21-237: Math Studies Algebra I

December 9, 2022

Lecture 38 : Adjoints preserve limits

Lecturer: James Cummings Scribe: Rajeev Godse

1 Adjunction in action

Let $\operatorname{Fr} : \operatorname{Set} \to \operatorname{Grp}$ be the *free group functor*, i.e. for set X, $\operatorname{Fr}(X)$ is the free group on X, and for function $f : X \to Y$, $\operatorname{Fr}(f)$ is unique HM ϕ such that $\operatorname{Fr}(X) \to \operatorname{Fr}(Y)$ such that $\phi(x') = f(x)'$ for $x' \in X$.

Let $\text{Un}: \operatorname{\mathbf{Grp}} \to \operatorname{\mathbf{Set}}$ be the *forgetful functor*, i.e. $\operatorname{Un}(G, \cdot) = G$ and $\operatorname{Un}\phi = \phi$.

Notice: For all sets X and groups G, there is a natural bijection between $\operatorname{Hom}_{\mathbf{Grp}}(\operatorname{Fr}(X), G) = \{\phi : \operatorname{Fr}(X) \to G \mid \phi \text{ HM}\}$ and $\operatorname{Hom}_{\mathbf{Set}}(X, \operatorname{Un}(G)) = \{f : X \to G \mid f \text{ function}\}.$

So Fr and Un are adjoint.

2 Right (left) adjoints preserve (co)limits

Let $F : \mathcal{C} \to \mathcal{D}, G : \mathcal{D} \to \mathcal{C}, F \dashv G$ as witnessed by $\nu_{(c,d)} : \operatorname{Hom}_{\mathcal{D}}(Fc,d) \leftrightarrow \operatorname{Hom}_{\mathcal{C}}(c,Gd).$

Let c_1, c_2 be objects of c which have a coproduct c with injection maps $i_1 : c_1 \to c, i_2 : c_2 \to c$ such that for all $c', i'_1 : c_1 \to c', i'_2 : c_2 \to i'_2$, there is unique $\gamma : c \to c'$ such that $\gamma \circ i_1 = i'_1$ and $\gamma \circ i_2 = i'_2$, i.e. the following diagram commutes:

Theorem: F preserves coproducts. That is, the coproduct of Fc_1 and Fc_2 is given by Fc with injections Fi_1, Fi_2 . Note that this holds more generally for all colimits.

Proof: Take all the data in a coproduct diagram of Fc in \mathcal{D} . Applying the natural isomorphism, we get a coproduct diagram in \mathcal{C} . As c is a coproduct in \mathcal{C} , there is a unique $\gamma : c \to Gd$ such that $\gamma \circ i_1 = Gi'_1$ and $\gamma \circ i_2 = Gi'_2$.

Then, applying the natural isomorphism back to the world of \mathcal{D} , $\delta = F\gamma$ is the unique HM such that $\delta \circ Fi_1 = i'_1$ and $\delta \circ Fi_2 = i'_2$.