,-): \mathcal{C}^{op} \times \mathcal{C} \to \operatorname{Set}$.

For object (c, c'), Hom(c, c') is the set we defined earlier.

For morphism $(\alpha, \beta) : (c, c') \to (d, d')$, $\operatorname{Hom}(\alpha, \beta)(\gamma) = \beta \gamma \alpha$, typechecks as above.

Also note that in any category C, an arrow $\alpha : c \to c'$ is an **isomorphism** if there is an arrow $\beta : c' \to c$ such that $\alpha\beta = \mathrm{id}_{c'}$ and $\beta\alpha = \mathrm{id}_c$. If β exists, it's unique, and we write $\beta = \alpha^{-1}$.

2 Adjunctions

Let $F : \mathcal{C} \to \mathcal{D}, G : \mathcal{D} \to \mathcal{C}$ be functors. Consider $\operatorname{Hom}_{\mathcal{D}}(F^{-}, -)$ as a functor with domain $\mathcal{C}^{op} \times \mathcal{D}$ and $\operatorname{Hom}_{\mathcal{C}}(-, G^{-})$ as a functor with domain $\mathcal{C}^{op} \times \mathcal{D}$.

An adjunction between F and G is a natural isomorphism between $\operatorname{Hom}_{\mathcal{C}}(-, G-)$ and $\operatorname{Hom}_{\mathcal{D}}(F-, -)$.