Lecture 3 Protein Structure and Function, Carbohydrates, Nucleic Acids

- Protein Structure and Stability
- Ligand Binding
- Proteins as enzymes (PKU disease)
- Carbohydrates
- Nucleic Acid Technologies

- Summary Interactions that Stabilize Folded Proteins.
- **Hydrogen bonds** form between hydrogen atoms (NH) and the carbonyl group in the peptide backbone (mainchain), and between and donors and acceptors on sidechains. *Mainchain-mainchain H-bonds are responsible for secondary structures.*
- **Hydrophobic interactions** within a protein increase stability of the folded state by *increasing entropy due to the release of water that was ordered by the exposed non-polar groups in the unfolded protein.*
- **van der Waals interactions** are *optimized in the well packed core of the protein*.
- **Covalent disulfide bonds** form between sulfur-containing cysteine residues stabilizing them (usually only exported, secreted proteins).

A single change in the amino acid sequence can change the function of a protein, and often affecting how it folds – Producing Inactive Proteins.

Surface Mutations May Also Lead to Disease

What Happens When Proteins Fold Into Different Structures?

Protein Structure - Summary and Expectations

Primary Structure:

- Can you describe the mechanism of peptide bond formation
- Can you draw structure of peptides.
- Can you identify amino terminus and give the sequence of amino acids, $N \rightarrow C$

Secondary structure:

- Identify helical and sheet secondary structures,
- know that they are stabilized by **mainchain** hydrogen bonds between N-H and O=C.
- Location of H-bonds and sidechains

Tertiary Structure:

- Can you describe and identify role of the following in stabilizing the folded state.
	- H-bonds,
	- van der Waals,
	- hydrophobic effect
- Can you predict, based on sidechain, which amino acids are found in the core of the protein and which are found on the surface.

Quaternary Structure:

• Multiple chains, stabilized by non-covalent and covalent (disulfide bonds) interactions.

Diseases related to protein structure:

- Core mutations affect folding
- Surface mutations affect protein-protein (and Protein-DNA) interactions
- Stable isoforms toxic to the cell

Ligand Binding: Most Proteins Bind to

The bound ligand can be stabilized by any and all of the following interactions:

The binding of two different molecules to the same protein was measured and the data is shown on the right. L1 is cAMP, L2 is similar to cAMP

Which ligand has a K_D of 10?

Which ligand binds more tightly to the protein (higher affinity)? L1 or L2?

Key Points:

Binding:

Folded proteins have *binding sites* that recognize other molecules (*ligands*) using *any and all* of the following:

- H-bonds, \checkmark
- van der Waals, \checkmark
- Electrostatic,
- Non-polar interactions (hydrophobic)

```
Binding is reversible
```
Binding is **saturable**

Binding $\frac{1}{2}$ point (Y=0.5) occurs at K_D

The higher the affinity (strength of interaction), the lower the K_D

Enzymes

- **Enzymes** are protein or RNA catalysts. They increase the rate of the reaction.
- They bind "substrates" and convert them to "products". Usually, the substrate undergoes a chemical reaction and is changed in its structure.
- Most biological chemical reactions occur at meaningful rates only in the presence of an enzyme.
- Substrates bind specifically to the enzyme's **active site,** interacting with amino acid side chains (or RNA bases). Usually, an enzyme binds one substrate.
- The chemical change caused by the enzyme is catalyzed by additional functional groups in the active site.
- Many enzymes undergo a conformational change when the substrates are bound to the active site; this change is called an **induced fit** .

Example of Active Site Functional Groups:

- Catalytic triad (Asp, His, Ser) in Protease Trypsin cleaves the peptide bond.
- More active with Lys and Arg containing substrates rolling because of a favorable interaction with an additional Asp residues in the enzyme.

 $tryP^{\text{si}}$

Nuc

protein tras.

Enzyme – Chemical Diversity

- Most enzyme names end in "-ase"
- Usually named by their substrates and the reactions they catalyse, i.e. *glucose kinase*

How Do Enzymes Increase Rates?

- **Transition state** = high energy intermediate that occurs during the reaction.
- Energy barrier is called the activation energy.
- Rate of product formation depends on the concentration of the transition state.
 $E \rightarrow h \rightarrow h$ a transition E
- σ σ Low $[X] =$ Slow reaction

Higher [EX] = Faster reaction Ω \sim

- Interactions between the enzyme and the substrate stabilize the **transition state** (X) and lower the activation energy required for the reaction to proceed.
- Stabilization can include:
	- Pre- alignment of key groups in the active site, reducing entropy cost of organizing groups.

– Direct interactions with just the transition state, e.g. formation of new H-bonds.

1/25/2025 Drugs and Disease Spring 2025 - Lecture 3 16

Enzymes, Metabolic Pathways, and Diseases

Key Points:

Enzymes:

- Enzymes bind substrates (S), forming (ES) complex in active site, converting to P, releasing P.
- Rate enhancement since the transition state complex (EX) forms more readily with enzymes due to:
	- Bringing substrates and functional groups on the enzyme together by binding (less entropy change)
	- Directly lowering energy of transition state (X) through favorable interactions that are unique to the transition state, such as forming unique hydrogen bonds.
- Genetic diseases that lead to inactive metabolic enzymes can cause disease due to the build-up of toxic intermediates.

Carbohydrates

Polysaccharide

- General structure of monomers
- Disaccharides (e.g. lactose)
- Glycogen (glucose storage)
- Bacterial cell wall structure (antibiotic target)
- Lactose intolerance
- Glycogen storage disease

Carbohydrates

Functional groups: Monosaccharides (one sugar), • oligosaccharides (few sugars) • polysaccharides (many sugars) Chemical formula is $(CH_2O)_n$ (e.g. aldehyde ketone carboxylic acid hydrated carbon) $\widehat{\mathrm{C}}$ arbonyl group \rightarrow C=O They are molecules with: – one aldehyde or ketone group, on 1^{st} **A B C** \times HO or 2nd carbon OH – -OH group on *all* other carbons, -OH ν -OH Н-Hleading to a chiral carbon for most $-OH$ $H-$ **OH** Н- $-OH$ carbons. \vee -OH μ $-$ OH $H-$ H- $H-$ **OH OH** $^{\circ}$ OH $^{\prime}$ H^{\prime} H^{\prime} H Ĥ *Only one of these is a carbohydrate, which one? A B C*

3 ways simple sugars (monosaccharides) differ from each other

1. Location of the carbonyl group

2. Number of carbons

3. Spatial arrangement of atoms (the position of the OH groups)

the carbonyl?

1. Location of the carbonyl group 2. Number of carbons

3. Spatial arrangement of atoms (the position of the OH groups)

Numbering carbons: Carbon 1 is at the end closest to the C=O group.

3 ways simple sugars (monosaccharides) differ from each other

Ring formation in Monosaccharides:

- In aqueous solution, a hydroxyl group reacts with the aldehyde or ketone group on the same molecule, closing the molecule into a ring, with a bridging oxygen
- It is usually the 2nd to last -OH group, i.e. C5 in glucose, C4 in ribose.
- Stable ring sizes are 5 atoms or 6 atoms
- No atoms are lost or gained in this reaction.
- The carbonyl carbon becomes chiral and is called the *anomeric carbon***.**
- The rings with different chirality at C1 are different:

 α (new OH is down), β (new OH is up) α "(ants are down, birds are up)"

Example Problem:

The linear form of ribose, a 5 carbon aldose is shown on the right. This sugar is found in RNA (ribonucleic acid).

- Number the carbons.
- 2. Which carbons are chiral? Mark them with a *.

A

3. Draw the cyclic form of α -ribose

 $2.50062.$

 $6 M$

DY

OH

Disaccharides

Linkage of the anomeric carbon of one monosaccharide to the OH of another monosaccharide via a *condensation* reaction.

The bond is termed a *glycosidic bond:*

- *i) The anomeric carbon is the site of attack by another -OH group.*
- *ii) A water is released*

Why is the anomeric carbon the preferred site for nucleophilic attack?

Nomenclature rules for linkage:

- Orientation of the **anomeric** involved in the linkage (α oxygen is down, β oxygen is up)
- **Carbons involved in the linkage (e.g. 1-4)** Drugs and Disease Spring 2025 Lecture 3 27 27

At least one anomeric is always involved.

Lactose is the major sugar in mammalian milk.

- Infants produce the enzyme *lactase* to hydrolyze the disaccharide to monosaccharides.
- Lactase expression is turned off in some adults, depending on their genetic background.

The two sugars are absorbed and used for energy

In a lactose intolerant individual (lactase -)

- The lactose is not absorbed in the small intestine, but instead draws water into the intestine due to osmosis – leading to bloating and diarrhea.
- Lactose enters the large intestine where gut bacteria use it as a carbon source, generating gas.

Lactose Intolerance

What to do if you are lactose intolerant:

and galactose before consumption.

Polysaccharides as Energy Storage – Glycogen Storage Disease

Polysaccharides as Structural Molecules

Summary and Expectations for Carbohydrates

Key Points:

- General structure of monosaccharides be able to distinguish between aldose and ketose (and identify compounds that are not sugars).
- Know how to number carbons on aldoses and ketoses
- Be able to describe the linkage between two monosaccharides (configuration at the anomeric carbon, atoms linked)
- Treatments for lactose intolerance
- Be able to describe the linkage between glucose molecules in:
	- Glycogen (glucose storage)
- Be able to describe the overall structure of the peptidoglycan in bacterial cell walls.