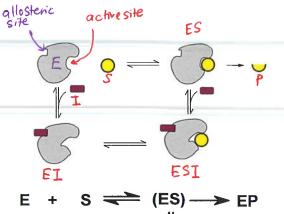
Lecture 19: Allosteric Inhibitors


The binding site of the inhibitor is not at the active site. The inhibitor does not look like the substrate.

- The binding is reversible.
- The inhibitor can bind to both [E] and [ES].
- The inhibitor binding causes a change in the conformation of the protein that affects either substrate binding, the chemical step, or both.

There are two K_D values that describe the binding.

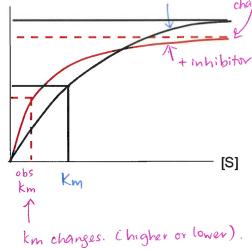
$$K_I = \frac{[E][I]}{[EI]} = \mathsf{K}_{\flat}$$

$$K'_{I} = \frac{[ES][I]}{[ESI]} \subset \mathsf{K}_{D}$$

E + S
$$\rightleftharpoons$$
 (ES) \Longrightarrow EP
$$\begin{cases} K_{\mathbf{I}} = K_{\mathbf{D}} \\ k_{\mathbf{I}} = K_{\mathbf{D}} \end{cases}$$
(EIS)

Special Cases of Mixed-type Inhibition:

(Unrealistic simplifications).


	Binds to (E)	Binds to (ES)
Mixed type	yes	yes
Uncompetitive	no	yes
Noncompetitive	Same affinity	Same affinity

no inhibit

example if enzyme would be Both V_{MAX} and K_M can be altered by mixed inhibitors since the precise geometry of the active site is altered when the inhibitor is bound, potentially affecting binding and catalysis.

The change in V_{MAX} and K_{m} can be used to find K_{l} and

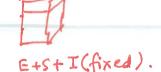
	Mixed Inhibitor
α = ratio of slopes (+1/no inh)	[]]
$K_i = [i]/(\alpha-1)$	$\alpha = 1 + \frac{[I]}{K_I}$
x' = ratio of y-intercept	
(+I/no inh)	$\alpha = 1 + \frac{II}{r}$
$K_1' = [1]/(\alpha'-1)$	K_I

Wmax Km α

Can get ki & ki' from changes in km and Vmax

+inh. **No Inhibitor Present** $v = V_{MAX} \frac{[S]}{K_M + [S]}$ αK_M $V_{M\!A\!X}$ $V_{MAX}[S]$ y intercept. slope

change in slope gives a, as previously.


change in y-intercept give a

Obtaining K_I and K_{I} ' for Mixed Inhibitors:

A. Data Collection.

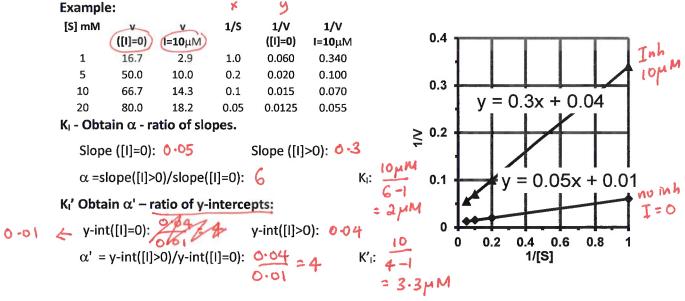
- 1. Obtain v versus [S] in the *absence* of inhibitor.
- 2. Obtain v versus [S] in the *presence* of a *fixed* and *known* concentration of inhibitor.

recitation.

B1. Direct Fitting to Data:

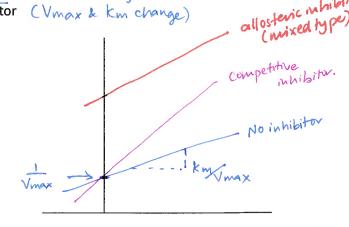
- 1. Predicted velocities: $v_{Pred} = \frac{\frac{v_{MAX}[S]}{\alpha l}}{\frac{\alpha}{\alpha l} K_M + [S]}$
- 2. Determine difference between observed and predicted:

$$\chi^2 = \sum |(V_{obs} - V_{pred})|_{1=0} + |(V_{obs} - V_{pred})|_{1>0}$$


3.Use Solver to find best fit to data by varying K_M , V_{MAX} , α , and α' .

4.
$$K_{\mathbf{I}} = \frac{[\mathbf{I}]}{(\alpha - 1)}$$
 and $K_{\mathbf{I}}' = \frac{[\mathbf{I}]}{(\alpha' - 1)}$

B2. Double Reciprocal Plot:


- 1. Plot both data sets on a double reciprocal plot
- 2. α = ratio of the slopes.
- 3. α' = ratio of Y-intercepts.

4.
$$K_{\mathcal{I}} = \frac{[\mathcal{I}]}{(\alpha - 1)}$$
 and $K_{\mathcal{I}}' = \frac{[\mathcal{I}]}{(\alpha' - 1)}$

Use of double reciprocal plots to distinguish between inhibitor types.

- i) Draw a line representing the un-inhibited reaction, label the intersection with the y-axis.
- ii) Draw a line representing a competitive inhibitor. (Vmax unchanged, km increased)
- iii) Draw a line representing an allosteric inhibitor (Vmax & km change)

