21-237: Math Studies Algebra I September 12, 2022

Lecture 6 : Quotient groups

Lecturer: James Cummings Scribe: Rajeev Godse

1 Normal subgroups

Recall: For $N \leq G$, N is **normal** in $G(N \triangleleft G)$ if any of the following hold:

- 1. $N^g = N$ for all $g \in G$
- 2. $gN = Ng$ for all $g \in G$
- 3. $N^g \leq N$ for all $g \in G$

2 Quotient groups

The homomorphism associated with the quotient group is often more important than the quotient group itself. As category theorists say, it's the arrows that matter.

Let G be a group, let $N \triangleleft G$. We define the quotient group G/N , along with quotient homomorphism $\phi_N : G \to G/N$.

The underlying set of G/N is the set of cosets of N on G (since $N \triangleleft G$, $gN = Ng$, i.e. the left and right cosets coincide).

We define the binary operation $(q_1N)(q_2N) = (q_1q_2)N$.

We verify this gives a well-defined binary operation:

Note: For any $H \leq G$, $aH = bH \iff a = bh$ for some $h \in H \iff ah = b$ for some $h \in H \iff$ $b^{-1}a \in H \iff a^{-1}b \in H.$

Let $g_1N = g'_1N$, $g_2N = g'_2N$. From the note, $g_1^{-1}g'_1 \in N$, $g_2^{-1}g'_2 \in N$.

$$
g_2^{-1}g_1^{-1}g'_1g'_2 = g_2^{-1}g_1^{-1}g'_1g_2g_2^{-1}g'_2
$$

= $(g_1^{-1}g'_1)^{g_2^{-1}}(g_2^{-1}g'_2) \in H$ (Closure under product, conjugation)

By the note, $g_1g_2H = g'_1g'_2H$. So the binary operation we defined is a well-defined function.

Claim 1: the quotient group is a group

Proof: $((g_1N)(g_2N))(g_3N) = ((g_1g_2)N)(g_3N) = ((g_1g_2)g_3)N = (g_1(g_2g_3))N = (g_1N)((g_2g_3)N)$ $(q_1N)((q_2N)(q_3N))$, so the operation is associative.

 $(1N)(gN) = gN = (gN)(1N)$, so $1N = N$ is the identity.

$$
(g^{-1}N)(gN) = (gg^{-1})N = N
$$
, so $(gN)^{-1}$ is given by $g^{-1}N$.

Claim 2: ϕ_N , defined in the obvious way, is an HM

Proof: If we define $\phi_N = g \mapsto gN$, ϕ_N is an HM from G to G/N , from the equational reasoning above. Claim 3: $N = \text{ker}(\phi_N)$

Proof: $1_{G/N} = N$, so ker $(\phi_N) = \{g : gN = N\} = N$ by extreme obviousness $(N$ is a subgroup).

Upshot: $|G/N|$ = number of cosets of N in $G = [G:N]$. If G is finite, this is equal to $\frac{|G|}{|N|}$.

3 First Isomorphism Theorem

Theorem: Let $\phi: G_1 \to G_2$ be a HM. Let $N = \text{ker}(\phi)$ (so $N \triangleleft G_1$). Then there is an isomorphism ψ from G_1/N to $\phi[G_1]$ given by $\psi = gN \mapsto \phi(g)$.

Key calculation: Let $g, g' \in G_1$. $\phi(g) = \phi(g') \iff \phi(g^{-1}g') = 1 \iff g^{-1}g' \in N \iff gN = g'N$. Useful related fact: A HM ϕ is injective iff ker(ϕ) = 1.