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Abstract 1 

Web-based eye-tracking is more accessible than ever. Researchers can now carry out 2 

visual world paradigm studies remotely and access never before tested, multilingual 3 

populations via the internet all without the need for an expensive eye-tracker. Web-based 4 

eye-tracking, however, requires careful experimental design and extensive data wrangling 5 

skills. In this paper, we provide a framework for reproducible, open science visual world 6 

paradigm studies using online experiments. We provide step-by-step instructions to building 7 

a typical visual world paradigm psycholinguistics study, and walk the reader through a series 8 

of data wrangling steps needed to prepare the data for visualization and analysis using the 9 

open-source software environment, R. Importantly, we highlight the key decisions 10 

researchers need to make and report in order to reproduce an analysis. We demonstrate our 11 

approach by carrying out a single change replication of an in-person eye-tracking study, 12 

Porretta et al. (2020). We conclude with best practices and recommendations for researchers 13 

carrying out bi-/multilingualism web-based visual world paradigm studies. 14 

 15 
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1. Introduction 1 

Bi-/Multilingual psycholinguistic research is fundamentally constrained by the 2 

populations we can test and traditional lab-based research has tested university-aged adults 3 

within Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies. 4 

Whereas this lab-based approach undoubtably advanced psycholinguistics as a field, there 5 

are at least two problems as a result. First, the field struggles to account for individual 6 

differences (e.g., Cunnings & Fujita, 2021). This is a natural limitation of largely testing 7 

homogenous 18–to-30-year-olds. Yet, researchers continue to probe relationships between 8 

speakers, their environment, and their cognition (Kidd et al., 2018, Perpiñán & Montrul, 9 

2023). Second, the field has unintentionally promoted problematic methodological control 10 

in many bi-/multilingualism studies (Rothman et al., 2023). Bi-/multilingual studies, for 11 

example, tend to compare ‘monolinguals’ to ‘bilinguals’ or ‘natives’ to ‘non-natives.’ Yet, 12 

notions of ‘nativeness’ or ‘bilingualism’ naturally vary given the study and setting (Brown 13 

et al., 2022, Han et al., 2023).  14 

Fortunately, web-based research has proliferated, thus removing geographical 15 

barriers and allowing researchers to collect data from any population of languages users 16 

with access to the internet. This in turn allows bi-/multilingualism researchers the potential 17 

to recruit more varied populations in search of individual differences and exert more 18 

appropriate (theory-driven) experimental control in bi-/multilingualism research. Here we 19 

discuss web-based visual world eye-tracking, which has become more accessible and 20 

reliable than ever (e.g., Semmelmann & Weigelt, 2017; Vos et al., 2022). Access to this 21 

method, however, comes at the cost of multipart data wrangling to properly handle 22 

between-participant differences in camera/browser specifications (Prystauka et al., 2023; 23 

Vos et al., 2022).  24 

As web-based eye-tracking grows in accessibility and popularity, it is essential to 25 

recognize that data wrangling is data analysis; it is data clean-up, transformation in and 26 

between data sets, visualization, and statistical analysis (Wickham & Grolemund, 2017). 27 

The choices made during web-based eye-tracking data wrangling can and should be 28 

standardized and reported, where possible, which in turn can help improve replicability 29 

and reliability in the field (e.g., Bolibaugh et al., 2021; Coretta et al., 2023). Here, we 30 
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provide a framework for handling multilingual web-based visual world paradigm eye-1 

tracking data using R (R Core Team, 2022).  2 

1.1 The Visual World Paradigm 3 

The visual world paradigm (VWP) involves displaying visual stimuli including a 4 

target, and competitor(s), and/or distractor(s) with a variety of possible layouts and formats, 5 

from pictures to words (e.g., Allopenna et al., 1998; Cooper, 1974; Tanenhaus et al., 1995). 6 

While the images are shown, eye-movements are recorded and an audio stimulus (e.g., 7 

“beaker”) is played aloud. The participant either needs to select the correct answer based on 8 

the perceived audio or simply listen and look as the sound stimulus plays (e.g., passive 9 

listening). VWP experiments vary widely in what linguistic process is being investigated e.g., 10 

referent prediction, sentence processing, word recognition, phonetic cue integration. However, 11 

all VWP experiments carefully control three core constructs—time, audio stimuli, visual 12 

stimuli—in order to bring meaning to a fourth core construct: eye-fixations. For the remainder 13 

of this paper, these "core four" constructs will be used to guide the reader’s understanding of 14 

how variation in eye-movement behavior can be captured, organized, and analyzed. 15 
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 1 
Figure 1. Illustration of the core four constructs within the VWP. Eye fixations, 2 
represented by red dots, and respective times (blue dots). 3 

 4 

1.2 The Core Four Constructs of a VWP Experiment 5 

Time. Eye-tracking is especially valuable because it provides insight into the time-6 

course of cognitive processing. Time can be measured from the beginning of the trial to the 7 

end of the trial (‘Trial Time’ in Figure 1). There are two adjustments, however, that are 8 

typically made (‘Adjusted Time’ in Figure 1). First, it typically takes a listener about 200ms to 9 

plan an eye-movement (Matin et al., 1993). Eye-movements within the first 200ms are 10 

therefore discarded and researchers typically adjust their analysis accordingly. Second, within 11 

each trial there exists a window of interest (grey area in Figure 1), which contains the crucial 12 

information necessary to identify the target. For example, time in which any carrier phrase is 13 

presented is typically ignored and time after the start of the target word is examined. 14 
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Audio Stimuli. The stimulus can be a word, a sentence, or even a non-speech noise. 1 

The audio informs the participant about the visual stimuli, often indicating which on-screen 2 

visual stimulus is the target or topic of the sentence. The audio stimuli must be carefully 3 

locked to time. For example, the end of the gold audio stimuli in Figure 1 is time-locked to 4 

end at 800ms (trial time). 5 

 6 
Figure 2. Example visual stimuli inspired by Allopenna et al. (1998): target ‘beaker’, 7 
onset competitor ‘beetle’, rhyme competitor ‘speaker’, and distractor ‘stroller’. 8 

 9 

Visual Stimuli. Visual stimuli (Figure 2) can be presented with a preview time or 10 

simultaneously with the audio stimuli (Apfelbaum et al., 2021). Ultimately, the specific timing 11 

used in a study depends on the research question. Most commonly, visual stimuli are made up 12 

of two types: targets and competitors. In the case of four visual stimuli, an additional two 13 

visual stimuli can include a second competitor, a single distractor, two distractors, or even 14 

target absent designs (Huettig & McQueen, 2007). Visual stimuli are always counterbalanced 15 

across the four quadrants so as to reduce the chances of bias in eye-movements in a particular 16 

direction. Quadrants are absolute positions on the computer screen (e.g., upper right, bottom 17 

left).  18 

Eye-Fixations. Eye-fixations are time-stamped x- and y- screen coordinates that are 19 

recorded throughout a trial i.e., where a participant is looking at a particular time. In Figure 1, 20 

red dots are specific x- and y- coordinates and red lines tie those fixations to specific times 21 
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(blue dots). The rate of recording is a function of the measurements recorded per second (e.g., 1 

measuring 1000 times in one second = 1000Hz). Eye-fixations get categorized into absolute 2 

positions on the screen (quadrants) and then mapped to visual stimuli. Where a participant is 3 

looking over time is informed by the audio stimuli. 4 

 5 

2. Building a Web-based Visual World Paradigm Experiment 6 

Web-based eye-tracking experiments can be built with a variety of tools including 7 

simple web-based GUIs, such as Gorilla/Pavlovia, as well as manual coding on Gorilla or 8 

PCIbex Farm, or directly hosting a JavaScript-based experiment online. Readers are invited to 9 

follow along on OSF with our detailed Gorilla tutorial (and cloneable experiments). Figure 3 10 

shows an example of a single eye-tracking experiment trial.  11 

Most eye-tracking experiments can be thought of as a forced-choice task (see 12 

Experimental ET Tasks for example: simple forced-choice at Gorilla link). From the 13 

participant’s perspective, they hear an audio stimulus and select one of the visual stimuli1. 14 

Timing between the onset and/or offset of the core four constructs is essential: the audio and 15 

visual stimuli must be time-locked. When building the experiment, it is essential to focus on 16 

the timing of the trials, the types of data you want out of the trial2, and when the webcam 17 

should record eye-fixations. 18 

 

1 Look and listen paradigm experiments are similar; however, no overt selection occurs. 

2 Feedback is often used in bi-/multilingual studies; an additional screen indicating the correct target, such 

as a circle around the beaker or written corrective feedback could be added. 

https://app.gorilla.sc/openmaterials/715241
https://app.gorilla.sc/openmaterials/715241
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 1 
Figure 3. Sample trial for an eye-tracking study with three screens. Colors match that of 2 
Figure 1: blue (time), gold (audio stimuli), black (visual stimuli), red (eye-fixations). 3 

 4 

Figure 3 shows how the exact presentation of your audio stimuli depends on where 5 

you want the audio time-locked to the visual stimuli, which is determined by the respective 6 

research question. For example, if we were to play the audio in Figure 2 in order to 7 

understand spoken word recognition (e.g., Allopenna et al., 1998), we would first show the 8 

images and start the beginning of the audio stimulus at a set time after the visuals have been 9 

displayed (e.g., 200ms). In this way, participants’ eye-fixations for the first 200ms would be 10 

evenly distributed over the visual stimuli. Then as the word starts to play, the fixations would 11 

gravitate towards the target (i.e., “beaker”) and/or competitors (i.e., “speaker” and “beetle”) 12 

and away from the distractor (“carriage”). As the trial progresses the fixations would tend 13 

more and more toward the “beaker.” 14 

Most web-based eye tracking studies, including the current study, capture eye-15 

fixations using WebGazer.js (Papoutsaki et al., 2016). WebGazer.js is java script library that 16 

uses common webcams to infer the gaze of participants in real time. WebGazer is 17 

straightforward to use in both the self-hosted JavaScript based experiments as well as through 18 

Gorilla, Psychopy, and PCIbex. Best of all, many of the height and monitor restrictions used 19 

in in-person eye-tracking can be ignored because WebGazer uses ridge regression models to 20 

infer gaze under a variety of different user set-ups and behaviors. 21 
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When creating a WebGazer eye tracking experiment, either a five- or nine-point 1 

calibration can be used, with any level set for calibration fail points or repeat calibrations. 2 

Nine-point calibration provides a better standard but takes longer and may fail more often. 3 

Although it is not necessary because of the manner in which WebGazer.js functions (Chen et 4 

al., 2001), we recommended calibration at the beginning of the experiment with reported 5 

calibration metrics provided. Importantly, webcams have variable frame-rates (frames per 6 

second or FPS) that depend on participant movement, and the participant’s device, which can 7 

range between 20Hz and 60Hz (Vos et al., 2022). The typical raw eye-fixation samples 8 

captured per second is 15, 30, 60, and 120 (standard webcam FPS) but will likely be much 9 

lower in the actual data due to the aforementioned reasons.  10 

Additionally, the participant’s lighting environment can affect the number of fixations 11 

recorded. For example, darker rooms may lower FPS. This means that some trials will capture 12 

more/less eye-fixations than other trials (Prystauka et al., 2023). Whereas brighter rooms can 13 

result in greater FPS, the directionality of the lighting can also affect calibration. If a light 14 

source is behind the participants this can lead to improper exposure. Finally, the timing of 15 

eye-fixations can vary within a trial with non-equal measurements between captured eye 16 

fixations. This means that the eye-fixations being captured start to drop throughout the trial. 17 

This variability in frame-rate can be somewhat attenuated by doing in-person eye-tracking 18 

with WebGazer but is nonetheless somewhat unavoidable (e.g., Papoutsaki et al., 2016).  19 

2.1 VWP Raw Data and Tidy Data 20 

Raw web-based eye-tracking data will vary given the platform for data collection (e.g., 21 

directly hosting or Gorilla). Raw data from a web-based VWP experiment, generally, has two 22 

basic parts: behavioral task data and eye-tracking data (WebGazer data). Behavioral data will 23 

include all selections and timings of those selections (e.g., reaction time, condition, trial 24 
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order). Eye-fixation data will contain trial-by-trial eye-fixation data that is paired with within-1 

trial trial-time.  2 

 3 

Figure 4. Behavioral task data (left) and trial-specific eye-tracking data (right). 4 

 5 

 The data structure depicted in Figure 4 is relational. That is, for every trial of each 6 

participant, there exists a corresponding set of eye-tracking data that is associated with both 7 

the trial and the participant. The eye-tracking data provides a detailed account of the gaze 8 

locations throughout the duration of the trial. This form of data while maximally informative, 9 

is untidy and difficult to understand. We next turn to tidying the data so that each column 10 

refers to a single variable (e.g., audio stimuli) and each row is exactly one observation (e.g., 11 

“beaker.wav”). In order to better demonstrate this process, we walk the reader through a 12 

replication study involving predictive sentence processing of accented and unaccented speech. 13 

 14 

3. Replication of Porretta et al. (2020) 15 

3.1 Background and Motivation 16 

We carried out a single change (web-based data collection) replication study of 17 

Porretta et al. (2020)’s in-person VWP experiment. The study was chosen for replication for 18 

two principled reasons following Marsden et al. (2018): 1) The majority of materials were 19 
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made available by the researchers, which minimizes heterogeneity. 2) The recency, novelty, 1 

and theoretical impact of the initial study warrant replication for the sake of validation and 2 

generalizability. Whereas our study changed only the method of collecting data, this single 3 

change caused three important differences summarized in Table 1.  4 

 5 

Table 1. Key Differences Between our Web-based Replication Study and Lab-based 6 

Porretta et al. (2020). 7 

                                           Our web-based replication            Porretta et al. (2020)  8 

 9 

 Eye-tracker      Variable personal webcams                Eyelink 1000 10 

 Participants 60 Prolific participants         60 university students  11 

 Data wrangling Self-wrangled           Pre-processed12 

 13 
 14 

Porretta et al. (2020) used a 2-by-2 experimental design to manipulate talker 15 

(native/non-native) and verb type (restrictive/non-restrictive, e.g., “the fireman will 16 

climb/need the ladder”, climb allows for object prediction but need does not). These English 17 

sentences were spoken by either a native or Chinese-accented talker. There were two research 18 

questions: 1) To what extent do restrictive and non-restrictive verbs modulate predictive 19 

sentence processing in accented and unaccented speech? 2) To what extent does accent 20 

experience modulate prediction in accented speech? 21 

A direct comparison can be made between our study and Porretta et al. (2020) for 22 

research question one, which will indicate the usefulness of web-based eye-tracking for 23 

capturing prediction in sentence processing. For research question two, our interpretation will 24 

be limited given our random sample of Prolific participants (i.e., we are not controlling 25 

experience with Chinese-accented English). For this reason, results of the second analysis 26 

cannot provide insight into the quality of online eye-tracking data, but our approach may 27 
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instead provide evidence of the usefulness of web-based eye-tracking for recruiting varied, 1 

non-WEIRD populations outside the university setting, which may be particularly useful for 2 

advancing bi-/multilingualism psycholinguistics research and exploring individual 3 

differences.  4 

 5 

3.2 Methods 6 

We used Gorilla Experiment Builder’s eye-tracking 2 zone implemented with 7 

WebGazer.js (Anwyl-Irvine et al., 2019; Papoutsaki et al., 2016). All research materials, R 8 

data analysis, Gorilla experiment and tasks, and data are available on the Open Science 9 

Framework (OSF) (Foster & Deardorff, 2017). The study was approved by the authors’ 10 

Institutional Review Board. All participants were compensated for their participation. Average 11 

completion time of the experiment was 16 minutes including a second (pilot) task that is not 12 

reported here.  13 

 14 

3.2.1 Participants 15 

To ensure direct comparison to Porretta et al. (2020), we tested the same number of 16 

participants, 60 (median age = 31). We recruited through Prolific (Palan & Schitter, 2018) 17 

using the same criteria: native monolingual English speakers, between the ages of 18 to 40. 18 

Not included in the 60 participants that completed the study were 37 rejected participants 19 

(eight failed headphone check, 23 failed eye-calibration, 5 timed-out after 90 minutes, one 20 

failure to consent). As we demonstrate below, an additional 11 participants were removed 21 

during the data tidying, resulting in 49 total participants analyzed. We return to this internet 22 

data quality issue and reduced statistical power in the discussion. 23 

 24 

https://osf.io/a3e5s/?view_only=822c5f28422444768729f5342fd16848
https://osf.io/a3e5s/?view_only=822c5f28422444768729f5342fd16848
https://osf.io/a3e5s/?view_only=822c5f28422444768729f5342fd16848
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3.2.2 Materials 1 

All recordings were taken from Porretta et al. (2020). The experiment contained 250 2 

images, 50 of which were center images and 200 that made up targets and distractors. 99 of 3 

the images were identical to the original experiment (all 50 center images and 49 of the visual 4 

stimuli for objects across practice, filler, and experimental items). The remaining 151 images 5 

were obtained following the same specifications of the initial study (open-source line-drawn 6 

images). Four of the images were created in-house due to not being available online. Four 7 

presentation lists were made which counterbalanced talker and verb type.  8 

 9 

Figure 5. Example Porretta et al. (2020) visual stimuli and center image. Restrictive 10 
sentences (e.g., the fireman climbed the ladder) or nonrestrictive (the fireman needs the 11 
ladder) sentences are counter balanced across participants. 12 

 13 

3.2.3 Procedure 14 

After consenting, each participant did two headphone checks: a basic listening task for 15 

volume and a dichotic pitch task (Milne et al., 2021). Next, participants did a 5-point eye-16 

calibration set to reject participants below four successful points with a limit of three 17 

calibration attempts before rejection. On each trial (24 target, 24 filler), participants were 18 

presented with a 500-ms fixation cross followed by a 2x2 visual stimulus with an additional 19 

center image that represented the subject of the sentence (Figure 5). Each stimulus was 20 
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previewed for 200ms. Next, participants heard either a restrictive (e.g., the fireman climbed 1 

the ladder) or nonrestrictive (the fireman needs the ladder) sentence spoken with either a 2 

native accent or non-native accent. Note competitors and distractors are conflated in this study 3 

i.e., everything that is not the target (e.g., the ladder) could be considered a competitor or 4 

distractor. Participants then answered a simple comprehension question to ensure attention. 5 

After the experimental task, participants filled out a brief questionnaire (identical to Porretta 6 

et al.’s) including age, language experience, and estimated Chinese accent experience 7 

(captured on a scale of 0-100 with a slider that starts at zero). In order to make a comparison 8 

to Porretta et al.’s reported mean of 1.78 (SD = 0.82), accent experience was scaled to 0-30 9 

and then log transformed with a constant of 1. Our population’s mean of 0.99 (SD = 0.92), 10 

therefore, is lower than that of Porretta et al.’s. 11 
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3.3 Data Analysis 1 

In what follows, "L: + line number" (e.g., L:156-157) refer to line numbers in 2 

AOW_r_work_flow.rmd found on OSF. In L:33, we read in three data frames: The task_data, 3 

eye_tracking_data, and OSF_data. To follow along, download the data folder from OSF 4 

and select task_data.csv when prompted by R after running L:33. You can load the other data 5 

frames by running the following lines. Following Figure 5, the task_data is made up of the 6 

behavioral data and information obtained during testing; the eye_tracking_data is made up 7 

of eye-fixations. task_data is a messy 97,827 rows by 111 columns, and 8 

eye_tracking_data is an overwhelming 400,305 rows by 36 columns. As noted earlier, the 9 

data are relational. In the next 200 lines of code, we wrangle these structures into data that we 10 

can fully use, adapt, and share (see supplementary combining_data.Rmd for three methods 11 

on combining separate experimental files into a single data frame). 12 

 13 

31 14 

32 15 

33 16 

34 17 

35 18 

36 19 

37 20 

38 21 

39 22 

40 23 

 24 

3.3.1 Questionnaire wrangling 25 

After loading all relevant packages and data, data wrangling always starts with data 26 

removal. In a VWP experiment, removal occurs at four levels: questionnaire-based, item-27 

## ----Data Reading--- 

#select task_data  

task_data_select<-file.choose()  

task_data<-read.csv(task_data_select,header=TRUE, row.names=1) 

#change for ET data  

et_data_select<-sub("task_data", "et_data", task_data_select) 

eyetracking_data<-read.csv(et_data_select,header=TRUE, row.names=1) 

#change for OSF data 

OSF_data_select<-sub("task_data", "OSF_data", task_data_select) 

OSF_data<-read.csv(OSF_data_select,header=TRUE, row.names=1) 

https://osf.io/a3e5s/?view_only=822c5f28422444768729f5342fd16848
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based, behavior-based, fixation-quality-based. Which level you start with is unimportant; we 1 

start with questionnaire-based removal and ask which participants should be excluded based 2 

on post-experiment questionnaire exclusion criteria, which may be most relevant for bi-3 

/multilingualism studies (e.g., not an L1 English speaker and not between the ages of 18 and 4 

40). In L:43, we start with a clone of our behavioral data frame task_data and assess needed 5 

variables (Screen.Name, Responses, Participant.Private.ID, Reaction.Time(RT)). RT 6 

is kept because it allows for removing items that were unnecessarily generated from the 7 

experiment structure (i.e., getting rid of rows with 0 RT). 8 

 9 

42 10 

43 11 

44 12 

45 13 

46 14 

 15 

Now that we have a data frame with three columns (Participant.Private.ID, 16 

Screen.Name, Response), we can create tidy data with one observation per row and one 17 

variable per column. pivot_wider() and pivot_longer() offer a simple solution to this 18 

common data structure problem. Figure 6 demonstrates how experimental data (e.g., Gorilla-19 

tasks, Psychopy, E-Prime) often require widening, whereas questionnaire data (e.g., Gorilla-20 

questionnaires, Google forms, Qualtrics) require pivoting longer. In L:49, we pivot wider to 21 

create a single row for each participant with each question having its own column. It is much 22 

easier to come up with standards for removal in the speaks_L2, age, or hear_impaired 23 

columns than for the Response column, which would require conditional standards based on 24 

Screen.Name. 25 

 26 

## ----Questionnaire: Clean--- 

cleaned_quest_data<-task_data%>% 

filter(display=="questionairre",na.omit=TRUE)%>% 

select(Participant.Private.ID,Screen.Name,Response,Reaction.Time)%>% 

filter(Response != "",Reaction.Time!=0)%>% select(!Reaction.Time) 
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49 1 

50 2 

51 3 

52 4 

53 5 

54 6 

55 7 

56 8 

57 9 

58 10 

59 11 

 12 

 13 
Figure 6. Examples of long data (left) and wide data (right). 14 

 15 

In L:69, we find that two participants should be removed for language expertise 16 

outside English and one for exceeding the age cutoff (both predetermined values based on 17 

Porretta et al.). We can now use this data frame to filter out unqualified participants in the 18 

Participant.Private.ID column of the next removal stage (See L:61-68 in 19 

AOW_r_work_flow.rmd for an example of helpful visualization). 20 

## ----Questionnaire: Tidy--- 

pivot_wider(names_from=Screen.Name,values_from=Response)%>% 

mutate(speaks_L2 =if_else(str_detect(other_languages_spoken,"German")& 

!is.na(other_languages_spoken),1,0), 

     across(c(chinese_study_duration,age,experience_chinese_accent), 

            as.numeric), 

Participant.Private.ID = as.factor(Participant.Private.ID))%>% 

select(!other_languages_spoken) 

tidy_quest_data<-cleaned_quest_data%>% 

group_by(Participant.Private.ID,Screen.Name)%>% 

summarise_all(toString)%>% 
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69 1 

70 2 

71 3 

72 4 

73 5 

74 6 

 7 

3.3.2 Behavioral-task wrangling 8 

The next cycle of data wrangling begins with the question: Which participants and 9 

items should be removed based on the behavioral results? Cleaning is similar to the 10 

questionnaire cycle, but we start from scratch with a clone of task_data called 11 

experimental_cleaned because the new question has new goals, which requires different 12 

variables. We start this cycle’s implementation by filtering the participants in the behavioral-13 

task clone with the questionnaire data from above in order to only keep those participants that 14 

qualified in the questionnaire wrangling cycle (L:77). We then remove all rows except ones 15 

related to behavioral data questions (L:78-79) and experimental items (L:80), followed by 16 

removing columns with all NAs. Lastly, to achieve tidy data, we split the visual image 17 

selection and comprehension question into two columns so that each participant has a single 18 

observation for each trial (e.g., pivot into a wider structure, L:84). Removal of columns in 19 

L:86-88 makes pivoting possible. Pivoting requires that rows do not have uniquely 20 

identifiable information outside the data columns being "widened" (This could also be 21 

achieved with the column argument of pivot_wider). 22 

## ----Questionnaire: Filtered--- 

filtered_quest_data<-tidy_quest_data%>% filter(age<=40 

& age>=18, #1 removed for age range 

chinese_study_duration==0, #none removed 

speaks_L2==0,#2 removed that speak other languages 

language_disorder == "No") #none removed  
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76 1 

77 2 

78 3 

79 4 

80 5 

81 6 

82 7 

83 8 

84 9 

85 10 

86 11 

87 12 

88 13 

89 14 

90 15 

 16 

Additionally, we must load in a second data frame OSF_data (L:94) from the original 17 

experiment. We do this because our experiment only has the quadrants or the visual stimuli 18 

without the target, competitor, and distractor information, and later we need SUBTLWF_obj, 19 

which is the log frequency of the object words used in the statistical models. 20 

 21 

93 22 

94 23 

95 24 

96 25 

 26 

In L:99, we filter the OSF_data for experimental items and use a left_join() based 27 

on talker condition verb_type, and the center visual image subject_img_file, which 28 

simultaneously pulls in the variables that we need and filters out nonce items (this step could 29 

## ----Experimental Data: Clean and Tidy---

experimental_cleaned <- task_data%>%      

    filter(Participant.Private.ID %in% 

           filtered_quest_data$Participant.Private.ID)%>% 

    filter(Zone.Type == "response_button_image"| 

           Zone.Type == "response_button_text")%>% 

    filter(verb_type == "Restricting" |verb_type == "NonRestricting")%>%    

    select_if(~sum(!is.na(.)) > 0) 

 

experimental_tidy<-experimental_cleaned%>%    

   select(!c(Event.Index:Local.Date, 

            Screen.Number:Zone.Name, 

            Reaction.Time:Response.Type))%>% 

   pivot_wider(names_from = Zone.Type,values_from = Response)%>%   

   mutate(subject_img_file=center_image)#for renamed match in next step 

## ----OSF Data: Clean and Tidy---- 

OSF_filt<-OSF_data%>%  

   select(talker,verb_type,subject_img_file,img_1_file, img_2_file, 

          img_3_file, img_4_file,log_SUBTLWF_Obj) 
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be avoided by putting these variables in the original experimental spreadsheets). Figure 7 1 

demonstrates filtering through different types of joining. 2 

 3 

98 4 

99 5 

100 6 

 7 

 8 
Figure 7. Solid portions refer to what is kept. Full join retains all rows from both data 9 
frames. Left join is more restrictive and includes all the rows from the left (first) data 10 
frame and matching values from the right data frame (second). Right join is the inverse of 11 
left join. Inner join is the most restrictive, it only retains rows with matching values from 12 
both data frames. 13 

 14 

Now that we have the variables we need in behavioral_data, we can create variables 15 

for the answers being correct/incorrect for our removal process. We will do this for both the 16 

item selection (L:105) and comprehension question (L:106). 17 

 18 

102 19 

103 20 

104 21 

105 22 

106 23 

Importantly, researchers should establish a criterion for removal prior to data 24 

collection. Because Porretta et al. (2020) did not report the criteria they used, we based our 25 

## ----Behavioral Data: Join OSF and Experimental Data--- 

behavioral_data<-experimental_tidy%>% 

   left_join(OSF_filt, by=c( "talker","verb_type","subject_img_file")) 

## ----Behavioral Data: Clean and Tidy--- 

behavioral_data <-behavioral_data %>%  

   mutate(participant = as.factor(Participant.Private.ID), 

        image_incorrect= if_else(img_1_file==response_button_image,0,1),  

        text_incorrect = if_else(response_button_text=="Yes",0,1)) 
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removal on three standard deviations from the mean inaccuracy of participants/items 1 

separately, which results in three participants being removed. 2 

 3 

108 4 

109 5 

110 6 

111 7 

112 8 

113 9 

114 10 

 11 

We aggregated participant inaccuracies by adding together incorrect items by 12 

participant and item for both item selection (L:118-129) and comprehension question (L:131-13 

142), respectively. We end here by removing the incorrect trials to prepare for the eye-tracking 14 

data wrangling (L:144-145). 15 

 16 

## ----Behavioral Data: Removal Standards---- 

#Standard deviations is used to retain maximum amount of quality data 

#We set all of these to be 3 SDs, code here is only for your future use 

image_participant_threshold = 3  

image_item_threshold = 3  

text_participant_threshold = 3  

text_item_threshold = 3 
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118 3 

119 4 

120 5 

121 6 

122 7 

123 8 

124 9 

125 10 

126 11 

127 12 

128 13 

129 14 

130 15 

131 16 

132 17 

133 18 

134 19 

135 20 

136 21 

137 22 

138 23 

139 24 

140 25 

141 26 

142 27 

143 28 

144 29 

145 30 

## ----Behavioral Data: Participant and Item Removal---- 

#participant removal  

participant_agg<-behavioral_data%>%  

   group_by(Participant.Private.ID)%>%     

   summarize(num_incorrect_image=sum(image_incorrect), 

             num_incorrect_text=sum(text_incorrect))%>% 

   mutate(mean_image_score = mean(num_incorrect_image), 

          sd_image_score = sd(num_incorrect_image), 

          mean_text_score = mean(num_incorrect_text), 

          sd_text_score = sd(num_incorrect_text))%>% 

   filter(num_incorrect_image <= mean_image_score+ 

         (sd_image_score*image_participant_threshold) &  

        num_incorrect_text <= mean_text_score+ 

           (sd_text_score*text_participant_threshold)) 

#item removal  

item_agg<-behavioral_data%>%  

   group_by(center_image)%>%     

   summarize(num_incorrect_image=sum(image_incorrect), 

             num_incorrect_text=sum(text_incorrect))%>% 

   mutate(mean_image_score = mean(num_incorrect_image), 

          sd_image_score = sd(num_incorrect_image),  

          mean_text_score = mean(num_incorrect_text),  

          sd_text_score = sd(num_incorrect_text))%>% 

   filter(num_incorrect_image <= mean_image_score+ 

         (sd_image_score*image_item_threshold) &  

        num_incorrect_text <= mean_text_score+  

         (sd_text_score*text_item_threshold)) 

 

behavioral_data <-behavioral_data%>%  

   filter(image_incorrect == 0 & text_incorrect == 0) 
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One important note here is that the removal is done in parallel. That is, we removed 1 

participants and items simultaneously. If you sequentially remove participant or item first then 2 

removal results would be different in the behavioral_data (e.g., more or less items or 3 

participants would be removed). Said another way, this removal method assumes that a “bad” 4 

item or poor performing participant would be below the distributional counts independently. 5 

 6 

3.3.3 Eye-tracking wrangling 7 

Removal and adjustment of eye-tracking data is done through an exploratory lens as 8 

there is little current reference for expected results for eye-fixations and frame-rate in web-9 

based eye-tracking. However, recent work has begun to fill this gap (see Prystauka et al., 10 

2023; Vos et al., 2022). Here, two questions guide our approach: How should eye-fixations be 11 

classified into quadrants in web-based eye-tracking? And, what quality of frame-rate is 12 

needed to capture the effects of interest? We start by filtering out participants from the 13 

previous data sets. Here, the retained participants (L:118) and items (L:131) from the previous 14 

step are used to define what we want to keep in the behavioral_data (L:148-150) with 15 

the %in% operator. 16 

 17 

147 18 

148 19 

149 20 

 21 

150 22 

151 23 

 24 

Whereas the et_data is much larger than the previous data frames, the same methods 25 

are used. Selection of data can be reduced to only the time time_elapsed, participant 26 

## ----Behavioral Data: Removing with IN Operator--- 

behavioral_data<-behavioral_data%>%  

   filter(Participant.Private.ID%in% 

          participant_agg$Participant.Private.ID&   

   center_image %in% item_agg$center_image)%>% 

   select(-c(text_incorrect,image_incorrect,response_button_text)) 
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participant_id, and eye-fixations x_pred_normalised y_pred_normalised (L:154-156), 1 

which is filtered by only usable fixation points (L:157), followed by variable renaming for 2 

upcoming joining of et_data and behavioral_data (L:158-159). 3 

 4 

153 5 

154 6 

155 7 

156 8 

157 9 

158 10 

159 11 

 12 

Now that both behavioral_data and et_data are cleaned and tidy, left_join() 13 

(L:173) is used to create all_data from our behavioral_data and eye_tracking data. This 14 

data frame now has all of the eye-tracking data and behavioral-task data from the entire 15 

experiment (L:173-174). However, the data from the et_data only includes unclassified eye-16 

fixations. Specifically, it includes the x and y coordinates without a link to the visual stimuli 17 

that are being viewed. A Shiny app was created to dynamically explore how eye-fixations are 18 

distributed with variable amounts of removal at four crucial time points: the beginning of the 19 

sentence (-400ms), verb onset (0ms), object onset, and selection of visual stimuli. The app also 20 

includes dynamically calculated data loss. Figure 8 is a fixed version of the fixation points from 21 

the app (See Eye-fixations Shiny App in OSF). In the discussion, implications of removal 22 

standards based on eye-fixation alone are considered and discussed as a signal detection 23 

problem. 24 

As displayed in Figure 8, fixations are mostly distributed at the center of the screen, 25 

indicating no looks to quadrants. Whereas this remains true for competitor items throughout the 26 

## ----ET Data: Tidying and Filtering with an Inner Join--- 

et_data<-eyetracking_data%>%  

   select(time_elapsed,participant_id,spreadsheet_row, 

          type,x_pred_normalised,y_pred_normalised)%>% 

   filter(type =="prediction" )%>%    

   rename("Participant.Private.ID"="participant_id", 

          "Spreadsheet.Row"="spreadsheet_row") 

https://osf.io/a3e5s/?view_only=822c5f28422444768729f5342fd16848
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trial, target items begin to move toward visual stimuli as early as the verb onset and much more 1 

in later time frames. Crucially, however, the fixations do not always reach the actual quadrants. 2 

In analyzing the data from the Shiny app, removing data between the center point of the screen 3 

and the inner-edges of the quadrants results in ˜83.33% data loss, which is more than twice as 4 

high as previously reported for two image web-based studies (Vos et al., 2022). If we move to 5 

a more relaxed categorization, then only 6.71% of data is lost. In contrast, maximal outer-edge 6 

removal results in very little data loss (max ~32%). When removing inner-edge eye-fixations, 7 

the choice comes down to removing signal to avoid noise in spatial ambiguity, or embracing 8 

noise to maximally retain the signal. As shown in the competitors-time 800 (upper-right) section 9 

of Figure 8, the noise is randomly distributed across quadrants just as it is early in the trial 10 

before eye-movements tend toward visual stimuli. Here, we aim to strike the balance of the 11 

signal-to-noise trade off by removing most of the data outside the screen size and by maximally 12 

retaining inner data that shows trends. This leads us to believe that no bias would occur even if 13 

classifying data from the x, y fixation center (0.5, 0.5). 14 

 15 

Figure 8. Quadrant locations and actual screen sizes are denoted with white lines. 16 

 17 
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From L:180-190, we create a classification system based on no inner-edge removal of the 1 

eye-fixations and partial removal of outer-edge eye-fixations (the code was created with inner 2 

removal in mind so that future researchers can simply adapt the distance variable L:177, if 3 

desired). We use two types of control flow to first classify eye-fixations into quadrants and 4 

then create binary variables to link the quadrant to the visual stimuli. case_when() is used 5 

(L:180-190) because of the multiple conditions and because case_when() is Boolean, 6 

meaning it provides a specific output in the case of something being true. For example, if we 7 

only want to classify images that are within a particular space and leave others blank, then 8 

non-binary classification like case_when() is optimal. In contrast, if the outcomes of a 9 

classification are binary, then ifelse() is an effective solution. For example, L:192-200 10 

makes a binary decision on whether an image being viewed is the same or different from the 11 

target (L:193), competitors (L:194-195), and distractor (L:196), separately (Note that 12 

competitors and distractors are the same in our experiment, so we included this for ease of 13 

future use). While complexity of implementation may vary, logically either can be used to 14 

achieve the same result in all cases with the use of operators and/or nesting. 15 
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172 2 

173 3 

174 4 
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195 25 
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197 27 

198 28 

199 29 

200 30 

## ----ET Data: Localizing Visual Stimuli---- 

#logically equivalent to doing full join and removing non-experimental trials. 

all_data <-behavioral_data %>%  

   left_join(et_data, by=c("Participant.Private.ID", "Spreadsheet.Row")) 

 

center=.5#center of screen  

distance=0#distance to visual stimuli 

beyond_screen=1 #distance to beyond_screen 

 

all_data<-all_data%>%  

   mutate(image_viewing=  

   case_when(x_pred_normalised <= center-distance & 

             y_pred_normalised >= center+distance ~ image_1,    

            x_pred_normalised >= center+distance &  

            y_pred_normalised >= center+distance ~ image_2,  

           x_pred_normalised <= center-distance &  

            y_pred_normalised <= center-distance ~ image_3,  

           x_pred_normalised >= center+distance &  

            y_pred_normalised <= center-distance ~ image_4))%>% 

filter(!is.na(image_viewing)) 

 

all_data<-all_data %>%  

   mutate(target = if_else(image_viewing == img_1_file, 1, 0),   

          comp_1 = if_else(image_viewing == img_2_file, 1, 0),  

          comp_2 = if_else(image_viewing == img_3_file, 1, 0),  

          dist = if_else(image_viewing == img_4_file, 1, 0))%>% 

filter(x_pred_normalised>center-beyond_screen & 

x_pred_normalised<center+beyond_screen&  

y_pred_normalised>center-beyond_screen &  

y_pred_normalised<center+beyond_screen) 
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In addition to more variable eye-fixations, web-based eye-tracking also has variable 1 

frame-rates. Figure 9 shows a categorization of participants by median frame-rate across 2 

trials.  3 

 4 

Figure 9. Participant frame-rate. Mean is marked with dotted horizontal line. High, 5 
medium and low categories are defined by the median frame-rate of each participant, 6 
making cutoffs by peaks of the distribution. Frame is shown in hertz (Hz) and participants 7 
are individually represented by each boxplot. 8 

 9 

Like other recent web-based eye-tracking studies, our mean frame-rate was 20Hz (M = 10 

22.17Hz, SD = 11.61). Here, we remove the five participants with less than 5Hz median 11 

frame-rates and create time bins by first creating a standard for removal in L:378 and a 12 

binning size (L:379). Median is used because means are more sensitive outliers; e.g., if a 13 

participant has one exceptionally low frame-rate this will not be just cause for removal if we 14 

use medians (Leys et al., 2013). We then aggregate by participant Participant.Private.ID, 15 

item subject_img_file, and condition verb_type talker (L:381) in order to remove all 16 

participants that are below our standard predetermined median; i.e., 5Hz (L:381-388) (Vos et 17 

al., 2022). Next, time bins are created by normalizing the time range for each item (L:389). 18 

Additionally, we subtracted 200ms for human eye movements to occur and thus center the 19 

time so that zero is always the onset of the verb of interest (this step was not explicit in 20 

Porretta et al. (2020), but we recommend future researchers always make this step explicit to 21 
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ensure that future studies can reproduce your results). After normalizing, bins are created by 1 

dividing the time time_elapsed by the bin size time_binning, rounding, then multiplying 2 

by the bin size time_binning (L:390), which is simply rounding items to the nearest bin size 3 

number thus allowing you to use any size bin for your data rather than an assumed pre-set bin 4 

size. 5 

377 6 

378 7 

379 8 

380 9 

381 10 

382 11 

383 12 

384 13 

385 14 

386 15 

387 16 

388 17 

389 18 

390 19 

 20 

391 21 

392 22 

393 23 

 24 

Creating time bins is fundamentally discretizing a continuous scale. In any fixed set of 25 

eye-tracking data, the grain size of the time scale has an inverse relationship to the amount of 26 

data in each time bin. If you increase the bin size, you will have more data per bin, but less 27 

bins across time. Many statistical analyses can bypass the binning procedure altogether by 28 

## ----All Data: Clean and Tidy--- 

frame_rate_cut_off<-5 

time_binning<-50  

all_data_cleaned<-all_data%>% 

   group_by(Participant.Private.ID,subject_img_file,verb_type,talker)%>%  

   mutate(count = n(), 

          max_time = max(time_elapsed),  

          frame_rate = count/max_time*1000)%>% 

   ungroup()%>%  

   group_by(Participant.Private.ID)%>%  

   mutate(median_frame_rate = median(frame_rate))%>%   

   filter(median_frame_rate>=frame_rate_cut_off)%>%   

   mutate(time_elapsed=time_elapsed-object_start-200)%>%    

   mutate(time_elapsed_rounded=time_binning*round 

         ((time_elapsed)/ time_binning)) 

 

all_data_tidy <- all_data_cleaned%>%  

   filter(time_elapsed_rounded>=-400 & time_elapsed_rounded<=800) 
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keeping time a continuous variable. Nevertheless, for analyses that do require time bins and 1 

for visualization alone, it is worth exploring whether specific bin sizes affect a researcher’s 2 

ability to capture an effect. To do this, we created a second Shiny app that is depicted in 3 

Figure 10 (see Frame-Rate Shiny App in OSF). The Frame-Rate Shiny App allows the reader 4 

to explore the interactions between data removal based on participant median frame-rates, 5 

changing bin sizes, and seeing output in the form of empirical logits for either linear lines or 6 

GAMM smoothed curves. Here, two crucial discoveries are made. 7 

First, almost any arbitrary sized bin captures the effect of verb_type, with the caveat of 8 

the bin needing to be several sizes smaller than the window of interest. Second, nearly any 9 

frame-rate of data can capture the effect outside very low frame-rates of 5Hz and below. If 10 

only examining data that is 6-11Hz, the effect of verb_type for talker starts to become 11 

apparent while the accented speaker effect for verb_type becomes apparent between 12-17 12 

Hz. 13 

 14 

 15 

Figure 10. Total looks per bin size. Like figure 9, high, medium, and low categories are 16 
defined by the median frame-rate of each participant. Adjusted time is in milliseconds 17 
(ms). Looks captured are raw counts across participants/items. 18 

 19 

https://osf.io/a3e5s/?view_only=822c5f28422444768729f5342fd16848
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The last step before visualization and statistical analysis is a final tidying. Like the 1 

first wrangling that we did, we create a tidy data frame through removal. Here, all eye-2 

fixations that are outside the window of interest (-400ms and 800ms) are removed. Now, our 3 

new tidy data is structured based on the core four constructs. For each participant, each audio 4 

stimuli and visual stimuli set is classified by talker and verb_type. Finally, we have 5 

removed all times outside the window of interest. By tidying in this way, eye-fixations 6 

become meaningful in that each row is classified into looks to targets, competitors, and 7 

distractors, and each row is a classified eye-fixation based on a specific time, for each 8 

participant, and for varying conditions. Between the two data frames all_data_cleaned and 9 

all_data_tidy, we have all of the behavioral data ready for any analysis or exploration that 10 

can be done. 11 

 12 

4. Modeling ET data 13 

In all previous steps, wrangling can be thought of as a condensing process, where the 14 

primary object is to remove, clean, and transform the data into a structure that is usable. 15 

However, once the data is put into tidy form, then the data must be transformed for specific 16 

visualizations and statistical analyses (hereafter, models). In this section, we think of 17 

all_data_cleaned and all_data_tidy as launching points to gain an understanding of our 18 

data3. 19 

We start by creating two data frames from all_data_tidy : mem_data in L:453 and 20 

gamm_data in L:459. In general, maximally retaining informative columns is essential to 21 

creating a usable data frame. When building models, however, it is often best to remove 22 

 

3 If you wish to start from here then read in the all_data_tidy and all_data_cleaned from 

cleaned data on OSF. 
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variables that you will not be using. This is because some models can have complications 1 

interpreting unprocessed data types (e.g., NAs ). For mem_data , we start by selecting all 2 

necessary columns for the model (L:454-455). Factor type conversion occurs next (L:456). 3 

Finally, to get background information we join tidy_quest_data . In addition to the 4 

mem_data , we create gamm_data by simply cloning mem_data in L:459 and by adding a 5 

single variable needed in the GAMM models. 6 

452 7 

453 8 

454 9 

455 10 

 11 

456 12 

457 13 

458 14 

459 15 

460 16 

 17 

There are a handful of excellent papers that outline the advantages and disadvantages 18 

of different methods of eye-fixation analysis and relevant considerations for each method of 19 

analysis (Barr, 2008; Ito & Knoeferle, 2022; McMurray, 2023; Mirman et al., 2008). Here, we 20 

continue to focus on the data wrangling process and present the data wrangling steps—and 21 

decisions—needed to carry out two of the more widely used statistical analyses in the field: 22 

generalized linear mixed effect models (GLMMs) and generalized additive mixed effects 23 

models (GAMMs), which does not require the assumption of linearity. Both GLMMs and 24 

GAMMs require specific contrast coding (e.g., dummy, orthogonal) of the data before running 25 

models to get expected results. After contrast coding, all model building starts with maximal 26 

## ----All Data: Preparing for Models--- 

mem_data<-all_data_tidy%>%  

   select(Participant.Private.ID,verb_type,talker, 

          subject_img_file,target,Trial.Number,log_SUBTLWF_Obj,     

          target_obj,time_elapsed)%>% 

   mutate(Participant.Private.ID=as.factor(Participant.Private.ID))%>%  

   left_join(filtered_quest_data) 

 

gamm_data<-mem_data%>%  

   mutate(Condition = paste(talker,verb_type,sep=".")) 
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models, as justified by the design, working down to simpler models for model comparison 1 

(see Barr et al., 2013). 2 

 3 

4.1 GLMMs 4 

4.1.1 GLMMs: coding 5 

For GLMMs coding, start with data type conversion (L:464-465), then re-level both 6 

talker (Native, Non-Native) and verb_type (Restrictive or Non-Restrictive) so that 7 

verb_type Restrictive and talker  Native are both set as reference levels (L:466-467). We 8 

can then rename the contrasts to improve model output readability (L:468-471) and later 9 

visualization. In L:473 through L:476, we normalize the time_elapsed . Lastly, we create a 10 

data frame for the accent model (L:477). 11 

463 12 

464 13 

465 14 

466 15 

467 16 

468 17 

469 18 

470 19 

471 20 

 21 

472 22 

473 23 

474 24 

475 25 

476 26 

477 27 

 28 

## ----GLMM: Leveling the Data--- 

mem_data$verb_type<-as.factor(mem_data$verb_type)  

mem_data$talker<-as.factor(mem_data$talker)  

contrasts(mem_data$verb_type)<-c(-.5,.5)  

contrasts(mem_data$talker)<-c(-.5,.5)  

colnames(contrasts(mem_data$talker))<- c(’Native:’)  

rownames(contrasts(mem_data$talker))<-c("Native","NonNative") 

colnames(contrasts(mem_data$verb_type))<- c(’Restricting:’)  

rownames(contrasts(mem_data$verb_type))<- 

                   c("Non-Restricting","Restricting")  

mem_data$experience_chinese<-mem_data$experience_chinese_accent  

mem_data <- mem_data %>% 

   mutate(time_normalized = 

         (time_elapsed - min(time_elapsed)) /  

         (max(time_elapsed) - min(time_elapsed))) 

accent_mem_data<-mem_data%>%filter(talker == "NonNativeMale") 
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4.1.2 GLMMs: models 1 

Two GLMMs were built using the lme4 package (Bates et al., 2014). Looks to the 2 

target (coded as 1, 0) served as the dependent variable. The Main Model included three fixed 3 

effects: verb_type (Restrictive or Non-Restrictive), talker (Native, 4 

Non-Native) and their interaction (L:509). Random intercepts for subject_img_file , 5 

Participant.Private.ID , and time_normalized  were included, as were random slopes 6 

for talker and verb_type . The logit link function ("binomial") was specified in the model, 7 

equivalent to modeling logit-transformed response probability with identity link function. 8 

Model comparison4 showed preference for the full model with ANOVA comparisons (p 9 

< .001) and lower AIC and BIC. 10 

 11 

508 12 

509 13 

510 14 

511 15 

512 16 

513 17 

514 18 

 19 

Similar to the above model, an accent only model was run on accent_mem_data . 20 

Model specifications are identical to Main Model outside of changing fixed effects to 21 

experience_chinese (L:540). Additionally, talker is removed as a random slope 22 

because accent_mem_data only has one talker: accented. Full models were shown to 23 

outperform simpler models from ANOVA comparisons (p < .001) and lower AIC and 24 

BIC, as well as non-convergence of simpler models. 25 

 

4 See AOW_r_work_flow.rmd for all model comparisons 

## ----GLMM: Main Model--- 

glmm1_1<-glmer(target~talker*verb_type+ 

              (talker|subject_img_file)+ 

              (verb_type|Participant.Private.ID)+ 

            (1|time_normalized),  

          family="binomial",data=mem_data) 

summary(glmm1_1) 
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 1 

539 2 

540 3 

541 4 

542 5 

543 6 

544 7 

 8 

4.2 GAMMs 9 

Like GLMM data, GAMM data must be first coded/prepared (L:546-559). Here, we 10 

turn variables into factors and level them at the same time (e.g., L:550-553). However, it is 11 

important to note that GAMMs interpret sum-coded variables most effectively, L:550-552. We 12 

create event as a combination between conditions (L:554-555). Then we only select() 13 

columns necessary for the analysis (L:557-559). Lastly, we split off the accent data for the 14 

accent GAMM (L:560). 15 

## ----GLMM: Accent Model--- 

glmm2_1<-glmer(target~experience_chinese+ 

              (1|subject_img_file)+ 

              (1|Participant.Private.ID)+ 

(1|time_normalized),family="binomial",data=accent_mem_data) 

summary(glmm2_1) 



THE ART OF WRANGLING 36 

546 1 

547 2 

548 3 

549 4 

550 5 

551 6 

552 7 

553 8 

554 9 

555 10 

556 11 

557 12 

558 13 

559 14 

560 15 

GAMM Models were built using the mgcv package (Wood, 2017). Model comparisons 16 

suggest that random intercept of Event significantly improved the maximal model. Like the 17 

GLMM model, the GAMM models treat looks to the target (L:603) as the dependent variable 18 

with independent variables including three fixed effects: talker_coded (L:603), 19 

verb_type_coded (L:605) and their interaction (L:607). Random effects included Event 20 

(L:612). Smooth terms were included for time_elapsed by levels of talker_coded (L:604), 21 

verb_type_coded (L:606), and Condition (L:608). Smooth terms allow for a non-linear 22 

relationship between time_elapsed and the response variable verb_type_coded, with a 23 

different smooth function for each level of variable. An additional smooth term for 24 

log_SUBTLWF_Obj (L:609) was included. Smooth terms for time_elapsed were included for 25 

grouping levels: Participant.Private.ID and subject_image_file (L:610-611). The 26 

logit link function ("binomial") was specified in the model, equivalent to modeling logit-27 

transformed response probability with identity link function. 28 

## ----GAMM: Leveling the Data--- 

gamm_data <- gamm_data %>% 

   mutate( 

      Condition = as.factor(Condition),  

      subject_img_coded = as.numeric(factor(subject_img_file)) - 1,  

      talker_coded = as.numeric(factor(talker)) - 1,  

      verb_type_coded = as.numeric(factor(verb_type)) - 1, 

      Participant.Private.ID = as.factor(Participant.Private.ID), 

      Event = as.factor(paste( 

         Participant.Private.ID,Trial.Number,sep= ".")),  

      experience_chinese = experience_chinese_accent)%>%  

   select(Event,Participant.Private.ID,Trial.Number,verb_type_coded, 

          talker_coded,subject_img_coded,Condition,target,time_elapsed,     

          log_SUBTLWF_Obj,experience_chinese,Event) 

gamm_data_accented<-gamm_data%>%filter(talker_coded == 1) 
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 15 

The accent GAMM had identical structure to the main GAMM with the expectation of 16 

having only 1 main effect, experience_chinese (L:642), and removing the smoothing term 17 

leveled by talker_coded . gamm_data_accented was the data frame (L:648). Model 18 

comparisons suggest that random intercept of Event significantly improves in the maximum 19 

model. 20 

 21 

## ----GAMM: Main Model--- 

mod1 <- bam(target ~ talker_coded + 

            s(time_elapsed, by=talker_coded) +  

            verb_type_coded +  

            s(time_elapsed, by=verb_type_coded) +  

            talker_coded:verb_type_coded +  

            s(time_elapsed, by=Condition)+ 

            s(log_SUBTLWF_Obj)+  

            s(time_elapsed, Participant.Private.ID, bs="fs", m=1)+  

            s(time_elapsed, subject_img_coded, bs="fs", m=1)+  

            s(Event, bs="re"),  

            family="binomial", data=gamm_data, discrete=TRUE, method="fREML") 

summary(mod1) 
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4.3 Results 10 

We observed nearly identical time course of predictive processing (Figure 11) 11 

in which restricted sentences resulted in earlier looks to the target object than 12 

nonrestrictive sentences. Further, this effect is partially reduced in accented speech in 13 

a similar manner to Porretta et al. (2020). For ggplot() code and data wrangling for 14 

visualizations, see AOW_r_work_flow.rmd . 15 

 16 

 17 

Figure 11. Looks to native speaker stimuli are shown in blue and non-native are shown in 18 

yellow. Dotted lines represent restricting items, while solid lines represent non-restricting 19 

## ----GAMM: Accent Model--- 

mod2 <- bam(target ~ experience_chinese + 

            s(time_elapsed, by=verb_type_coded) + 

            s(log_SUBTLWF_Obj)+  

            s(time_elapsed, Participant.Private.ID, bs="fs", m=1)+    

            s(time_elapsed, subject_img_coded, bs="fs", m=1)+  

            s(Event, bs="re"),family="binomial",     

            data=gamm_data_accented, discrete=TRUE, method=" fREML") 

summary(mod2) 
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items. The left y-axis quantifies values from our data, while the right y-axis quantifies data 1 

from Porretta et al. (2020). 2 

 3 

4.3.1 GLMM Results 4 

Results from the Main GLMM revealed a significant effect of verb_type (β = 0.281, 5 

SE = 0.067, z = 4.191, p < .001), indicating more looks to targets for restrictive verb_type 6 

over non-restrictive verb_type  (Figure 12, left). Additionally, an interaction between speaker 7 

and verb type was found (β = -0.136, SE = 0.053, z = -2.554, p = 0.011), indicating less looks 8 

when listening to the accented speaker for restricted items. Results from the Accent GLMM 9 

failed to reject the null hypothesis at an alpha-level of .05 (Figure 12, right). 10 

 11 

 12 

Figure 12. Model output for parsimonious GLMM models. 13 

 14 

4.3.2 GAMM Results 15 

Like the GLMM modeling results, results from the Main GAMM revealed a 16 

significant effect of verb_type (β = 0.398, SE = 0.129, z = 3.078, p = .002), indicating more 17 

looks to targets for restrictive verb_type over non-restrictive verb_type  (Figure 13, left). 18 

Results from the Accent GAMM failed to reject the null hypothesis at an alpha-level of .05 19 

(Figure 13, right). 20 

 21 
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Figure 13. Model output for parsimonious GAMM models. 1 

 2 

5. Discussion 3 

5.1 Web-based Eye-Tracking May Provide Access to Unique Populations 4 

Our replication results indicate that web-based eye-tracking can capture the same 5 

predictive processing as in-person eye-tracking (e.g., Prystauka et al., 2023; Vos et al., 2022). 6 

Our main models show that predictive sentence processing is modulated by restrictive and 7 

non-restrictive verb type in line with Porretta et al. (2020) and that accented speech impedes 8 

predictive processing but does not preclude it. Interestingly, our accent models did not find 9 

evidence of accent-experience modulating predictive processing. Why might this be? Our 10 

wider (non-university recruited) sample of participants had far less experience with Chinese 11 

accents (range = 0-3.43, M = 0.99) as compared to the students reported in Porretta et al. 12 

(2020) (range = 0–3.43, M = 1.78). It is possible that the students tested in Porretta et al. 13 

(2020) were exposed to greater Chinese-accented speech more as a result of being on a 14 

university campus with international students, while our crowdsourced Prolific participants 15 

had far less exposure to Chinese-accented speech in their daily lives. If this difference in 16 

experience with Chinese-accented English was behind the lack of evidence for an effect, this 17 

may suggest that the population available to test online is different from the population 18 

available to test at a traditional WEIRD university setting (Rodd, in press). This speaks to the 19 

potential to recruit and test far more varied bi-/multilingual populations, and potentially 20 

advance theory and research on individual differences in exciting, new ways. 21 

The null effect may also be due to our low statistical power. With only 49 participants 22 

doing 24 trials, we had fewer observations per condition than is recommended (e.g., ~1,600 23 

per condition: Brysbaert & Stevens, 2018). See our ‘main power-analysis simulation’ and 24 

‘accent power-analysis simulation’ R scripts on OSF for post-hoc power analyses to guide 25 

replications and extensions. Insights from the 'main power-analysis simulation' indicate that at 26 
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least 25 to 30 items per condition, with corresponding participant counts of 45 to 50, is 1 

necessary to achieve 80% power. For accent models, the participant number must be closer to 2 

90. These simulations underscore the importance of adequate sample sizes for detecting true 3 

effects and avoiding Type-II errors. 4 

Finally, measurement error may have contributed to the null effect. The sliding scale 5 

used to report Chinese experience was set to start at 0 (Gorilla pre-set setting, which can be 6 

controlled in configuration settings). It could be that some of the 13 participants reporting ‘0’ 7 

simply selected next to move on quickly. Future studies should clearly state the exact type of 8 

method used for capturing such data and make materials fully available to avoid this 9 

confusion for metrics that are essential for analyses. Our results are, therefore, inconclusive 10 

with respect to the accent models.  11 

 12 

5.2 Best Practices for Web-Based Visual World Paradigm Eye-Tracking Research 13 

Alone, eye-fixations are meaningless. Deriving meaning from x- and y-coordinates is 14 

achieved through time, visual stimuli, and audio stimuli. These core four constructs 15 

correspond directly with the variables of our experiment, research questions, and data 16 

analyses. However, managing these constructs is complex. Data wrangling through lines of 17 

code knits these constructs together, gradually constructing bridges of understanding. In what 18 

follows, we summarize best practices that are essential for bi-/multilingual reproducible web-19 

based eye-tracking studies. 20 

Set clear exclusion criteria for participants prior to data collection. Removal of 21 

participants given language background information or demographics should be made 22 

prior to data collection, and should involve a simple filtering step at the beginning of data 23 

wrangling. We encourage pre-registration, if possible. 24 

Include and report behavioral/attention task checks. The decisions and standards 25 

of participant and item removal should always be done before data analysis begins. We 26 
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recommend removal by calculating distribution-based removal standards with median 1 

absolute deviation (Leys et al., 2013) or standard deviation with a distribution value set 2 

prior to beginning wrangling. Crucially, report what criterion you used for removal (e.g., 3 3 

SD).  4 

 Report accuracy cutoffs for participant background information. As noted, we 5 

removed one participant for reporting a different age outside our preset filter and two for 6 

reporting non-monolingual status, again not in line with our preset filter. It is our 7 

experience that some Prolific users may have registered their account with inaccurate 8 

information in order to qualify for more studies. Ideally, researchers could pre-register 9 

cutoffs and exclusion criteria. 10 

Include and report eye-calibration. Prior to obtaining our 60 participants, 23 potential 11 

participants failed our five-point eye-calibration. In other words, roughly 20% of possible 12 

participants were unable to participate. We echo recent suggestions requiring participants to 13 

pass a specific threshold during eye-tracking calibration. Our standard of 4 out of 5 was 14 

sufficient for ensuring high quality data. 15 

Require a minimum median frame-rate greater than 5Hz. In our study, below 5Hz is 16 

‘unusable’. Whereas the research question and effect of interest will dictate the required 17 

frame-rate—consider a sentence processing study like ours which captured the native-talker 18 

predictive effects within 6-10Hz, versus a word recognition study involving subtle voice-19 

onset time differences which may require 20Hz to detect differences—we echo Vos et al.’s 20 

(2022) recommendation to remove participants below the 5Hz range. However, we 21 

recommend using median frame-rate or over mean to avoid removal based on extreme trial 22 

values. Removal should be reported, as well as the ranges of frame-rates. In cases of more 23 

extensive removal, analyses should be run with both the removed participants and the full data 24 

to justify removing more data. 25 

Additionally, in an exploratory attempt, we observed that device OS and age of the 26 

browser potentially explains variability between participants with newer device OS and more 27 
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updated browsers having better frame-rates. Additionally, Chromebooks generally provide the 1 

lowest frame-rates in our data. Cutoffs for types of browsers could be useful in collecting 2 

higher quality data and reducing the need to remove large amounts of participants found in 3 

other web-based eye-tracking studies (Prystauka et al., 2023). 4 

Identify a quadrant classification method. Previous web-based eye-tracking studies 5 

have shown that removal to the boundary of visual stimuli still enables the researcher to 6 

capture results even with strict standards for removal of eye-fixations (28% in Vos et al. 7 

(2022)). That is, eye-fixations outside the target areas in Figure 8 are excluded regardless 8 

of how close they are to the area (i.e., classifying web-based eye-fixation the same way 9 

that lab-based eye tracking does). However, ranges of removal at this strict standard 10 

suggest removal of up to 93.61% of the data. 11 

Our suggestion is twofold: firstly, embrace the noise. If unmeaningful eye-fixations are 12 

random or equally distributed from the center, then including them will not hinder analysis. 13 

Secondly, report and explore standards for maximizing signal and minimizing noise retention 14 

of eye-fixations. We suggest that future research maximize retained signal, rather than 15 

maximizing removed noise. 16 

Report all time adjustments. Report any time adjustments including the 200ms required 17 

to program a saccade (Matin et al., 1993) and any adjustment given a carrier phrase.  18 

Use a meaningful eye-fixation bin size given the research question.  There is an 19 

intrinsic relationship between frame-rate and the amount of data per bin. Consider the 20 

scenario where you are using a bin size of 50 with a participant with 20Hz frame-rate (i.e., 21 

one eye-fixation per 50ms on average). In this scenario, each bin would only have one eye-22 

fixation per bin for that participant. Along with reporting standards for binning, we 23 

recommend that the researcher find a balance between fewer bins with more data and more 24 

bins with less data. Vos et al. (2022) and the current study used 50ms time bins. However, 25 

larger bin sizes could be useful with audio stimuli with longer duration. The crucial decision 26 
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comes down to understanding the time-window of interest. Excluding extreme scenarios 1 

where the bin size is approaching the size of the time-window of interest, our data suggests 2 

that varying bin size has little to no effect on outcomes.  3 

 4 

6. Conclusion 5 

Web-based eye-tracking is here to stay, and with that comes a demand for mastering 6 

data-wrangling skills. The choices made during web-based eye-tracking data wrangling 7 

should be documented and transparent, with key decisions always reported. We hope that the 8 

Art of Wrangling is a first step towards a more uniform approach to web-based eye-tracking 9 

in language research. 10 

 11 
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